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To be able to easily build an artificial system that:
(1) behaves like the human at high resolution

(2) whose internal parts can be mapped to the parts of the 
brain at some chosen level of resolution

easily build = simulate at low cost



artificial system = neural network

To be able to easily build an artificial system that:
(1) behaves like the human at high resolution

(2) whose internal parts can be mapped to the parts of the 
brain at some chosen level of resolution



behaves like human = (a) has similar types of input sensors
(b) has similar types of output actuators
(c) generates similar input/output map
(d) develops and learns similar way
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develops and learns similar way

changes itself in response to 
environmental input

starts like a baby; changes itself 
independently of a environmental input
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(1) behaves like the human at high resolution

(2) whose internal parts can be mapped to the parts of the 
brain at some chosen level of resolution
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‣ Sensory processing 
- visual, auditory, somatosensory recognition (occipital, temporal)
- navigation (hippocampus?)

‣motor command production & execution (motor cortex)

‣memory, decision making and planning (hippocampus, prefrontal cortex)

‣ language 

‣ emotions

Many Different Computational Goals



A Few Basic Ideas
The neuroscience origins of neural networks
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action potentials, along the axon in one direction: away from the cell body
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The Neuron Doctrine

The “Strong” Neuron Doctrine: 

i. The nervous system is made up of discrete cells (“neurons”), 
connected by extracellular junctions (synapses) into a directed graph

ii. neurons are “excitable cells” that “fire” by a mechanism of 
electrochemical (de)polarization [Hodgkin-Huxel model]

iii. the firing pattern of a neuron is a parameterized function that 
“integrates” the firing patterns of the neurons that synapse onto it

iv. the parameters of the function are plastic and therefore learnable



McCulloch and Pitts (1943)

Artificial Neural Networks (ANNs)
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Artificial Neural Network (ANN) Models of the Brain

Core (obvious) idea: Model brain systems with ANNs

But how to find the correct parameters?*

How to measure model correctness? (and model “understanding”?)

This course is teach you how to do these things. 

*both continuous parameters like weights and discrete parameters of the architecture 



But how to find the correct 
parameters?   

Artificial Neural Network (ANN) Models of the Brain

Core (obvious) idea: Model brain systems with ANNs



Case Study:
The Problem of Entity Extraction
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Understanding complex, noisy data streams is a critical part of cognition. 

Problem:  Entity Extraction

Without sophisticated parsing and entity extraction, the world would be 
“as one great blooming, buzzing confusion” (for babies or otherwise).

*

*actually not clearly true for babies . . . 



Understanding complex, noisy data streams is a critical part of cognition. 

“Mercedes behind Lamborghini, on a field in front of mountains.”

Problem:  Entity Extraction
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Intraclass 
variation

Distortion & Noise

Background 
variationView: position, size, pose, illumination

car
identities

Beetle BMW Z3 Clio

Celica Alfa

VW Bora BMW 325 Astra

Geometric  
variation

Problem:  Entity Extraction



Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)

Car 
Person 
Building 
Tree 
Sign 
Lamp post 
...

“Visual object recognition”

‣Fast, effortless, & accurate

‣Domain general

‣Tolerant to high variation



Category

Identity

 plane

f16

Problem:  Entity Extraction

from Hong et al (2016)



Position

Problem:  Entity Extraction

from Hong et al (2016)



Size
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Aspect Ratio
and Angle

Problem:  Entity Extraction

from Hong et al (2016)



Category

Identity

3-D Object Scale

Perimeter

2-D Retinal Area

 plane

f16

rz

rx ry

Bounding Box 

Aspect Ratio

Major Axis Length

Major Axis Angle

X and Y Axis
Position

Pose in 
each axis

We can quickly assess the scene as a whole. 

Problem:  Entity Extraction

from Hong et al (2016)
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Understanding complex, noisy data streams is critical part of cognition. 

variation sources:  speaker identity
background noise
reverberation 
 . . . 

time

am
pl

itu
de

“Hannah is good at compromising.”

Problem:  Entity Extraction



A working definition of an “explicit” representation =  a basis in which a 
problem is linearly separable 

“Explicit” vs. “Implicit” representations  

The same concept applies to higher dimensional spaces 

Linearly separable

Object “A”

NOT 
object “A”

Not linearly separable

Implicit representationExplicit representation



You need SELECTIVITY for different objects

You need TOLERANCE to changes in the retinal image

Computationally easy 

(e.g. templates)

Computationally easy 

(e.g. simply integrate)

BOTH -- computationally 
difficult!

