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Problem: Entity Extraction

Understanding complex, noisy data streams is a critical part of cognition.

William James

The baby, assalled by eyes, ears,
nose, skin, and entrails at once,
feelsit all as one great

blooming, buzzing confusion.

ARQUOTES

Without sophisticated parsing and entity extraction, the world would be
"as one great blooming, buzzing confusion” (for babies or otherwise).

%actually not clearly true for babies ...



Problem: Entity Extraction

Why Is the problem hard computationally?

|. Nonlinear misalignment between physical and behavioral
dimensions



Problem: Entity Extraction

Why Is the problem hard computationally?

|. Nonlinear misalignment between physical and behavioral
dimensions

2. Needs to be done *fast+*, and
thus, presumably, massively In
parallel




Problem: Entity Extraction

“Core object perception”
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Many Different Computational Goals

» Sensory processing
- visual, auditory, somatosensory recognition (occipital, temporal)

Frontal Iob < Parietal lobe

Occipital
lobe



Many Different Computational Goals

» Sensory processing
- visual recognition (occiprtal, temporal)

Frontal lobe __=#

Parietal lobe



Background: Ventral visual stream

Mishkin & Ungerleider, 1982

“where” [ dorsal / parietal

Lesions in IT cortex produce Lesions in parietal cortex produce
deficits in shape discrimination tasks deficits in landmark task
(Gross et al, 1973, Mishkin 1982) (Pohl et al. 1973)

Source of Slide: Jody Culham



Background: Ventral visual stream

Temporal
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Background: Ventral visual stream

Decision and

action Memory

Temporal * Jolerance to identity-preserving transforms
Pathway

* Ability to support visual recognition

* Correlation with perceptual report

* Sensitivity to behavioral state (eg attention)
* Visually-evoked latency

*Selectivity to visual “feature” conjunctions

* Effects of experience (plasticity)




Sensory cascade

sensory cascade In
visual (mostly-) cortex

—>I—>I—>I—>I—> Madame Curie!




Visual area hierarchy
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How does the brain represent the visual world?

Retinal ganglion  Lateral geniculate Primary visual Inferotemporal
Photoreceptors cells cells (LGN) cortical cells (V1) V2 cells V4 cells cortex cells (IT)
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How does the brain re-represent the visual world”?

recording electrode

Pattern

of light
photoreceptor V1 T
representation representation

neuron 1 neuron 1 neuron 1

neuron 2
neuron 3

neuron 2 neuron 2
neuron 3 neuron 3




Four iImportant pieces on information

|)  Neuronal selectivity generally increases as we move up the cortical hierarchy

2) Receptive field (RF) size generally increases as we move up the cortical
hierarchy

3) Selectivity pattern is typically apparent at the time first spikes are elicited by a
visual stimulus (“feedforward” assumption)

4)  There is hierarchy of times at which first spikes are detected.

Pattern
of light
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Background: Ventral visual stream

rhesus macaque (macaca mulatta)
Kaas (2003),Van Essen (2003),Valois and Morgan (1974)
Gross (1973), Mishkin and Ungerleider (1983), Holmes and Gross (1984)
Horel et al.,(1987); Freiwald and Tsao (2010), Pitcher, et al. (2009)
Yaginuma (1982), Holmes (1984), Weiskrantz (1984), Schiller (1995)
Afraz (2006),Verhoef (2012)
Rust (2010), Freiwald (2010), Lehky (2007)

Majaj (2012) v1
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Background: Ventral visual stream

rhesus macaque (macaca mulatta)
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Background: Ventral visual stream

rhesus macaque (macaca mulatta)
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Background: Ventral visual stream

pixel RGC LGN

rhesus macaque (macaca mulatta)
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Ventral Stream = Connected series of brain areas

_ representation read-out _
Stimulus » Neurons > Behavior
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Recall ...

McCulloch and Pitts (1943)
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“synaptic strengths”
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Recall ...

McCulloch and Pitts (1943)

i

i

and what’s the
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Cautionary tale

MlﬂSl{Y & Papert (l 969) Expanded Edition
m
Perceptrons ] —0
o:R— R
1. better have more than one 2. better be actually
1aYye nonlinear
layer A N

Z Uq;(b(w;-r T+ bi) at least (and which, according to the UAT, is enough)
1=0

cause otherwise ... ain’t no (‘)‘ ‘(3) Ogt

XOR of 1| 1

110 1

and what’s the 111 0

connectivity?




