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To be able to easily build an artificial system that:
(1) behaves like the human at high resolution

(2) whose Internal parts can be mapped to the parts of the
brain at some chosen level of resolution

artificial system = neural network



To be able to easily builld an artificial system that:
(1) behaves like the human at high resolution

behaves like human = (a) has similar types of input sensors

(b) has similar types of output actuators

(C) generates simi
(d) develops and

ar iInput/output map

earns similar way



To be able to easily builld an artificial system that:
(1) behaves like the human at high resolution

develops and learns similar way

L, changes Itself in response to
environmental Input

__, starts like a baby; changes rtself
independently of a environmental input



To be able to easlly bulld an artificial system that:

(2) whose Internal parts can be mapped to the parts of the
brain at some chosen level of resolution
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A Few Basic |deas

The neuroscience origins of neural networks



The “Strong” Neuron Doctrine:

Fig. 2. A drawing done by Cajal to show some of the neurons of the retina
in vertical section.
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Fig. 2. A drawing done by Cajal to show some of the neurons of the retina
in vertical section.

a neuron receives signals at its dendrites and cell body and transmits them, as
action potentials, along the axon in one direction: away from the cell body
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The Neuron Doctrine

The “Strong” Neuron Doctrine:

I. The nervous system is made up of discrete cells (“neurons”),
connected by extracellular junctions (synapses) into a directed graph

ii. neurons are “excitable cells” that “fire” by a mechanism of
electrochemical (de)polarization [Hodgkin-Huxel model]

iii. the firing pattern of a neuron is a parameterized function that
‘integrates” the firing patterns of the neurons that synapse onto it

iv. the parameters of the function are plastic and therefore learnable
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Artificial Neural Networks (ANNs)

McCulloch and Pitts (1943)
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Artificial Neural Network (ANN) Models of the Brain

Core (obvious) idea: Model brain systems with ANNs
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*both continuous parameters like weights and discrete parameters of the architecture

How to measure model correctness! (and model “understanding'?)

his course Is teach you how to do these things.



Artificial Neural Network (ANN) Models of the Brain

Core (obvious) idea: Model brain systems with ANNs
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Case Study:

The Problem of Entity Extraction
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William James

The baby, assalled by eyes, ears,
nose, skin, and entrails at once,
feelsit all as one great

blooming, buzzing confusion.

ARQUOTES

Without sophisticated parsing and entity extraction, the world would be
"as one great blooming, buzzing confusion” (for babies or otherwise).

%actually not clearly true for babies ...



Problem: Entity Extraction

Understanding complex, noisy data streams Is a critical part of cognition.

"Mercedes behind Lamborghini, on a field in front of mountains.”



Problem: Entity Extraction
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View: position, size, pose, illumination
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“Visual object recognition”

Building |
Tree » Fast, effortless, & accurate
Sign

Lamp post

» Domain general
p lolerant to high variation

Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



Problem: Entity Extraction

Category

[dentity

from Hong et al (2016)
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Problem: Entity Extraction

Aspect Ratio
and Angle

from Hong et al (2016)



Problem: Entity Extraction

VWe can quickly assess the scene as a whole.
Category

Bounding Box

Identity
Aspect Ratio
X and Y Axis Major Axis Length
Position
Major Axis Angle
Perimeter
. 2-D Retinal Area Pose in
i each axis

3-D Object Scale

from Hong et al (2016)
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"Hannah I1s good at compromising.”



