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Intelligent systems must maintain internal states to produce appropriate behavioral outputs

Sensory inputs Neural computation Behavioral outputs




Intelligent systems must maintain internal states to produce appropriate behavioral outputs

Sensory inputs In silico computation Behavioral outputs
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Exciting advances in neural and behavioral recording technologies

Large-scale neuronal measurements Automated tracking and computer Causal perturbations with closed-loop,
in freely behaving animals vision for quantifying natural behavior patterned optogenetic stimulation
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Exciting advances in machine learning models and computational hardware

Nobel Physics Prize Awarded for
Pioneering A.IL. Research by 2

Probabit
o L 20a00eS
Scientists 5
With work on machine learning that uses artificial neural ' d:&’N —
networks, John J. Hopfield and Geoffrey E. Hinton “showed a .F:'%:rd
nVidia H100 GPU o) Add ;:Nor'n -~
— VLIti-Head
[ a a g:fair Attentio .
Nobel Prize in Chemistry Goes to 3 i =l
o o o o =) N Ada & Norm - d' Ez"n
Scientists for Predicting and Creating e | |
o —t At
Proteins —0 ) U=

Positional @_@ Positional
Encoding 3 ?_® Encoding
P

The Nobel, awarded to David Baker of the University of ot St
- " - Embedding Embedding
A AS11LL %ﬂ---!__!_ alltl _' CIIS 1 ldassabls allld JOIL1I V1 - JUIIY CL O U1 !_x!_t;_h = I I
Inputs Outputs

(shifted right)

Transformer architecture



Qutline

|. Natural Intelligence: Internal states and attractor dynamics in the hypothalamus

2. Artificial Intelligence: Deep state sbace models for sequence-to-sequence modeling



Qutline

|. Natural Intelligence: Internal states and attractor dynamics in the hypothalamus

- Question: How does the brain represent and maintain internal states?

- Method: Recurrent switching linear dynamical systems (rSLDS)

- Results: Intrinsic line attractor dynamics in the hypothalamus encode an aggressive internal state

- Extension: Smoothly interpolating between states in an rSLDS

2. Artificial Intelligence: Deep state spbace models for sequence-to-sequence modeling



Collaborators

Adi Nair ~ David Anderson Ann Kenned

Adi helped prepare some of the slides that follow.



Optogenetic activation of neurons in the hypothalamus elicits attack behavior

bulk
optogenetics

ig‘gression

Lee et al. (Nature, 2014)



Miniscope imaging in VMHVvI during spontaneous aggression shows mixed selectivity

_ . single neuron encoding
neural microendoscopic of attack vs sniff
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Most neurons in VMHvI are tuned to intruder sex and are active during both sniffing and attack.

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 202 1)



Miniscope imaging in VMHVvI during spontaneous aggression shows mixed selectivity

Hypothesis

An internal state of aggressiveness is encoded in the
collective activity of neurons in the VMHvL.

Most attack.

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 202 1)



neuron

100

Formalizing this hypothesis with a probabilistic model

ytERN

neural population activity at time t
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L ow-dimensional structure in neural data

If collective activity encodes a low-dimensional state (e.g., “aggressiveness”),
the data should lie near a low-dimensional manifold.

‘neuron

neuron 2
>

neuron N

x; € RY : continuous latent state (i.e., manifold coordinate)



L ow-dimensional structure in neural data

We think of neural activity as a noisy observation of a trajectory on the low-d manifold.

‘neuron]

neuron 2
>

neuron N

x; € RY : continuous latent state (i.e., manifold coordinate)



L ow-dimensional structure in neural data

We want to learn the dynamics that govern how trajectories unfold.

f:RY — RP : dynamics function
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Dynamical motifs are hypothesized to underlie various forms of neural computation.

continuous state dim 2

continuous state dim 2

Computation through neural dynamics
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Computation through neural dynamics

Dynamical motifs are hypothesized to underlie various forms of neural computation.

rotational dynamics (e.g., motor control) point attractor (e.g., memory)
x

o~ - <« ¥

Methodological Question

How can we infer latent states
and estimate their dynamics
from neural and behavioral time series!?
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Probabilistic state space models

dynamics
function

latent
emission ‘
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observed data
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Limited capacity,
Specialized inference,
Data efficient,

Easy to fit and understand.

linear
models

A spectrum of dynamics models

Highly flexible,
Generic inference,
Data intensive,
Harder to interpret.

Neural networks,
Gaussian processes



What can linear models do?

rotational dynamics (e.g., motor control) point attractor (e.g., memory)
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What can't linear models do?

Still, most computations require nonlinear dynamics.

