
Scott Linderman
Department of Statistics

Wu Tsai Neurosciences Institute
Stanford University

State Space Models for 
Natural and Artificial Intelligence



Why not study I?

Leslie Valiant

Edsger Dijkstra



Intelligent systems must maintain internal states to produce appropriate behavioral outputs

Neural computation Behavioral outputsSensory inputs

Internal state



In silico computation Behavioral outputsSensory inputs

Internal state

Intelligent systems must maintain internal states to produce appropriate behavioral outputs



Exciting advances in neural and behavioral recording technologies

Pereira et al (2022)

Automated tracking and computer
vision for quantifying natural behavior

www.inscopix.com

Large-scale neuronal measurements
in freely behaving animals

Jun, Steinmetz et al (2017).

Causal perturbations with closed-loop,  
patterned optogenetic stimulation

holographic  
stimulation



Exciting advances in machine learning models and computational hardware

nVidia H100 GPU

Transformer architecture



1.  Natural Intelligence:  Internal states and attractor dynamics in the hypothalamus

2.  Artificial Intelligence:  Deep state space models for sequence-to-sequence modeling

Outline



1.  Natural Intelligence:  Internal states and attractor dynamics in the hypothalamus

- Question: How does the brain represent and maintain internal states?

- Method: Recurrent switching linear dynamical systems (rSLDS)

- Results: Intrinsic line attractor dynamics in the hypothalamus encode an aggressive internal state

- Extension: Smoothly interpolating between states in an rSLDS

2.  Artificial Intelligence:  Deep state space models for sequence-to-sequence modeling

Outline



Collaborators

Adi Nair David Anderson Ann Kennedy

Adi helped prepare some of the slides that follow.



aggression

Optogenetic activation of neurons in the hypothalamus elicits attack behavior

Lee et al. (Nature, 2014)  



Most neurons in VMHvl are tuned to intruder sex and are active during both sniffing and attack.

Miniscope imaging in VMHvl during spontaneous aggression shows mixed selectivity

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 2021)  



Most neurons in VMHvl are tuned to intruder sex and are active during both sniffing and attack.

Miniscope imaging in VMHvl during spontaneous aggression shows mixed selectivity

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 2021)  

Hypothesis
An internal state of aggressiveness is encoded in the 

collective activity of neurons in the VMHvl.



Formalizing this hypothesis with a probabilistic model

:  neural population activity at time t
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activity traces a trajectory through neural state space



Low-dimensional structure in neural data

If collective activity encodes a low-dimensional state (e.g., “aggressiveness”), 
the data should lie near a low-dimensional manifold.
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:  continuous latent state (i.e., manifold coordinate)
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te dim 1

dim
 2



Low-dimensional structure in neural data

We think of neural activity as a noisy observation of a trajectory on the low-d manifold.
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neuron N

:  continuous latent state (i.e., manifold coordinate)

continuous sta
te dim 1

dim
 2



We want to learn the dynamics that govern how trajectories unfold.

:  dynamics function
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Low-dimensional structure in neural data



Computation through neural dynamics
Dynamical motifs are hypothesized to underlie various forms of neural computation.
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rotational dynamics (e.g., motor control)

saddle point (e.g., winner-take-all)

point attractor (e.g., memory)

line attractor (e.g., integration)

Adapted from Vyas et al. (2020)



Computation through neural dynamics
Dynamical motifs are hypothesized to underlie various forms of neural computation.
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continuous state dim 1

rotational dynamics (e.g., motor control)

saddle point (e.g., decision making)

point attractor (e.g., memory)

line attractor (e.g., evidence integration)

Methodological Question
How can we infer latent states  
and estimate their dynamics 

from neural and behavioral time series?