Cautionary tale

Limitations of Perceptrons

Minsky & Papert published (1969)
“Perceptrons” stressing the limitations
of perceptrons

Single-layer perceptrons cannot solve
problems that are linearly inseparable

(e.g., xor)

Most interesting problems are linearly
inseparable

Kills funding for neural nets for 12-15

Atk BRIy

Maybe a brt apocryphal ....but | can definitely say from personal
experience that MIT CSAIL felt very “anti-neural networks” as late as 2012



Ventral Stream = Connected series of brain areas

neuroanatomy + neurophysiology tell us:

Vi

Ventral visual stream

pixel RGC LGN V1 V2 V4 IT
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Origins In the Retina

Ramon y Cajal from Rodieck
(1973)



Fig. 2. A drawing done by Cajal to show some of the neurons of the retina
in vertical section.



Origins In the Retina

Golgi-staine
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Fig. 2. A drawing don
in vertical section.
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Origins In the Retina

Fig. 2. A drawing ¢
in vertical section.




Origins In the Retina

Masland (2012)



rigins In the Retina



http://museum.eyewire.org

Origins In the Retina
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Sum of Products

1. The convolution mask is overlated on the original image so that the center pixel
of the mask is matched with a pixel location on the image (Target Pixel- to be
convolved).

2. Each pixel value in the original image is multiplied by the corresponding value
in the overlying mask..

3. The grey value of the target pixel is replaced by the sum of all the products in
the second step.

4. The operation is repeated for each pixel in the original image (the mask scans
the entire image) and each pixel is replaced by the weighted average of its
3 x 3 neighbors.



Origins In the Retina
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Origins In the Retina

characterizing a transfer function .. .
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Origins In the Retina

characterizing a transfer function . . .

Christina Enroth-Cugell
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John Robson

... and thus, presumably, doing linear systems (e.g fourier) analysis



Origins In the Retina
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Origins In the Retina

THE CONTRAST SENSITIVITY OF RETINAL GANGLION
CELLS OF THE CAT

By CHRISTINA ENROTH-CUGELL axp J. G. ROBSON*

From the Biomedical Engineering Center, Technological Institute,
Northwestern University, Evanston, Illinois, U.S.A.T and
the Department of Physiology, Northwestern University
Medical School, Chicago, U.S.A.

(Received 19 April 1966)

1. Spatial summation within cat retinal receptive fields was studied by
recording ... responses of ganglion cells to grating patterns

2. Summation over the receptive fields of some cells (X-cells) was found
to be approximately linear, while for other cells (Y-cells) summation was
very non-linear.

3. The mean discharge frequency of Y-cells ... was greatly increased when
grating patterns drifted across their receptive fields.

4. In X-cells ... it was found that the contrast sensitivity function, could be satisfactorily John Robson
described by the difference of two Gaussian functions.

5. This finding supports the hypothesis that the sensitivities of the
antagonistic centre and surround summating regions of ganglion cell
receptive fields fall off as Gaussian functions of the distance from the
field centre.



Old-5chool CV: Marr-Hildreth's “Laplacian of Gaussians’™

Proc. R. Soc. Lond. B 207, 187-217 (1980)
Printed in Great Britain

Theory of edge detection

By D. MArr AND E. HiLDRETH

M.IT. Psychology Department and Artificial Intelligence Laboratory,
79 Amherst Street, Cambridge, Massachusetts 02139, U.S.A.

(Communicated by S. Brenner, F.R.S. — Received 22 February 1979)

Marr-Hildreth Edge Detector Dialog
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_ representation
Stimulus > Neurons
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You are here. ‘
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Gabors in V|

106 J. Physiol. (1962), 160, pp. 106-154
With 2 plates and 20 text-figures
Printed in Great Britain

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL axp T. N. WIESEL

From the Neurophysiolojy Laboratory, Department of Pharmacology
Harvard Medical School, Boston, Massachusetts, U.S.A.

(Received 31 July 1961)

PART 1

ORGANIZATION OF RECEPTIVE FIELDS IN CAT’S
VISUAL CORTEX: PROPERTIES OF ‘SIMPLE’
AND ‘COMPLEX’ FIELDS



Gabors in V|

Stimulus:
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Orientation Tuning Curves

A

Sine wave
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Orientation Tuning Curves

Orientation tuning
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Orientation Tuning Curves

Orientation tuning
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Circular Variance = 1

Ik = neuron F's response to stimulus with pure orientation k



Orientation Tuning Curves

Orientation tuning
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Gabors in V|

Simple V1 cells Daugman, 1985

2D Receptive Field
2D Gabor Function
Difference

Receptive fields in primary visual cortex (Jones and Palmer, 1987)

localized sine and cosine waves

Gabor wavelets:

Transation, rotation, dilation of the above function



Gabors in VI

There Is a frequency-orientation relationship:
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Where did this come from?