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Key idea: nonlinear dynamics can often be approximated as piecewise-linear

Indeed, that’s often how we analyze nonlinear dynamical systems!

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Limited capacity,
Specialized inference,
Data efficient,

Easy to fit and understand.

linear
models

A spectrum of dynamics models

switching
linear dynamical
systems (SLDS)

Highly flexible,
Generic inference,
Data intensive,
Harder to interpret.

Neural networks,
Gaussian processes



Switching linear dynamical systems (SLDS)

Different linear dynamics
In each discrete state

@ e |. e dynamics

Ti11 matrices Lt

— -+ noise

o | | | o 0 | | | #

— -+ noise

Ackerson and Fu (1970)

Chang and Athans (1978)
Hamilton (1990)

Ghahramani and Hinton (1996)
Murphy (1998)

Fox et al (2009)



Switching linear dynamical systems (SLDS)
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State-dependent
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Problem:in an SLDS, discrete state transitions are independent of location!

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Recurrent switching linear dynamical systems (rSLDS)

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)
...and now many more



Recurrent SLDS partition continuous state space into regions with linear dynamics
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A spectrum of dynamics models

Limited capacity, Higholy .ﬂexible,
Specialized inference, Generic inference,

Data efficient, ) Dcc;ta mtgns:v;:,
arder to interpret.
Easy to fit and understand. rSLDS

linear switching Neural networks,

models linear dynamical Gaussian processes
systems (SLDS)



rSLDS analysis reveals line attractor-like dynamics in VMHVvI

dimension 2

10

o

neural microendoscopic

imaging of SMerS  Jsniff  attack
GCaMP6s T
g Adwh i \
\'-\,-\/“J \..'J"\.\f
SR e e ST |
'1_-1! {C' mﬂwww
o o a4 M,f \l\-.f’\"f\/www\
L MU
GF/F |

205 VMHvI Esr1

" time
o I flow field from rSLDS
1:0 10 10

N
50 0
w
& il —
GEJ aggression

5 0 -5 © 5 0 -5

dimension 1 dimension 1

t0

line attractor

from rSLDS
- \ Salliflale
zsgttack dom. mount

_———— aggression
5 0 -5
dimension 1

Nair et al. (Cell, 2023)



rSLDS analysis reveals line attractor-like dynamics in VMHVvI
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rSLDS analysis reveals line attractor-like dynamics in VMHVvI

neural microendoscopic 07\ enters dynamics maltrices
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Importantly, this is not true of all hypothalamic nuclel, e.g., MPOA.

Nair et al. (Cell, 2023)



Dynamical systems explain individual differences in aggressiveness

aggression

aggressiveness
fraction of time
spent attacking (%)

sniffing

dom. mount | |

attack aggressive 0 100
escalation time constant of

line attractor dimension (s)

stability of attractor

faster decay

(-

aggression

the stability of the attractor is enhanced in mice that are more aggressive

Nair et al. (Cell, 2023)



Are these dynamics intrinsic to VMHvI or a read-out of an upstream region!

No study has causally demonstrated the existence of intrinsic line attractor dynamics in mammalils.

AmitVinograd
4 i '

sniffing
dom. mount

attack aggressive
escalation

Vinograd, Nair et al. (Nature, 2024)



How can we gain access to the line attractor for perturbation?

2-photon holographic
activation

line attractor
neurons

P

“dream experiment”

Unfortunately, head-fixation results in loss of attack behavior.

Vinograd, Nair et al. (Nature, 2024)



How can we gain access to the line attractor for perturbation?

VMHVvVI-Esr1 neurons are also active during observation of aggression
(Yang et al., Cell 2023)



How can we gain access to the line attractor for perturbation?

~engaging in aggression 8 ’ ocbserving aggression
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Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

If the attractor is intrinsic  if is not intrinsic
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Activation of x4 neurons should lead to integration if the line attractor is intrinsic.

Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

neural imaging online dynamical
- modeling
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*Note: this requires fitting an rSLDS online, during the session, to design the perturbation.

Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

neural imaging online dynamical
modeling
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Note: this requires fitting an rSLDS online, during the session, to design the perturbation.
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Closed-loop perturbation of dynamics in VMHvI

neural imaging online dynamical
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Do these attractor dynamics generalize to other internal state computations!?

VMHvVI shows attractor dynamics in female mice during mating, but only in proestrus.

Liu, Nair et al. (Nature, 2024)



This collaboration has inspired new methodological work to address limitations of rSLDS

Key idea: parameterize f(x) as a Gaussian process with a novel kernel
to produce smoothly switching linear dynamics.