Problem: Entity Extraction

Understanding complex, noisy data streams Is critical part of cognition.

amplitude

time

"Hannah I1s good at compromising.”

variation sources: speaker identity
background noise

reverberation



“Explicit” vs. “Implicit” representations

A working definition of an “explicit” representation = a basis in which a
broblem is linearly separable

Explicit representation Implicit representation

NOT
object “A”

The same concept applies to higher dimensional spaces



The Computational Crux of the problem

You need SELECTIVITY for different objects

You need TOLERANCE to changes in the retinal image

Computationally easy Computationally easy BOTH -- computationally

| |
(e.g templates) (e.g. simply integrate) difficult



The Computational Crux of the problem
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The Computational Crux of the problem

Explicit object

A "good’ population representation

representation

individual 2
(IIJoeII)

separating
hyperplane

P

individual 1
("Sam")
DiCarlo and Cox, TICS (2007)



The Computational Crux of the problem

A "bad’ population representation

individual 2
(IIJoeII)

ineffective
separating
hyperplane

individual 1
(nsamn)

DiCarlo and Cox, TICS (2007)



The Tangling of Object Manifolds

Implicit object

Actual pixel representation .
representation

(~ retinal image representation)

ineffective
separating
hyperplane

object manifolds are “tangled” individual 1

(Due to identity-preserving image variation.)

DiCarlo and Cox, TICS (2007); Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)



Problem: Entity Extraction

Axes of natural variation of natural
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Y

I very nonlinear

A

Axes of natural variation of natural C@
“physics” representation of world
e.g. retinal photoreceptor voltage




Problem: Entity Extraction

Why Is the problem hard computationally?

|. Nonlinear misalignment between physical and behavioral
dimensions



Problem: Entity Extraction

Why Is the problem hard computationally?

|. Nonlinear misalignment between physical and behavioral
dimensions

2. Needs to be done *fast+*, and
thus, presumably, massively In
parallel
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“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky
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“Nothing in biology makes sense except in light of evolution”
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/
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Restated:

) Dobzhansky

Behavior is highly constraining of the brain
"Nothing

Gordon Shepherd

computationdl

Nothing in(:)euroscience makes sense except in light of
optimization. CS 375



“Nothing in biology makes sense except in light of evolution”

Restated:

) Dobzhansky

Behavior is highly constraining of the brain,

“Nothing
as revealed by computational models
Gordon Shepherd
(Computationa/
Nothing in*neuroscience makes sense except in light of CS 3 7 5

optimization.



Heuristic of “Goal-Driven Modeling”
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Heuristic of “Goal-Driven Modeling”

<

primary audrtory cortex

i !
!

!

"Mercedes behind
Lamborghini, on a field in

front of mountains.”

"Hannah i1s good at
compromising”
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Yamins & DiCarlo.
Nat. Neuro. (2016)




Model Architecture Class i {
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1. Formulate
comprehensive
model class (CNNs)

Localization

"\

Q M
d € SR

Categorization

2. Choose challenging,
ethologically-valid tasks
(categorization)

d SR

J Word recognition

Yamins & DiCarlo.
Nat. Neuro. (2016)
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Model Architecture Class

1. Formulate (
Localization

comprehensive \

model class (CNNs) ’(‘/

2. Choose challenging,
ethologically-valid tasks
(categorization)

Categorization | - H{tfm e
aw—! \ M
L

3. Implement generic

Yamins & DiCarlo.

learning rules (gradient Nat. Neuro. (2016)

descent)

> Map to brain data. (ventral stream)



Model Architecture Class

g;calization
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A = architecture class L = loss function D = dataset



Model Architecture Class

-\g;calization

A = architecture class

dpq
dt

argmin|L(p,,)]
acA

where p* is result of

—A(t) - (Vp, L(2))zeD

“learning rule”

L = loss function D = dataset

l

lltaS/(II




Four Principles of Optimization-Based Modeling

1.

A = architecture class

2.
T = task/objective

3.

D = dataset

4.

L = learning rule
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Four Principles of Optimization-Based Modeling

1.

A = architecture class = circuit neuroanatomy

< solving
2.

T = task/objective = ecological niche

< situated in
3.

D = dataset = environment

< updating according to
4.