AN AV AN AY
h// u/// ma M"
_!l _m NN
| F == —
BE2ZZ%Z

RAY \(
11
IE Y

W.s W\\w




Models of V|

Two strategies to find the correct
parameters.

less normative theory
<

more normative theory

|. Fit neural
data

>

2. Solve a high-

level
ecological task

compare 1o
neural data
and
Turing Test



Models of V|

Where did this come from?

Rl Vgl en - ey S Moy € ! Woaagd b Magdtdel "Maghfeml W agihe )

U > amit Dy Llluese gl b Warph i | Wony A Buomi b T At "D Eiasid " ony L0umwi b

|
1

2
- -
i r
L =
<

LA IRt B ARAN AN AL e AT A e A

(1) “"Hubel and Wiesel's Inturtion”

— e.g. there Is a “'fixed basis set”
~1970s and formalized later

that just “makes sense” If we're
smart enough



Models of V|

Where did this come from?

(1) “"Hubel and Wiesel's Inturtion”

— e.g. there Is a “'fixed basis set”
~1970s and formalized later

that just “makes sense” If we're
smart enough

(2) Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible
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hidden layer
H(x) output layer

O(H()
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\

parameters

L(z) = |z — O(H(z))[* + A - |H(2)]

(2) Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible
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Old-5chool CV part 2: The Wavelet Wave




Old-5chool CV part 2: The Wavelet Wave
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IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. I1. NOVEMBER 1995

imaginary part

Texture Classification and
Segmentation Using Wavelet Frames

Michael Unser, Senior Member. IEEE

Abstract—This paper describes a new approach to the char-
acterization of texture properties at multiple scales using the
wavelet transform. The analysis uses an overcomplete wavelet
decomposition, which yields a description that is translation
invariant. It is shown that this representation constitutes a tight
frame of /; and that it has a fast iterative algorithm. A texture is
characterized by a set of channel variances estimated at the out-
put of the corresponding filter bank. Classification experiments
with 12 Brodatz textures indicate that the discrete wavelet frame
(DWF) approach is superior to a standard (critically sampled)
wavelet transform feature extraction. These results also suggest
that this approach should perform better than most traditional
single resolution techniques (co-occurrences, local linear trans-
form, and the like). A detailed comparison of the classification
performance of various orthogonal and biorthogonal wavelet
transforms is also provided. Finally, the DWF feature extrac-
tion technique is incorporated into a simple multicomponent
texture segmentation algorithm, and some illustrative examples
are presented.

reversible, which limits their applicability for texture synthesis,
Most of these problems can be avoided if one uses the
wavelet transform, which provides a precise and unifying
framework for the analysis and characterization of a signal
at different scales [16]-{19]. The use of a pyramid-structured
wavelet transform for texture analysis was first suggested
in the pioneering work of Mallat [19]. This initial proposal
has been followed by several studies on texture classification
with a particular attention to the use of wavelet packets [20),
[21], which constitute a multiband extension of the pyramid-
structured wavelet transform.

In this paper, a variation of the discrete wavelet transform
is introduced for characterizing texture properties. This tech-
nique is applied to the problems of texture classification and
segmentation. The present analysis method, which is described
in Section II, uses an overcomplete wavelet decomposition

(the dicorata wravalat Feamea MWL - Lt . -

Many CV careers made on
wavelets.



Old-5chool CV part 2: The Wavelet Wave
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IEEE TRANSACTIONS ON IMAGE PROCE

Segme

x from =51
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imaginary part

David G. Lowe

Computer Science Department
University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada

lowe@cs.ubc.ca

Michael Unser, Senior Member, IEEE

Abstract—This paper describes a new approach to the char-
acterization of texture properties at multiple scales using the
wavelet transform. The analysis uses an overcomplete wavelet
decomposition, which yields a description that is translation
invariant. It is shown that this representation constitutes a tight
frame of /; and that it has a fast iterative algorithm. A texture is
characterized by a set of channel variances estimated at the out-
put of the corresponding filter bank. Classification experiments
with 12 Brodatz textures indicate that the discrete wavelet frame
(DWF) approach is superior to a standard (critically sampled)
wavelet transform feature extraction. These results also suggest
that this approach should perform better than most traditional
single resolution techniques (co-occurrences, local linear trans-
form, and the like). A detailed comparison of the classification
performance of various orthogonal and biorthogonal wavelet
transforms is also provided. Finally, the DWF feature extrac-
tion technique is incorporated into a simple multicomponent
texture segmentation algorithm, and some illustrative examples
are presented.

reversible, which limits their applicability for texture synthesis,
Most of these problems can be avoided if one uses the
wavelet transform, which provides a precise and unifying
framework for the analysis and characterization of a signal
at different scales [16]-{19]. The use of a pyramid-structured
wavelet transform for texture analysis was first suggested
in the pioneering work of Mallat [19]. This initial proposal
has been followed by several studies on texture classification
with a particular attention to the use of wavelet packets [20),
[21], which constitute a multiband extension of the pyramid-
structured wavelet transform.