Limited capacity, Higholy .ﬂexible,
Specialized inference, Gcz)ne;rlc. nzfergnce,
Data efficient, ata intensive,
Eas i Harder to interpret.
y to fit and understand. GP-SLDS

linear SLDS  rSLDS Neural networks,
models Gaussian processes

u David Zoltowski Lea Duncker

———

Hu et al. (NeurlPS, 2024)



Gaussian Process Stochastic Differential Equation (GP-SDE) Model

GP dynamics flow field

latent SDE trajectory

dx = f(x)dt + \/Edw

We propose a novel GP kernel to produce

smoothly switching linear dynamics

Frigola et al. (NIPS, 2014)
Duncker et al. (ICML, 2019)
Course and Nair (Nature, 2023)
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A Gaussian Process prior for linear functions

Consider the following model for random linear
functions [ : R% — R :

fx)=w' (x—¢) - intercept
w ~ N(0,M) . slope covariance
let £ = [f(x1),..., f(x,)] . Marginally,
f ~ N(0, K)
X1 — C

K=®MP' P —

This is a Gaussian process with a linear kernel!

Kiin(x,%') = (x — ¢) ' M(x’ — ¢)

GP samples with linear kernel

0.0 0.5 1.0
X

Kernel hyperparameters:

c = 0.5,



A Gaussian process model for linear dynamics functions

We can use GPs to define a prior on linear
dynamics functions, [ : R? — R

(Note: now it has a d-dimensional output.) Two samples of random linear dynamics functions:

Approach: model each output dimension as

linear system 1 linear system 2
an independent GPF, S R S Y
o~ N t /
ld .

fi ~ GP(0, Kjn(+,:)) forj=1,...,d L~ v 47
X X o

A [ 4 A —> -

Assume the GPs share the same kernel hyper- V2NN N,

parameters. Then, O O
X1 X1

f(c)=0 (a.s.)

l.e., the intercept hyper-parameter defines the
fixed point of the dynamics function.



A Gaussian process model for piecewise constant functions

Let (Al, Ceey AK) be a partition of R

E ' .C.
Define 2 one-hot feature vector, xample draw from GP with p.c. kernel

2 1.00
—0.75
—0.50

m(x) = Ix € Ai],....Ilx € Ag]) "

—0.25
0.00
—0.25
—0.50
—0.75

Samples f ~ GP(0, K (-, -))yield piecewise L S . '1 1 S==1.00

constant functions.

The inner product defines of features defines a kernel, 0-

K. (x,x') = m(x) 7(x') ~1-




A Gaussian process that smoothly interpolates between piecewise constant functions

Let (Al, Ceey AK) be a partition of R

Define 2 one-hot feature vector, Example draw from GP with p.c. kernel

2 1.00
—0.75
—0.50

m(x) = Ix € Ai],....Ilx € Ag]) "

0.25
0.00
—0.25
—0.50
—0.75

Samples f ~ GP(0, K (-, -))yield piecewise 2T '1 1 S==1.00

constant functions.

The inner product defines of features defines a kernel, 0-

K. (x,x') = m(x) 7(x') ~1-

mi(x) = o((21 + 23 — 1)/7)
More generally, suppose 7T(X) c A g _1 varies smoothly.

Then samples from the GP smoothly interpolate
between piecewise constant functions.



A Gaussian process kernel for smoothly switching linear dynamics

state-space partition function linear system 1

1.0

0.5

(x)x
X

K

0.0

Probabilities that linear
system k is active at x and X’

linear system 2

latent trajectory & flow field

NN \ | 1 7 / / o — 1.0
- \ 1 / / fj ™~ GP(07K55(°7 )) ‘ ~
. <« F 4 A dx = f(X)dt + \/Edw “

< ° — 2\ \ [0
s y a
/ / l A
/ | | \ AN

Kernel for
linear system Kk

Kernel has many nice features:

v Piecewise linear components

v 7z(-) can be a nonlinear function
(polynomial logistic regression, neural
network, etc.)

v Enforces smooth dynamics at boundaries

v Allows estimates of posterior uncertainty

Hu et al. (NeurlPS, 2024)



GP-SLDS provides uncertainty estimates for the dynamics and posterior probability of attractors.

rSLDS latents & dynamics gpSLDS latents & dynamics 2 gpSLDS attractor dynamics
10 , — w1
A b
20 - V 20 - o 20 - ' Py =
810 = 10 o {10 " s <
o , , “ -
N y y Q
W ' ™S % e e RGN ~| 3
\ e \EER e < > : | w , A
\ O - . O 7 - / ’ wn
| | = = {Tin it 10-2 e [ 4 /[ 7 441
—10 -5 0) 5 —10 -5 0 5
X1 X1

Revisiting the VMHvI neural population activity from Nair et al. (2023) with a GP-SLDS,
now we can quantify uncertainty in the latent state dynamics estimates.

