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Understanding complex, noisy data streams is a critical part of cognition. 

Problem:  Entity Extraction

Without sophisticated parsing and entity extraction, the world would be 
“as one great blooming, buzzing confusion” (for babies or otherwise).

*

*actually not clearly true for babies . . . 



Problem:  Entity Extraction

Why is the problem hard computationally?

1. Nonlinear misalignment between physical and behavioral 
dimensions



Problem:  Entity Extraction

Why is the problem hard computationally?

1. Nonlinear misalignment between physical and behavioral 
dimensions

2. Needs to be done *fast*, and 
thus, presumably, massively in 
parallel
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Car
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Face
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Humans (population pooled)

“Core object perception” 
regime

Typical primate fixation 
duration during natural 
viewing

Chance is 50%

All the data I will show 
you today

Problem:  Entity Extraction





‣ Sensory processing 
- visual, auditory, somatosensory recognition (occipital, temporal)
- navigation (hippocampus?)

‣  motor command production & execution (motor cortex)

‣  memory, decision making and planning (hippocampus, prefrontal cortex)

‣  language 

‣  emotions, theory-of-mind

Many Different Computational Goals
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Mishkin & Ungerleider, 1982

“what” / ventral / occipitotemporal

Lesions in IT cortex produce
deficits in shape discrimination tasks
(Gross et al, 1973, Mishkin 1982)

“where” / dorsal / parietal

Lesions in parietal cortex produce
deficits in landmark task
(Pohl et al. 1973)

Source of Slide: Jody Culham

Background: Ventral visual stream



Retinal image

LGN

Background: Ventral visual stream



Decision and 
action Memory

Retinal image

LGN

• Correlation with perceptual report

• Sensitivity to behavioral state (e.g. attention)

• Visually-evoked latency

•Selectivity to visual “feature” conjunctions

• Effects of experience (plasticity)

• Tolerance to identity-preserving transforms 

• Ability to support visual recognition

Background: Ventral visual stream



Sensory cascade

Madame Curie!

sensory cascade in
visual (mostly-) cortex



Felleman and Van Essen, 1991
LGN

RGC

Visual area hierarchy



How does the brain represent the visual world?

photoreceptor 
representation

V1 
representation

IT 
representation



recording electrode

How does the brain re-represent the visual world?

photoreceptor 
representation

V1 
representation

IT 
representation

? ??



1) Neuronal selectivity generally increases as we move up the cortical hierarchy

2) Receptive field (RF) size generally increases as we move up the cortical 
hierarchy

3) Selectivity pattern is typically apparent at the time first spikes are elicited by a 
visual stimulus (“feedforward” assumption)

4) There is hierarchy of times at which first spikes are detected.  

Four important pieces on information
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Retina LGN

V1
PIT

V4

V2

AIT
CIT

STPa

7a STPp

LIP FST

DP VOT

MIP PO MT

PIP V3A

V3

LGN

B

MST

V2

Latency

~15 M

~29 M

~37 M

Retina (RCG representation)~1 M

~150 M

~1 M

~190 M

(V1 representation)

(LGN representation)

~68 M

~10 M

(V2 representation)

(V4 representation)

(IT representation)

~36 M

~17 M

~16 M
~100 ms

~50 ms

~60 ms

~70 ms

~80 ms

~90 ms

~40 ms

A

V1

V4

PIT

CIT

AIT

Adapted from DiCarlo et al. 2012



Ventral visual stream

Kaas (2003), Van Essen (2003), Valois and Morgan (1974)
Gross (1973), Mishkin and Ungerleider (1983), Holmes and Gross (1984)
Horel et al.,(1987); Freiwald and Tsao (2010), Pitcher, et al. (2009)
Yaginuma (1982), Holmes (1984), Weiskrantz (1984), Schiller (1995) 
Afraz (2006), Verhoef (2012) 
Rust (2010), Freiwald (2010), Lehky (2007)
Majaj (2012)

rhesus macaque (macaca mulatta)

Background: Ventral visual stream



Ventral visual stream
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Ventral visual stream

rhesus macaque (macaca mulatta)

Background: Ventral visual stream



Ventral visual stream

rhesus macaque (macaca mulatta)

Background: Ventral visual stream
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Madame 
Curie!????