Adapted from Vyas et al. (2020)



Probabilistic state space models

...neuron1
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neuron N

xt xt+1. . . . . .x1 xT

yTyt+1yty1

= latent = observed = dependency

dynamics
function

latent
states

emission
function

observed data 
(e.g., neural traces)



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

linear  
models

Neural networks,
Gaussian processes



What can linear models do?
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continuous state dim 1 continuous state dim 1

rotational dynamics (e.g., motor control)

saddle point (e.g., winner-take-all)

point attractor (e.g., memory)

line attractor (e.g., integration)

A lot! E.g., the motifs from before were all 
linear models, .

Moreover, linear systems are interpretable. 

We can find analytical solutions for:
- fixed points
- stationary distribution (w/ Gaussian noise)
- dynamics along eigenmodes
- optimal control



What can't linear models do?
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bistability (e.g., decision making) ring attractor (e.g., head direction)

Still, most computations require nonlinear dynamics.



Key idea: nonlinear dynamics can often be approximated as piecewise-linear
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bistability (e.g., decision making) ring attractor (e.g., head direction)

Indeed, that’s often how we analyze nonlinear dynamical systems!



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

switching
linear dynamical 
systems (SLDS)

linear  
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Switching linear dynamical systems (SLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Ackerson and Fu (1970)
Chang and Athans (1978)

Hamilton (1990)
Ghahramani and Hinton (1996)

Murphy (1998)
Fox et al (2009)

= + noise

Different linear dynamics 
in each discrete state

= + noise

= + noise

..
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dynamics 
matrices xtxt+1



Switching linear dynamical systems (SLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Ackerson and Fu (1970)
Chang and Athans (1978)

Hamilton (1990)
Ghahramani and Hinton (1996)

Murphy (1998)
Fox et al (2009)

State-dependent 
switching probabilities

transition matrix
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Problem: in an SLDS, discrete state transitions are independent of location!
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Recurrent switching linear dynamical systems (rSLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)

…and now many more



Recurrent SLDS partition continuous state space into regions with linear dynamics

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)

…and now many more



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

switching
linear dynamical 
systems (SLDS)

linear  
models

Neural networks,
Gaussian processes

rSLDS



rSLDS analysis reveals line attractor-like dynamics in VMHvl

Nair et al. (Cell, 2023) 



rSLDS analysis reveals line attractor-like dynamics in VMHvl

Nair et al. (Cell, 2023) 



𝜏1, . . , 𝜏𝑛

rSLDS analysis reveals line attractor-like dynamics in VMHvl

dynamics matricesdynamics matrices

time constants 
(from the eigenvalues)

Nair et al. (Cell, 2023) 

Importantly, this is not true of all hypothalamic nuclei, e.g., MPOA.



the stability of the attractor is enhanced in mice that are more aggressive

Dynamical systems explain individual differences in aggressiveness

Nair et al. (Cell, 2023) 



No study has causally demonstrated the existence of intrinsic line attractor dynamics in mammals.

Are these dynamics intrinsic to VMHvl or a read-out of an upstream region?

Amit Vinograd

Vinograd, Nair et al. (Nature, 2024) 



Unfortunately, head-fixation results in loss of attack behavior.

“dream experiment”

How can we gain access to the line attractor for perturbation?

Vinograd, Nair et al. (Nature, 2024) 



VMHvl-Esr1 neurons are also active during observation of aggression 
(Yang et al., Cell 2023)

How can we gain access to the line attractor for perturbation?



VMHvl-Esr1 neurons are show line attractor 
dynamics during observation of aggression

How can we gain access to the line attractor for perturbation?

Vinograd, Nair et al. (Nature, 2024) 



Activation of x1 neurons should lead to integration if the line attractor is intrinsic.

if is not intrinsicif the attractor is intrinsic

x1 x1

Closed-loop perturbation of dynamics in VMHvl

Vinograd, Nair et al. (Nature, 2024) 



Holographic on-manifold activation* of line-attractor aligned x1 neurons leads to integration.

n = 8 mice

Closed-loop perturbation of dynamics in VMHvl

Vinograd, Nair et al. (Nature, 2024) 

*Note: this requires fitting an rSLDS online, during the session, to design the perturbation.



n = 8 mice

Holographic off-manifold activation of line-orthogonal x2 neurons does not lead to integration.