L = learning rule = natural selection + synaptic plasticity




A = architecture class
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A = architecture class

A mostly complete chart of
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Task: L = loss function D = dataset

Surface Normals Image Reshading 2D Texture Edges

Vanishing Points Unsupervised 2.5D Segm. Room Layout

...and beyond

Scene Classification 3D Keypoints 3D Occlusion Edges

Top 5 prediction:
home office
office

television room
computer room
office cubicles




Neuroscience Methods
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Applications
e.g
Nqural Control

S

the ultimate point

transfer to

Applications
e.g

Robotics
A 1

the ultimate point

Neural Responsel.‘

Cognitive Task

Predictivity

N

optimize for

Neural Optimization

transfer to

»| Performance

/

optimize for

Task Optimization

Pros: /

e Don’t have to guess task

e [ftransfer to Al works faster
than solving Al directly,
really important use of —
Neuroscience

Ccons: \

Pros:
e Easier to get training data

 If it works, it explains “why”
neurons are as they are

Cons:
e Have to shoot in the

e Hard to get data

e Doesn’t explain “‘why”
neurons are as they are

dark as to task choice



Neuroscience Methods

1m -
Brain
10 cm |-
Gyrus
1cm |-
Voxel
(fMRI)
1 mm
Cortical
column
100 pm |
Neuron
10 um
—_ —_ Axon
1L um - ~ Patch-clamp recording (diameter)
S e S R S S S Synapse
0.1 um
1 ms 10ms 100 ms 1s 1 min 1 hr lday 1wk lyr



Neuroscience Methods
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Course Session Outline

Date

01/05
01/07
01/12
01/14
01/19
01/21
01/26
01/27
01/28
02/02
02/04
02/09
02/11
02/16
02/18
02/23
02/25
02/26
03/02
03/04
03/09
03/11
03/16
03/22

Session

Introduction to NeuroAl

Visual Systems Neuroscience Background
DNN Models of the Visual System
Model-Brain Mapping Methods

[NO CLASS-MLK DAY]

Unsupervised Learning and the Brain

Recurrent Model of Vision

Cliona O'Doherty (Stanford): Modeling Infant Development
Topography and Functional Organization

Andreas Tolias (Stanford): The Enigma Project

Auditory and Somatosensory Models

Memory and the Hippocampus

[NO CLASS-PRESIDENT'S DAY] (BBScore Evening Session)
Navigation and the MEC

Aran Nayebi (CMU): Models of Agents

The Motor System

Scott Lindermann (Stanford): Dynamical Systems in the Brain
Greta Tuckute (Harvard): Language, LLLMs, and the Brain
Tony Zador (Cold Spring Harbor): Models of Brain Evolution
Learning Rules in the Brain

Project Presentations



Course Session Outline

Date
01/05

02/09
02/11
02/16
02/18
02/23
02/25
02/26
03/02
03/04
03/09
03/11
03/16
03722

Session

Introduction to NeuroAl

Visual Systems Neuroscience Background
DNN Models of the Visual System
Model-Brain Mapping Methods

[NO CLASS-MLK DAY]

Unsupervised Learning and the Brain

Recurrent Model of Vision

Cliona O'Doherty (Stanford): Modeling Infant Development

Topography and Functional Organization

Andreas Tolias (Stanford): The Enigma Project

Auditory and Somatosensory Models

Memory and the Hippocampus

[NO CLASS-PRESIDENT'S DAY] (BBScore Evening Session)
Navigation and the MEC

Aran Nayebi (CMU): Models of Agents

The Motor System

Scott Lindermann (Stanford): Dynamical Systems in the Brain
Greta Tuckute (Harvard): Language, LLLMs, and the Brain
Tony Zador (Cold Spring Harbor): Models of Brain Evolution
Learning Rules in the Brain

Project Presentations



Course Session Outline

Date
01/05

02/11
02/16
02/18
02/23
02/25
02/26
03/02
03/04
03/09
03/11
03/16
03722

Session

Introduction to NeuroAl

Visual Systems Neuroscience Background
DNN Models of the Visual System
Model-Brain Mapping Methods