Ventral Stream = Connected series of brain areas



McCulloch and Pitts (1943)

� : R 7�! R
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some nonlinear activation function

“synaptic strengths”

Recall … 
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McCulloch and Pitts (1943)

� : R 7�! R

wkj 2 Rm+1

some (nonlinear) activation function

“synaptic strengths”

Recall … 

bj 2 R
“biases”

and what’s the 
connectivity? 

???

???

yk = �

0

@
mX

j=0

wkjxj + bk

1

A



Minsky & Papert (1969)

� : R 7�! R
2. better be actually 
nonlinear

Cautionary tale

1. better have more than one 
layer 

cause otherwise … ain’t no 
XOR

NX

i=0

vi�(w
T
i x+ bi)

yk = �

0

@
mX

j=0

wkjxj + bk

1

A

at least (and which, according to the UAT, is enough)

and what’s the 
connectivity? 



Cautionary tale 

Maybe a bit apocryphal …. but I can definitely say from personal 
experience that MIT CSAIL felt very “anti-neural networks” as late as 2012



Ventral visual stream

Ventral Stream = Connected series of brain areas

neuroanatomy +  neurophysiology tell us:
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You are here.



Origins in the Retina

Ramon y Cajal from Rodieck 
(1973)



Origins in the Retina



Origins in the Retina



Origins in the Retina



Watanabe & Rodieck (1989)

Masland (2012)

Origins in the Retina



http://museum.eyewire.org

Origins in the Retina

http://museum.eyewire.org


Origins in the Retina



cell types  
like different  

filters in a  
filterbanks 

. 

. 

. 
but which  

filters?

Origins in the Retina



Ventral visual stream
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Schade, 1956 from Wandell 1996

characterizing a transfer function . . . 

Origins in the Retina



Origins in the Retina

characterizing a transfer function . . . 

. . . and thus, presumably, doing linear systems (e.g fourier) analysis

Christina Enroth-Cugell

John Robson



from Wandell 1996

Origins in the Retina



Christina Enroth-Cugell

John Robson

1. Spatial summation within cat retinal receptive fields was studied by 
recording … responses of ganglion cells to grating patterns  

2. Summation over the receptive fields of some cells (X-cells) was found 
to be approximately linear, while for other cells (Y-cells) summation was 
very non-linear. 

3. The mean discharge frequency of Y-cells … was greatly increased when  
grating patterns drifted across their receptive fields. 

4. In X-cells …  it was found that the contrast sensitivity function, could be satisfactorily
described by the difference of two Gaussian functions. 

5. This finding supports the hypothesis that the sensitivities of the 
antagonistic centre and surround summating regions of ganglion cell 
receptive fields fall off as Gaussian functions of the distance from the 
field centre.

Origins in the Retina



Old-School CV: Marr-Hildreth’s  “Laplacian of Gaussians”  

~r2G(x, y) ⇤ Im(x, y)

⇠ DoG
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Gabors in  V1



Gabors in  V1



Gabors in  V1



Orientation Tuning Curves

from Ayzenshtat et al (2016)



Orientation Tuning Curves

Lauritzen et al 2001



Orientation Tuning Curves

 = neuron r’s response to stimulus with pure orientation k

Lauritzen et al 2001



Orientation Tuning Curves

 = neuron r’s response to stimulus with pure orientation k

total response

to make it “circular”

Lauritzen et al 2001



An et al 2015

Ringach 2002

Gabors in  V1



Gabors in  V1



from Ringach 2002

Gabors in  V1
There is a frequency-orientation relationship:



LN

...

LN

LN

Models of  V1
Where did this come from? 



2. Solve a high-
level 

ecological task
…

compare to
neural data

and
Turing Test

1. Fit neural 
data

less normative theory more normative theory

Two strategies to  find the correct 
parameters.

Models of  V1



LN

...