The Computational Crux of the problem



Any population 
representation

an object identity manifold

The Computational Crux of the problem



A “good” population representation

individual 2
(”Joe”)

individual 1
(”Sam”)

separating 
hyperplane

DiCarlo and Cox, TICS (2007)

Explicit object 
representation

The Computational Crux of the problem



ineffective
separating 
hyperplane

individual 2
(”Joe”)

individual 1
(”Sam”)

A “bad” population representation

DiCarlo and Cox, TICS (2007)

The Computational Crux of the problem



(~ retinal image representation)

DiCarlo and Cox, TICS (2007);  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)

Actual pixel representation

(Due to identity-preserving image variation.) 

object manifolds are “tangled”

Implicit object 
representation

The Tangling of Object Manifolds



Axes of natural variation of natural 
“physics” representation of world

e.g. 

retinal photoreceptor voltage 
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deforming face moving in complex-
lighted environment
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Axes of natural variation of natural 
“physics” representation of world

e.g. retinal photoreceptor voltage  

Axes of natural variation for 
natural behavioral events

(e.g. deforming face moving in 
complex-lighted environment)

Problem:  Entity Extraction

very nonlinear
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Why is the problem hard computationally?

1. Nonlinear misalignment between physical and behavioral 
dimensions



Problem:  Entity Extraction

Why is the problem hard computationally?

1. Nonlinear misalignment between physical and behavioral 
dimensions

2. Needs to be done *fast*, and 
thus, presumably, massively in 
parallel



A Modern Approach
NeuroAI Pathways
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“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd

Nothing in neuroscience makes sense except in light of 
optimization.

computational

Restated:

Behavior is highly constraining of the brain,

as revealed by computational models

CS 375



“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at 
compromising”

visual
cortex

auditory
cortex

Heuristic of “Goal-Driven Modeling”



V1

. . .

primary auditory cortex

. . .

“Mercedes behind 
Lamborghini, on a field in 

front of mountains.”

“Hannah is good at 
compromising”

Heuristic of “Goal-Driven Modeling”
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ethologically-valid tasks 
(categorization)

Yamins & DiCarlo.  
Nat. Neuro. (2016)



> Map to brain data. (ventral stream)
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Yamins & DiCarlo.  
Nat. Neuro. (2016)

3. Implement generic 
learning rules (gradient 
descent)

1. Formulate 
comprehensive 
model class (CNNs)

2. Choose challenging, 
ethologically-valid tasks 
(categorization)
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argmin
a2A

[L(p⇤a)]

where p* is result of

A = architecture class                            L = loss function          D = dataset

dpa
dt

= ��(t) · hrpaL(x)ix2D

“task”

“learning rule”
1. 2.

3.



Four Principles of Optimization-Based Modeling

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule



A = architecture class = circuit neuroanatomy   

1.

2.
T = task/objective = ecological niche

3.
D = dataset = environment

4.
L = learning rule = natural selection +  synaptic plasticity

Four Principles of Optimization-Based Modeling



solving

situated in

updating according to

A = architecture class = circuit neuroanatomy   

1.

2.
T = task/objective = ecological niche

3.
D = dataset = environment

4.
L = learning rule = natural selection +  synaptic plasticity

Four Principles of Optimization-Based Modeling



A = architecture class



A = architecture class

1. MLPs

2. ConvNets

3. Transformers, ViTs

4. LSTMs, State Space Models, RNNs

… and combinations thereof.



Task: L = loss function          D = dataset

. . . and beyond
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Neural Response
Predictivity

Cognitive Task
Performance

Applications 
e.g

Neural Control

Applications 
e.g

Robotics

optimize for optimize for

transfer to

transfer to

the ultimate point the ultimate point

Pros:
• Don’t have to guess task

• If transfer to AI works faster 
than solving AI directly, 
really important use of 
Neuroscience

Cons:
• Hard to get data

• Doesn’t explain “why” 
neurons are as they are

Pros:
• Easier to get training data

• If it works, it explains “why” 
neurons are as they are

Cons:
• Have to shoot in the 

dark as to task choice

Neural Optimization Task Optimization



Neuroscience Methods



Methods 
available for 
studying awake 
behaving 
humans

can be used 
in awake 
behaving 
Macaques

Neuroscience Methods
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Course Session Outline

Neural
Dynamics
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(training and evaluating your own neural network)



(training and evaluating your own neural network)







Policy:
Feel free to use ChatGPT ; but please do your own 

work and and run your own training. 



The Final Project



Attendance & Participation Policy

1. You must attend class in person

2. You must be on time

3. You must participate!

If you can’t make it to a given session, let us 
know more than 24 hours in advance.  And, 

don’t let it happen much!

You are expected to be present in person 
for the final presentation. 



Logistics

Class Structure: Mixture of Lectures and Guest Lectures

Assignments: 2 coding assignments, final project 
proposal, final project presentation & writeup

Website: cs375.stanford.edu

Grading: participation (25%), coding assignments (40%), project 
presentation (15%) project write-up (20%) 

Tools: http://cs375.stanford.edu/software-tools.html

Office Hours: Wednesdays 4:30-5:30, Wu Tsai Neuro Institute 
2nd Floor lounge

http://cs375.stanford.edu
http://cs375.stanford.edu/software-tools.html