[NO CLASS-MLK DAY]

Unsupervised Learning and the Brain

Recurrent Model of Vision

Cliona O'Doherty (Stanford): Modeling Infant Development
Topography and Functional Organization

Andreas Tolias (Stanford): The Enigma Project

Auditory and Somatosensory Models

Memory and the Hippocampus

[NO CLASS-PRESIDENT'S DAY] (BBScore Evening Session)
Navigation and the MEC
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CS375/Psych279 Homework 1: Training Your Own Neural Network

Overview

In this assignment, you will implement, train, and visualize the behavior of an AlexNet convolutional neural network (CNN) using PyTorch.
You will visualize the kernels of the firs layer of the neural network and analyze their response patterns. You will replicate some basic
findings of classical work by Hubel and Wiesel in silico by measuring orientation selectivinty of several artificial neurons early in the model.
Specifically you will:

1. Implement the AlexNet model and understanding its architecture.

2. Implement a training loop capable of training the network on the ImageNet dataset.

3. Measure kernel responses for various spatial frequencies and orientations of sinusoidal grating stimuli.

4. Visualize the learned kernels in the first layer of your model.



CS375/Psych279 Homework 1: Training Your Own Neural Network

Overview

In this assignment, you will implement, train, and visualize the behavior of an AlexNet convolutional neural network (CNN) using PyTorch.
You will visualize the kernels of the firs layer of the neural network and analyze their response patterns. You will replicate some basic
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Specifically you will:

1. Implement the AlexNet model and understanding its architecture.

2. Implement a training loop capable of training the network on the ImageNet dataset.
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4. Visualize the learned kernels in the first layer of your model.

Submission Instructions

1. Code

o Submit your modified train.py file with all tasks completed. Include your name at the top of the assigment.
2. Report

o Provide a PDF or Markdown report that includes:
= A brief explanation of the code you implemented

= An image of the accuracy, loss and circular variance plot, along with a description of the final accuracy values. Observer the
trends in loss decrease, accuracy increase and kernel circular variance. Specifically remark on when during the training do the
filters seem to get tuned for direciton selectivity.

= An image of the kernel visualziation plot of the first layer along with a brief description of some qualitative properties of some
of the filters.

= Visualizations of 3 individual filters of your choice and their rotation and frequency selectivity plots. Pick filters that illustrate a
clear bias and describe what they seem to be selective for.
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The Final Project

2% https://github.com/neuroailab/bbscore_public/

[J README V4

BBScore: Brain-Behavior Scoring Framework

BBScore is a comprehensive framework for benchmarking deep learning models against neural (fMRI, ephys) and
behavioral datasets. It handles the complex pipeline of loading model weights, preprocessing stimuli
(images/videos), extracting feature activations, and scoring them against biological data.

[~ Project Structure

e benchmarks/ : Definitions tying data and scoring together (e.g., NSD , Algonauts ).

e data/ : Scripts to download and preprocess datasets (Stimuli and Neural assemblies).
e metrics/ : Mathematical implementations of scores (Ridge, RSA, PLS).

 models/ : Wrappers for deep learning models (HuggingFace, TorchVision, Custom).

e mongo_utils/ : Helpers for database injection (Advanced use).



Attendance & Participation Policy

|.You must attend class in person
2.You must be on time
3.You must participate!
I you can't make It to a given session, let us

know more than 24 hours in advance. And,
don't let it happen much!

You are expected to be present Iin person
for the final presentation.



Logistics

Website: cs375 stanford.edu

Class Structure: Mixture of Lectures and Guest Lectures

Assignments: /2 coding assignments, final project
proposal, final project presentation & writeup

Grading: participation (25%), coding assignments (40%), project
presentation (15%) project write-up (20%)

Office Hours: \Wednesdays 4:30-5:30,Wu Tsal Neuro Institute
2nd Floor lounge

ToolSs: http.//cs375 stanford.edu/software-tools.html
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