Hu et al. (NeurlPS, 2024)



Qutline

|. Natural Intelligence: Internal states and attractor dynamics in the hypothalamus

- Question: How does the brain represent and maintain internal states?

- Method: Recurrent switching linear dynamical systems (rSLDS)

- Results: Intrinsic line attractor dynamics in the hypothalamus encode an aggressive internal state

- Extension: Smoothly interpolating between states in an rSLDS

2. Artificial Intelligence: Deep state spbace models for sequence-to-sequence modeling



Qutline

|. Natural Intelligence: Internal states and attractor dynamics in the hypothalamus

2. Artificial Intelligence: Deep state spbace models for sequence-to-sequence modeling

- Question: Can simple compositions of linear systems perform more complex computations?

- Method: Simple state space layers with parallel scans (85)

- Results: Impressive performance on long-range sequence modeling tasks

- Extension: Towards scalable and stable parallelization of nonlinear RNNs
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Recurrent neural networks

(Note: Everything is deterministic in this picture.)

ws D OO ©
hidden f Lo f DA
states

- O OO G

RNNSs allow fast autoregressive generation, but evaluation (“inference”) is inherently sequential.



Transformers

Culpul
Frobabilities

t

Softmax

t

Linear
4

|
Add & Norm |~

Faed

Farward
F — l
p ~ Add & Norm ==
A ol I
Add & Norm Multi-Headl
Feed Attention
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4 e —

Add & Norm

MNx AdA
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Attention Attertion
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Encoding } %9_® Encoding
Input Cutput
Embedding Embedding
Inputs Cutputs

(shifted right)

Transformers allow fast parallel evaluation — this may be the biggest reason for their success.

However, autoregressive generation is costly.



What if we restrict ourselves to linear recurrent neural networks?

outputs

hidden
states

Inputs

Lt — ACCt_l -+ But

yr = Cxy



Linear RNINs are equivalent to convolutions

OO

o
T
. &FFEF L

vy = CA'Bug + CA"'Bu; +...CABu,_1 + CBu;

y=K®u ﬂ
K = (CB,CAB,...CA"'B)

Linear RNNs allow fast autoregressive generation and fast parallel evaluation (via convolution)!



Gu et al (2021) proposed S4, which stacks linear state space layers with nonlinearities in between

Linear state
space layer

@*?6“6?
O-O-OLFO-O-0

©

Linear state space layers are linear in time but nonlinear in depth.

Gu et al. (2021)



But the devil is in the details...

ull:L
|r , -l Single S4 SSM |
1 L_P FFT :
: q DPLR Frequency domain l |
| A convolution kernel generation P :
: o V0OADULY identity l :
= ” oo ROOE OF Rty , !
I, vy I S T e e S M
A y] |
1:L |
s \_\: ]
| 4
Nonlinearity
Legend: v
I Learnable parameter — Operation m layer
Instantiated variable — Message between layers 7l
1:L

To efficiently compute the convolution, S4 used a bank of single-input single-output (SISO) filters
and some sophisticated mathematical tricks.

Gu et al. (2021)



With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.

outputs

hidden
states

Inputs

How can we parallelize the sequential evaluation?

Smith et al. (ICLR, 2023)



With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.

We use complex diagonal matrices
to avoid cubic cost.

2
hidden A A - N A .
states

inputs Bu;  Buiy ABus + Buyiq

A pair of linear updates is still linear!

Smith et al. (ICLR, 2023)



With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.

O(logL)

Applying this update in parallel and recursively allows us to compute the entire state sequence
in O(log T) time on a parallel machine.

Smith et al. (ICLR, 2023)



S5 performs very well on machine learning benchmarks, including Path-X

Model ListOps Text Retrieval 1Image Pathfinder Path-X Avg.
(Input length) (2,048)  (4,096) (4,000) (1,024) (1,024) (16,384)
Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Luna-256 37.25 64.57 79.29 47.38 77.72 X 59.37
H-Trans.-1D 49.53 78.69 63.99 46.05 68.78 X 61.41
CCNN 43.60 84.08 X 88.90 91.51 X 68.02
Mega (O(L?)) 63.14 90.43 91.25 90.44 96.01 97.98  88.21
Mega-chunk (O(L)) 58.76 90.19 90.97 85.80 94.41 93.81 85.66
S54D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S54-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
Liquid-S4 62.75 89.02 91.20 89.50 94.8 96.66 87.32
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46

Smith et al. (ICLR, 2023)



Outputs
y; € RM

S5 tops leaderboards for neural prediction benchmarks too!