LN

LN

Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ e.g. there is a “fixed basis set” 
that just “makes sense” if we’re 
smart enough

Models of  V1



LN

...

LN

LN

Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ e.g. there is a “fixed basis set” 
that just “makes sense” if we’re 
smart enough

(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

Models of  V1



(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

L(x) = |x�O(H(x))|2 + � · |H(x)|

Models of  V1
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hidden layer 
H(x) output layer 

O(H(x))

parameters



(2) Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

L(x) = |x�O(H(x))|2 + � · |H(x)|

Models of  V1
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x

hidden layer 
H(x) output layer 

O(H(x))

parameters



Old-School CV part 2:   The Wavelet Wave



Old-School CV part 2:   The Wavelet Wave

Many CV careers made on 
wavelets. 



Old-School CV part 2:   The Wavelet Wave

Many CV careers made on 
wavelets. 

SIFT (Lowe, 1999)



Carandini, Heeger and Movshon (1997) 



C
dV

dt
+ gV = I

R = max(0, V )

g =
g0r

1� k ·
P

r2Rx

r

Carandini, Heeger and Movshon (1997) 



C
dV

dt
+ gV = I

R = max(0, V )

g =
g0r

1� k ·
P

r2Rx

r

measure R from neural data

solve diff eq for equilibrium, estimate free 
parameters:    C, k, g0

R

Carandini, Heeger and Movshon (1997) 



y = R [ W * x ] y = R [ norm(W * x )]

OR:  derive this expression: ——>
(basically)

norm(x) ⇠ x
 
� + ↵ ·

P
r2Rx

x2
r

!�

Carandini, Heeger and Movshon (1997) 



y = R [ W * x ] y = R [ norm(W * x )]

OR:  derive this expression: ——>
(basically)

NB:  (1) derivation involves “reasonable” assumption that “the normalization pool to contain quadruples of cells with 
the same amplitude response but with phases 90° apart.”     (2) The above is how we now define local 
response normalization

norm(x) ⇠ x
 
� + ↵ ·

P
r2Rx

x2
r

!�

Carandini, Heeger and Movshon (1997) 



Interrelations and effects of the principal variables in the normalization model.

Relation between 
membrane potential  

and
firing rate.   

Relation between 
pool activity and 

membrane 
conductance.

Effects of 
conductance on 
the size and time 

course of the 
membrane 
potential.



neural response ~ A * sin (w t + d)

A = amplitude of cell w = frequency of the drift d = phase of cell

A, d are fit to the data

Responses to drifting sine gratings of different contrasts Carandini, Heeger and Movshon (1997) 

C
dV

dt
+ gV = I

The I in this 
equation:

is a sinusoid



Responses to drifting sine gratings of different contrasts

histogram of responses for different contrasts

response vs phase

each point is response to a different  sinusoid

What functions are A and d of a stimulus parameter — contrast?

the parameters C, k, A, d (basically) are fit to the neuron over a bunch of stimulus conditions

Carandini, Heeger and Movshon (1997) 



Now as a function of grating orientation

gray = -15deg, white = -45deg

response vs phase

Carandini, Heeger and Movshon (1997) 



Now as a function of spatial frequency

gray = 1.4 cyc/deg, white = 1.1 cyc/deg

Carandini, Heeger and Movshon (1997) 



Now as a function of temporal frequency

Colors 
as in 
panel A

Carandini, Heeger and Movshon (1997) 



Goal:  Predictive Model of Ventral Stream

from Wandell 1996



More generally, it was realized in computer vision that pooling was a good 
idea. 

Pooling

y =

 
1

|Nr|
X

i2Nr

xp
i

!1/p

(Actually, if you’re running a CNN, you basically *have* to do pooling + 
downsampling, for memory reasons. )

recall Hubel & Wiesel’s complex cell >>



More generally, it was realized in computer vision that pooling was a good 
idea. 