Vinograd, Nair et al. (Nature, 2024) 

Closed-loop perturbation of dynamics in VMHvl

Note: this requires fitting an rSLDS online, during the session, to design the perturbation.



on- and off-manifold perturbations 
provide first evidence of an intrinsic 

mammalian line attractor

Vinograd, Nair et al. (Nature, 2024) 

Closed-loop perturbation of dynamics in VMHvl



Do these attractor dynamics generalize to other internal state computations?

VMHvl shows attractor dynamics in female mice during mating, but only in proestrus.
Liu, Nair et al. (Nature, 2024) 



This collaboration has inspired new methodological work to address limitations of rSLDS

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

SLDSlinear  
models

GP-SLDS

Amber Hu David Zoltowski Lea Duncker

rSLDS

Hu et al. (NeurIPS, 2024) 

Neural networks,
Gaussian processes

Key idea: parameterize  as a Gaussian process with a novel kernel 
to produce smoothly switching linear dynamics.

f(x)



GP dynamics flow field

𝑑𝒙 = 𝒇(𝒙)𝑑𝑡 + 𝚺d𝐰

latent SDE trajectory

irregularly sampled 
Gaussian observations
(e.g. calcium imaging)

point process observations
(e.g. spiking data)

𝑦(𝑡) ∼ 𝑃𝑃(exp(𝐶𝑥(𝑡) + 𝑑))

affine mapping to 
high-d space

𝑦(𝑡𝑖) ∼ 𝑁(𝐶𝑥(𝑡𝑖) + 𝑑,  𝑅)

Gaussian Process Stochastic Differential Equation (GP-SDE) Model

Frigola et al. (NIPS, 2014)
Duncker et al. (ICML, 2019) 
Course and Nair (Nature, 2023)

We propose a novel GP kernel to produce 
smoothly switching linear dynamics



A Gaussian Process prior for linear functions

Kernel hyperparameters:
 𝑐 = 0.5,  𝑀 = 1

Consider the following model for random linear 
functions  :

intercept

slope covariance

Let .  Marginally,

This is a Gaussian process with a linear kernel!



A Gaussian process model for linear dynamics functions

We can use GPs to define a prior on linear 
dynamics functions, 
(Note: now it has a d-dimensional output.)

Approach: model each output dimension as 
an independent GP,

Assume the GPs share the same kernel hyper-
parameters.  Then,

I.e., the intercept hyper-parameter defines the 
fixed point of the dynamics function.

Two samples of random linear dynamics functions:



A Gaussian process model for piecewise constant functions

Let  be a partition of .

Define a one-hot feature vector, 

The inner product defines of features defines a kernel,

Samples  yield piecewise 
constant functions.

Example draw from GP with p.c. kernel



A Gaussian process that smoothly interpolates between piecewise constant functions

Let  be a partition of .

Define a one-hot feature vector, 

The inner product defines of features defines a kernel,

Samples  yield piecewise 
constant functions.

More generally, suppose  varies smoothly. 

Then samples from the GP smoothly interpolate 
between piecewise constant functions. 

Example draw from GP with p.c. kernel



Probabilities that linear 
system k is active at x and x’

Kernel for  
linear system k

𝜋(𝑥)

𝜋(𝑥)

A Gaussian process kernel for smoothly switching linear dynamics

Kernel has many nice features:
✓ Piecewise linear components
✓  can be a nonlinear function 

(polynomial logistic regression, neural 
network, etc.)

✓ Enforces smooth dynamics at boundaries
✓ Allows estimates of posterior uncertainty

𝜋( ⋅ )

𝑑𝒙 = 𝒇(𝒙)𝑑𝑡 + 𝚺d𝐰

Hu et al. (NeurIPS, 2024) 



# steps simulated forward

!!

P(attractor dynam
ics)

gpSLDS latents & dynamicsrSLDS latents & dynamics gpSLDS attractor dynamics Forward simulation acc.BA C D

"" ""

" ! " !