Table 1: Co-smoothing (in units of bits-per-spike) met-
ricon MC Maze and DMFC RSG benchmarks [Pei et al.,

2021] for S5 compared to SOTA methods. Note: we
exclude ensemble methods and only consider single

models.

Method MC Maze (T) DMFC RSG (1)
S5 (Ours) 0.3826 0.1981
SSLFADS 0.3748 N/A
STNDT 0.3691 0.1859
iLQR-VAE 0.3559 N/A
Neural RoBERTa 0.3551 N/A
RNNf 0.3382 0.1781
AutoLFADS 0.3364 0.1829
MINT 0.3304 0.1821
NDT 0.3229 0.1720
SLDS 0.2249 0.1243




Unlike convolutions, the S5 parallel scan also allows for different dynamics at each time point

Gu and Dao (2023) exploited this property in Mamba, which uses input-dependent dynamics.




Back to RNNs... are they really so sequential?

outputs

hidden
states

Inputs

Idea: What if we linearize f around a current guess of the latent states?

flae) ~ f(x§i)) I gi ($§i))($t — fgi)) = J?(ft; %@)

Then we can use parallel scan to solve for the states, linearize again, and repeat.
This is the Gauss-Newton method. Lim et al (2024 ) called it DEER. Lim et al (ICLR, 2024)

Gonzalez et al. (NeurlPS, 2024)




Improving on DEER with ELK

Scalability:
+ Diagonal Jacobian

————————————>

Stability: DEER [24] Quasi-DEER

+ Trust region

+ Kalman filter FI K Quasi—ELK

Gauss-Newton can be unstable! Levenberg-Marquardt introduces a trust region,
which turns this into a Kalman filtering problem.

We call this method ELK.

Gonzalez et al. (NeurlPS, 2024)



Quasi-DEER is faster and more memory efficient with diagonal Jacobian approximations

=@ Scqucntial —+— DEER —2¢= Quasi-DEER

D =28 D = 32 D =64
N 1 ‘l . O
L 10 _— " 5 o
'_‘C 10 e _— ' | o e
o —R
= 107!
= ;
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Gonzalez et al. (NeurlPS, 2024)



(Quasi-DEER) becomes numerically unstable when the linear approximation diverges

Parallel Iteration O

0 2000 4000 6000 S10[010 10000 12000 14000
Sampling Iteration



ELK addresses this limitation by introducing a trust region

Parallel lteration O

2000 4000 6000 8000 10000 12000
Sampling lteration

14000




Conclusions

* Whether you're interested in biological or artificial intelligence, state space models
are for you!

» With modern methods for measuring and perturbing brain activity, we can fit SSMs
at scale, test their predictions, and start to elucidate underlying circuit methods.

» Perhaps surprisingly, the humble linear dynamical system is making a comeback in
ML and beating benchmarks for long-range sequence modeling.

* There is lots of exciting (and very interdisciplinary) work to be done on both fronts.
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Not all hypothalamic nucleii exhibit line attractor-like dynamics
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Nair et al. (Cell, 2023)



How can we gain access to the line attractor for perturbation?

neural imaging online dynamical

modeling
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Vinograd, Nair et al. (Nature, 2024)



What mechanisms give rise to the line attractor?

Line attractors are notoriously fragile and require precise fine-tuning.

spiking recurrent

simulation of slow network (74 : 20s), 36% density
neural network

input to network (20ISI) activity of integration subnetwork
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spiking neural networks with slow neurotransmitter release can create
robust line attractors with time constants seen in data

Vinograd, Nair et al. (Nature, 2024)



What mechanisms give rise to the line attractor?
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Vinograd, Nair et al. (Nature, 2024)



What mechanisms give rise to the line attractor?

"CRISPRscope” for cell-type specific perturbation of
neuropeptide receptors + neural imaging
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Mountoufaris et al. (Cell, 2024)



Unlike convolutions, S5 also allows for different dynamics at each time point

With different A’s for each time step, we can handle irregularly sampled, continuous time data.

sin(6)

cos(f)

— QObserved time point

Time step
Model Relative speed Regression MSE (x107?)
mTAND* 8.3 X 65.64 + 4.05
RKN* 1.3 % 8.43 + 0.61
RKN-A* 1.3 5.09 + 0.40
ODE-RNN* 0.68 X 7.26 + 0.41
CRU* 0.68 X 4.63 + 1.07
CRU (our run) 1.00 % 3.81 + 0.28
SH 130 x 3.38 + 0.28

Smith et al. (ICLR, 2023)