Pooling

from Kouh and Poggio (2008)

y =

 
1

|Nr|
X

i2Nr

xp
i

!1/p

(Actually, if you’re running a CNN, you basically *have* to do pooling + 
downsampling, for memory reasons. )
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Area V2 (first cortical area after V1):
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A R T I C L E S

orientations, positions and spatial scales. The resulting synthetic 
images had the same overall orientation and spatial-frequency con-
tent as the original (that is, the same spectral properties) but lacked 
its higher-order statistical dependencies (Fig. 1a). Naturalistic tex-
ture images were generated by also matching correlations between 
filter responses (and their energies) across orientations, positions and 
spatial scales (Fig. 1b). We used an iterative procedure (Fig. 1c) to 
match the spatially averaged filter responses, the correlations between 
filter responses, and the mean, variance, skewness and kurtosis of the 
pixel luminance distribution (‘marginal statistics’). Synthetic images 
matched for these properties contain many complex naturalistic 
structures seen in the original photograph19, readily recognizable by 
human observers22.

We synthesized images based on 15 original texture photographs, 
yielding 15 different ‘texture families’; for each original, we made 
ensembles of self-similar naturalistic texture samples, each different in 
detail but all having identical statistical dependencies and containing 
similar visual properties (Supplementary Fig. 1). Since each of these 
15 texture families was based on a different original photograph, they 
varied in their appearance and in the form and extent of their higher-
order statistical dependencies.

Differentiating V2 from V1 in macaque
We recorded in 13 anesthetized macaque monkeys the responses of 
102 V1 and 103 V2 neurons to a sequence of texture stimuli, presented 
in suitably vignetted 4° patches centered on each neuron’s receptive 
field. The sequence, which was identical for all cells, included 20 rep-
etitions for each of 15 samples of naturalistic and 15 samples of noise 
stimuli from 15 different texture families (9,000 stimuli in total). The 
textures were each presented for 100 ms and were separated by 100 ms 
of a blank gray screen, so the entire sequence lasted 30 min.

V1 neurons responded similarly to both stimulus types, whereas 
V2 neurons often responded more vigorously to naturalistic textures 
than to spectrally matched noise. This distinction between V2 and 
V1 was evident when examining individual responses as a function 
of time from stimulus onset (averaged over all samples of all texture 
families) (Fig. 2a) and when the responses were averaged over the cell 
populations (Fig. 2b). We use the term ‘modulation’ to capture the 
differential responses to textures and noise, and index its magnitude 
by taking the difference of responses divided by the sum (Fig. 2c). The 
average modulation index of neurons in V1 was near zero for most of 
the response time course, except for a modest late positive modula-
tion (Fig. 2c). Neurons in V2 showed a substantial modulation that 
was evident soon after response onset and persisted throughout the 

duration of the response (Fig. 2c). The late modulation in V1 might 
reflect feedback from V2 or other higher areas23.

V2 responses were substantially modulated by naturalistic struc-
ture on average, but the modulation was typically more pronounced 
for some texture families than for others. We examined responses as 
a function of texture family, averaged over all samples. There was a 
consistent trend across the V2 population for some texture families to 
evoke stronger modulation than others, although the most effective 
families varied from cell to cell (Fig. 2d,e). By contrast, all families 
yielded negligible modulation of V1 responses (Fig. 2d,e). In V2, the 
modulation strength across texture families was not significantly cor-
related with the response magnitude (r = 0.42, P = 0.12, correlation 
computed after averaging across cells). An analysis of the distribution 
and ranking of modulation across individual neurons ruled out the 
possibility that modulation in V1 was present but concealed by the 
process of taking means (Supplementary Fig. 2).

Some neurons were more sensitive overall to naturalistic structure 
than others. We computed a modulation index for each neuron, averaged 
over the response duration and over all samples of all texture families 
(Fig. 2f). Significant positive modulation was observed in 15% of V1 
neurons and 63% of V2 neurons (P < 0.05, randomization test for each 
neuron). The difference in modulation between V1 and V2 was signifi-
cant (P < 0.0001, t-test on signed modulation; P < 0.0001, t-test on mod-
ulation magnitude ignoring sign). Results were similar when examining 
firing rates instead of modulation index (Supplementary Fig. 3).