""

" !

posterior std. dev.

GP-SLDS provides uncertainty estimates for the dynamics and posterior probability of attractors.

Revisiting the VMHvl neural population activity from Nair et al. (2023) with a GP-SLDS,  
now we can quantify uncertainty in the latent state dynamics estimates.

Hu et al. (NeurIPS, 2024) 



1.  Natural Intelligence:  Internal states and attractor dynamics in the hypothalamus

- Question: How does the brain represent and maintain internal states?

- Method: Recurrent switching linear dynamical systems (rSLDS)

- Results: Intrinsic line attractor dynamics in the hypothalamus encode an aggressive internal state

- Extension: Smoothly interpolating between states in an rSLDS

2.  Artificial Intelligence:  Deep state space models for sequence-to-sequence modeling

Outline



1.  Natural Intelligence:  Internal states and attractor dynamics in the hypothalamus

2.  Artificial Intelligence:  Deep state space models for sequence-to-sequence modeling

- Question: Can simple compositions of linear systems perform more complex computations?

- Method: Simple state space layers with parallel scans (S5)

- Results: Impressive performance on long-range sequence modeling tasks

- Extension: Towards scalable and stable parallelization of nonlinear RNNs

Outline
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Recurrent neural networks

outputs

hidden 
states

inputs

xt xt+1. . . . . .x1 xT

yTyt+1yty1

(Note: Everything is deterministic in this picture.)

RNNs allow fast autoregressive generation, but evaluation (“inference”) is inherently sequential.



Transformers

Transformers allow fast parallel evaluation — this may be the biggest reason for their success.  

However, autoregressive generation is costly.



What if we restrict ourselves to linear recurrent neural networks?

outputs

hidden 
states

inputs

xt xt+1. . . . . .x1 xT

yTyt+1yty1



Linear RNNs are equivalent to convolutions

outputs

inputs

yTyt+1yty1

Linear RNNs allow fast autoregressive generation and fast parallel evaluation (via convolution)!



Gu et al (2021) proposed S4, which stacks linear state space layers with nonlinearities in between

Linear state space layers are linear in time but nonlinear in depth.

xt xt+1. . . . . .x1 xT

yTyt+1yty1

xt xt+1. . . . . .x1 xT

yTyt+1yty1

Linear state 
space layer

Gu et al. (2021) 



But the devil is in the details…

To efficiently compute the convolution, S4 used a bank of single-input single-output (SISO) filters 
and some sophisticated mathematical tricks.

Published as a conference paper at ICLR 2023
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(a) S4 layer (Gu et al., 2021a) offline processing.
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(b) S5 layer offline processing. Duplicated from the main text.

Figure 4: The computational components of the S4 layer (Gu et al., 2021a) (top) and the S5
layer (bottom) for offline application to a sequence. (a) The S4 layer applies an independent
SSM to each dimension of the input sequence u1:L 2 RL⇥H . This requires a Cauchy kernel
computation to compute the convolution kernel coefficients in the frequency domain. Convolutions
are computed using FFTs to produce the independent SSM outputs y1:L 2 RL⇥H . A nonlinear
activation function that includes a mixing layer is applied to the SSM outputs to produce the layer
outputs. (b) (Reproduced from Figure 1) The S5 layer uses a parallel scan on a diagonalized linear
SSM to compute the SSM outputs y1:L 2 RL⇥H . A nonlinear activation function is applied to the
SSM outputs to produce the layer outputs.

B.1.3 INITIALIZATION OF THE TIMESCALES

Prior work (Gupta et al., 2022; Gu et al., 2023) found the initialization of this timescale parameter
to be important. This is studied in detail in Gu et al. (2023). We sample these parameters in
line with S4 and sample each element of log� 2 RP from a uniform distribution on the interval
[log �min, log �max), where the default range is �min = 0.001 and �max = 0.1. The only exception is
the Path-X experiment, where we initialize from �min = 0.0001 and �max = 0.1 to account for the
longer timescales as discussed in Gu et al. (2023).

B.2 COMPARISON OF S4 AND S5 COMPUTATIONAL ELEMENTS

In Figure 4 we illustrate a comparison of the computational details of the S4 and S5 layers for efficient,
parallelized offline processing.

17

Gu et al. (2021) 



With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.

How can we parallelize the sequential evaluation?  

Smith et al. (ICLR, 2023) 

outputs

hidden 
states

inputs

xt xt+1. . . . . .x1 xT

yTyt+1yty1



A pair of linear updates is still linear!

hidden 
states

inputs

xt xt+1 xt+1

We use complex diagonal matrices  
to avoid cubic cost.

With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.

Smith et al. (ICLR, 2023) 



Applying this update in parallel and recursively allows us to compute the entire state sequence 
in O(log T) time on a parallel machine.

Smith et al. (ICLR, 2023) 

With S5, we aimed to simplify S4 by sticking in the time domain and using parallel scans.



S5 performs very well on machine learning benchmarks, including Path-X

Smith et al. (ICLR, 2023) 



S5 tops leaderboards for neural prediction benchmarks too!



Gu and Dao (2023) exploited this property in Mamba, which uses input-dependent dynamics.

Unlike convolutions, the S5 parallel scan also allows for different dynamics at each time point



Back to RNNs… are they really so sequential?

outputs

hidden 
states

inputs

xt xt+1. . . . . .x1 xT

yTyt+1yty1

Idea: What if we linearize f around a current guess of the latent states?

Lim et al (ICLR, 2024)
Gonzalez et al. (NeurIPS, 2024) 

Then we can use parallel scan to solve for the states, linearize again, and repeat. 
This is the Gauss-Newton method. Lim et al (2024) called it DEER.



Improving on DEER with ELK

Gonzalez et al. (NeurIPS, 2024) 

Gauss-Newton can be unstable! Levenberg-Marquardt introduces a trust region, 
which turns this into a Kalman filtering problem.  

We call this method ELK.



Quasi-DEER is faster and more memory efficient with diagonal Jacobian approximations

Gonzalez et al. (NeurIPS, 2024) 



(Quasi-DEER) becomes numerically unstable when the linear approximation diverges



ELK addresses this limitation by introducing a trust region



Conclusions

• Whether you’re interested in biological or artificial intelligence, state space models 
are for you!  

• With modern methods for measuring and perturbing brain activity, we can fit SSMs 
at scale, test their predictions, and start to elucidate underlying circuit methods. 

• Perhaps surprisingly, the humble linear dynamical system is making a comeback in 
ML and beating benchmarks for long-range sequence modeling. 

• There is lots of exciting (and very interdisciplinary) work to be done on both fronts.
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rSLDS analysis of MPOA finds faster time-locked motor 
behavior related dimensions 

Nair et al. (Cell, 2023) 

Not all hypothalamic nucleii exhibit line attractor-like dynamics



VMHvl-Esr1 neurons are show line attractor 
dynamics during observation of aggression

How can we gain access to the line attractor for perturbation?

Vinograd, Nair et al. (Nature, 2024) 



Line attractors are notoriously fragile and require precise fine-tuning.

spiking neural networks with slow neurotransmitter release can create 
robust line attractors with time constants seen in data

spiking recurrent 
neural network

What mechanisms give rise to the line attractor?

Vinograd, Nair et al. (Nature, 2024) 



selective functional connectivity among line 
attractor-aligned x1 neurons

What mechanisms give rise to the line attractor?

Vinograd, Nair et al. (Nature, 2024) 



“CRISPRscope” for cell-type specific perturbation of 
neuropeptide receptors + neural imaging

Removal of OXT/AVP receptors eliminates integration  
& line attractor dynamics in VMHvl.

What mechanisms give rise to the line attractor?

Mountoufaris et al. (Cell, 2024) 



With different A’s for each time step, we can handle irregularly sampled, continuous time data.

Unlike convolutions, S5 also allows for different dynamics at each time point

Smith et al. (ICLR, 2023) 