The receptive fields of V2 neurons are larger than those of V1, but 
this distinction did not explain the observed differences in sensitiv-
ity to naturalistic structure (Fig. 3). The stimuli presented to V1 and 
V2 cells were of the same diameter, roughly twice that of a typical V2 
receptive field and four times that of a typical V1 receptive field. There 
was no evidence of a correlation between receptive field size and 
modulation in either visual area (V1, r = 0.13, P = 0.23; V2, r = –0.13,  
P = 0.26, Fig. 3a,b). When we restricted our analysis to subsets of neu-
rons matched for average receptive field size, the difference in modu-
lation index between areas was reduced by only 9% and remained 
significant (P < 0.0001, randomization test).

a
Original
photographs

Compute
responses

Recompute
responses

Adjust

Iteration 1 Iteration 2 Iteration 50

Original

V1-like filters matched:
spectrally matched noise

Correlations matched:
naturalistic texture

b c

d

Figure 1 Analysis and synthesis of naturalistic textures. (a) Original 
texture photographs. (b) Spectrally matched noise images. The original 
texture is analyzed with linear filters and energy filters (akin to V1 simple 
and complex cells, respectively) tuned to different orientations, spatial 
frequencies and spatial positions. Noise images contain the same spatially 
averaged orientation and frequency structure as the original but lack many 
of the more complex features. (c) Naturalistic texture images. Correlations 
are computed by taking products of linear and energy filter responses 
across different orientations, spatial frequencies and positions. Images 
are synthesized to match both the spatially averaged filter responses 
and the spatially averaged correlations between filter responses. The 
resulting texture images contain many more of the naturalistic features 
of the original. More examples in Supplementary Figure 1. (d) Synthesis 
of naturalistic textures begins with Gaussian white noise, and the noise is 
iteratively adjusted using gradient descent until analysis of the synthetic 
image matches analysis of the original (see ref. 19). Initializing with 
different samples of Gaussian noise yields distinct but statistically  
similar images.

976 VOLUME 16 | NUMBER 7 | JULY 2013 NATURE NEUROSCIENCE

A R T I C L E S

We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.

–0.1

0

0.1

0.2

0.3

M
od

ul
at

io
n 

in
de

x

1 15e
n = 102

n = 103

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 fi
rin

g 
ra

te

V2
Naturalistic

Noise

V1b

0 100 200

Time from stimulus onset (ms)

Null

300

–0.1

0

0.1

0.2

M
od

ul
at

io
n 

in
de

x

c
n = 102 n = 103

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

–0.5 0.50 –0.5 0.50

Modulation index Modulation index

P
ro

po
rt

io
n 

of
 c

el
ls

V2V1f

25

0

25

F
iri

ng
 r

at
e 

(im
pu

ls
es

 p
er

 s
)

0
0

Time from stimulus onset (ms)
100 200

15V2

0

10

0

25

0

35

0

F
iri

ng
 r

at
e 

(im
pu

ls
es

 p
er

 s
)

15
Texture family

1 151 151

30

0

40 0.23 0.33 0.23

0.05–0.05–0.03

0

25

0

25

0

30

0

20

0

V1a d

Interpretation:  

- V2 neurons apply “and-like” 
operators on V1 outputs  

- those “ands” are tuned toward 
natural co-occurring V1 statistics

Adapted from Freeman, Ziemba, Heeger, Simoncelli, & Movshon, Nature Neuro  (2013)

So, maybe a hierarchically-
built sparse auto-encoding in 
a 2-layer model with max 
pooling??

Jeremy Freeman

Tony Movshon

Eero Simoncelli
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Area V4 (cortical area after V2):

Jack Gallant



A structural (parts-based) shape-coding scheme based on contour fragments.  A, The example shape, a bold numeral 2, can 
be decomposed into contour fragments (a-g) with different curvatures, orientations, and positions.  B, The curvature and 
orientation of  each contour fragment is plotted on a 2-D domain.  C, The positions of  the contour fragments (relative to 
the object center) are plotted on a 2-D domain.  Together, plots B and C represent a 4-D domain for describing contour 
fragments.  

Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

Area V4 (cortical area after V2):

Anitha Pasupathy Scott Brincat Ed Connor



Pasupathy and Connor (V4) 
Brincat and Connor (PIT)

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

What shape features drive V4 response?



Pasupathy and Connor (V4) 
Brincat and Connor (PIT)

Experimental result: 
Hypothesis explains ~50% of the explainable 
response variance for these types of stimuli  

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

What shape features drive V4 response?



Pasupathy and Connor (V4) 
Brincat and Connor (PIT)

Experimental result: 
Hypothesis explains ~50% of the explainable 
response variance for these types of stimuli  

Problem:  
No predictions for any other images. 

i.e. 
is not an “image-computable” model

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

What shape features drive V4 response?
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“IT” (Inferior temporal cortex)

You are here.



~ 7.7 cm2

~ 8% of neocortex  (~ 15% of visual cortex) 
~ 90 million neurons
Subregions: (PIT, CIT, AIT)    (TEO, TE) 

ITV4
Perirhinal Cx
Parahippocampal Cx
Amygdala

Prefrontal Cx
Frontal Eye Field Cx
Parietal Cx (7a)

IT statistics (rhesus monkey)

Striatum
Thalamus

Thalamus
Hypothalamus
Brain stem



The use of [these] stimuli was begun one day when, having failed to drive a unit with any light stimulus, 
we waved a hand at the stimulus screen and elicited a very vigorous response from the previously 
unresponsive neuron... 

Increasing ability to drive this IT neuron -->

We then spent the next 12 hr testing various paper cutouts in an attempt to find the trigger feature 
for this unit. When the entire set of stimuli used were ranked according to the strength of the response 
that they produced, we could not find a simple physical dimension that correlated with this rank order. 
However, the rank order of adequate stimuli did correlate with similarity (for us) to the shadow of a 
monkey hand" (Gross et al., 1972).



The use of [these] stimuli was begun one day when, having failed to drive a unit with any light stimulus, 
we waved a hand at the stimulus screen and elicited a very vigorous response from the previously 
unresponsive neuron... 

We then spent the next 12 hr testing various paper cutouts in an attempt to find the trigger feature 
for this unit. When the entire set of stimuli used were ranked according to the strength of the response 
that they produced, we could not find a simple physical dimension that correlated with this rank order. 
However, the rank order of adequate stimuli did correlate with similarity (for us) to the shadow of a 
monkey hand" (Gross et al., 1972).

Charlie Gross

Joyce Carol Oates!

Increasing ability to drive this IT neuron -->



IT neurons can be tuned to 
specific combinations of 
features (high “selectivity”)

Desimone et al. (1984)

Logothetis et al. (1995)

That selectivity is tolerant 
to changes in position and 
size

What stimulus feature are IT neurons actually “tuned” to?



What stimulus feature are IT neurons actually “tuned” to?

Tanaka et al.



Tanaka et al.

IT has spatial organization at 500 um - 1 mm scale

Tsunoda et al. 1 mm



-

fMRI 
Faces vs Objects

PL
ML

AL
AM

MF
AF

ML

Tsao et al., Science 2006

Tsao, Freiwald, and Livingstone used fMRI to 
reveal a set of face selective regions in 
macaque IT (aka “face patches”)

Most of the single neurons in these regions 
showed a preference for frontal faces

Winrich Freiwald Doris Tsao Nancy Kanwisher

Larger scale (2-6 mm) organization for some image contrasts

Face Patches in IT



IT

V4

= Array

10mm

Multi-array electrophysiology in macaque V4 and IT. 

About 300 total sites

Multi-array Electrophysiology Experiment

Ha Hong Jim DiCarlo



Multi-array Electrophysiology Experiment

5760 images

64 objects 

8 categories

uncorrelated photo backgrounds

Animals Boats Cars Chairs Faces Fruits Planes Tables

Pose, position, scale, and background variation

640 images
Low variation

2560 images

Medium variation

High variation

2560 images



Multi-array Electrophysiology Experiment



Multi-array Electrophysiology Experiment

complex, uncorrelated backgrounds prevent low-level 
cheating part of what we mean by “complex task”



Multi-array Electrophysiology Experiment

complex, uncorrelated backgrounds prevent low-level 
cheating part of what we mean by “complex task”

Ellie.  C. Shay & K. Kar (Winter 
2019)



IT

V4

= Array

10mm

Img 1       Img 2              Img 5760

...

Neuron 1
Neuron 2
Neuron 3

Neuron 296

...

Output =  Binned spike counts 70ms-170ms post stimulus presentation
               averaged over 25-50 reps of each image. 

Multi-array Electrophysiology Experiment

About 300 total sites



IT unit 53

Animals Boats Cars Chairs Faces Fruits Planes Tables

Responses to 1600 test images of two example units

Images sorted first by category, then variation level. 
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Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:
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Yamins* and Hong* et. al. PNAS (2014)



Range of Human Behavior
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Decoding Behaviorally Output from Neural Populations

… but humans are much less affected. 

V4 loses out at higher variation:



IT Neurons Track Human Performance

Low Variation Medium Variation High Variation

V4-to-IT 
GapPe

rfo
rm

an
ce

(%
 co

rre
ct

)

V
4 N

E
U

R
O

N
S

IT N
E

U
R

O
N

S
H

U
M

A
N

  P
E

R
FO

R
M

A
N

C
E

Basic
categorization

Yamins* and Hong* et. al. PNAS (2014)

… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



IT Neurons Track Human Performance

At high variation levels,  IT much better than  V4 and existing models.
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… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



IT Neurons Track Human Performance

IT matches human error patterns as well as raw performance.

Low-Variation Face subordinate tasks. 

IT Population V4 Population

H
um

an
 P

er
fo

rm
an

ce

Neural Decode Performance



Camel
Dog

Rhino
Elephant
Wrench

Knife
Hanger

Fork
Guitar

Pen
Tank
Truck

Bird
Hammer

Gun
Table

Calculator
Spider

Leg
Zebra

House
Bear

Shorts
Watch

Average Human

 

 

0.05

0.1

0.15

0.2

0.25

0.3
k r e

C
am

el
D

og
R

hi
no

El
ep

ha
nt

W
re

nc
h

Kn
ife

H
an

ge
r

Fo
r

G
ui

ta Pe
n

Ta
nk

Tr
uc

k
Bi

rd
H

am
m

er
G

un
Ta

bl
C

al
cu

la
to

r
Sp

id
er

Le
g

Ze
br

a
H

ou
se

Be
ar

Sh
or

ts
W

at
ch

 
 

Average Monkey
 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pixels

 

 

0.3

0.35

0.4

0.45

0.5

0.55

V1+

 

 

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Comparison of Object Recognition Behavior in Human and Monkey 
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014) 
R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (2015)

Human Rhesus monkey

“camel” 
confused with 
“dog”

“tank” confused with “truck”

Upshot:  human and non-human primate basic level core object perception 
(sp. identification) are indistinguishable

Does not depend on reporting effector (touch vs. eye movement)

Human / Monkey similarities



Feature Space as Encoding

Pixel space: R~1000000                                  Feature space: R4000(?)

Dim 1

Dim 2

Dim 3

CHAIRS



Pixel space: R1000000                                                    Feature space: R4000(?)                                   Behavioral 
Output
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Encoding & Decoding

Simple Decision Rule

Feature representation

Behavior

 Behavior = Feature space + Simple decision rule
              = encoding + decoding
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visual
representation

very nonlinear*

*which is presumably why  
so much brainmeat needs to  

devoted to it. 

Encoding & Decoding
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Ventral Stream

GOAL:  Predictive model of single-neuron 
responses throughout the ventral stream to 

arbitrary image stimuli. 

Key questions:
(a) how many layers?

(b) what’s in each layer, specifically? 

(c) what behavioral goals and biophysical facts constrain it to be as it is?



How are we supposed to use all this hard-won 
(Retina-IT) neuroscience knowledge to make 

an actual model?