In this paper, a variation of the discrete wavelet transform
is introduced for characterizing texture properties. This tech-
nique is applied to the problems of texture classification and
segmentation. The present analysis method, which is described
in Section II, uses an overcomplete wavelet decomposition

(the dicorata wravalat Feamea MWL - Lt . -

Hn

EBEZUNNNS
= =720

SIFT (Lowe, 199

Object Recognition from Local Scale-Invariant Features

SN

Many CV careers made on

wavelets.



Carandini, Heeger and Movshon (1997)

A Linear model B Normalization model

Rectification Rectification

“ > | ( - Firing rate “ > » Firing rate

Receptive field ——

Receptive field

Many other
cortical cells

T



Carandini, Heeger and Movshon (1997)

A Linear model B Normalization model

Rectification Rectification

“ - | //|— Firing rate “ - I / | Firing rate

Receptive field —

Receptive field

Many other
cortical cells

T

dV 90
dt 1—k- > r

rcR,

R = maz(0,V)



Carandini, Heeger and Movshon (1997)

A Linear model B Normalization model R

Rectification Rectification

“ - | / }— Firing rate “ > I / | Firing rate

Receptive field ——l

Receptive field

Many other
cortical cells

T

dV Jo
C gV =1 g =
at 1—Fk- > r
rec R,
R = max(() V) measure R from neural data

solve diff eq for equilibrium, estimate free
parameters: C, k, g0



Carandini, Heeger and Movshon (1997)

B Normalization model

Rectification

Rectification
“ - | //|— Firing rate “ - I / | Firing rate

Receptive field —_—

A Linear model

Receptive field

Many other
cortical cells

T

y =R[W *x] y = R [ norm(W * x )]

X

OR: derive this expression: > TLO?“m(ZE) ~

(basically)

yta- ), a3
rec Ry



Carandini, Heeger and Movshon (1997)

A Linear model B Normalization model

Rectification Rectification

“ > | / }— Firing rate “ > l / {=r— Firing rate
Receptive field Receptive field ==
= = —  Many other
— cortical cells
y =R[W *x] y = R [ norm(W * x )]
XL

OR: derive this expression:
(basically)

>  norm(xz) ~

ytHa- ), xp
rcR,

NB: (1) derivation involves “reasonable’ assumption that “the normalization pool to contain quadruples of cells with

the same amplitude response but with phases 90° apart” (2) The above is how we now define local
response normalization



Interrelations and effects of the principal variables in the normalization model.

<
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Total firing rate (%)
Effects of
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membrane potential pool activity and the size and time
and membrane course of the
firing rate. conductance. membrane

potential.



Responses to drifting sine gratings of different contrasts Carandini, Heeger and Movshon (1997)

L\ The I'in this
equation:
\ A\
dv
\ \ L\
S a sinusolid
\\ \
3
neural response ~ A * sin (w t + d)
A = amplitude of cell w = frequency of the drift d = phase of cell

A, d are fit to the data



Responses to drifting sine gratings of different contrasts Carandini, Heeger and Movshon (1997)

What functions are A and d of a stimulus parameter — contrast?
the parameters €, Ky, A, d (basically) are fit to the neuron over a bunch of stimulus condrtions

histogram of responses for different contrasts

A
e _ﬂ-
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Response (spikes/s)
N
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Contrast

@
S

213

Phase (deg)

D
o

20 spikes/s

154 0.03 0.1 03 1
Time (ms) Contrast

response Vs phase

each point is response to a different sinusoid



Now as a function of grating orientation Carandini, Heeger and Movshon (1997)

A  Orientation (deg)
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Now as a function of spatial frequency Carandini, Heeger and Movshon (1997)

Spatial frequency (c/deg)

w
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Now as a function of temporal frequency Carandini, Heeger and Movshon (1997)

Drift rate (Hz)
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012 o, _

025 b 4 A _a _
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Goal: Predictive Model of Ventral Stream

Convolution Static
kernels nonlinearity  [Noise

00—
— W —

Stimulus

Z

0)]

@]
Decision mechanisD

NN
s

from Wandell 1996




Pooling

More generally, it was realized in computer vision that poeoling was a good
idea.

recall Hubel & Wiesel's complex cell >>

o

(Actudlly, if you're running a CNN, you basically *have® to do pooling +
downsampling, for memory reasons. )



Pooling

More generally, it was realized in computer vision that poeoling was a good

idea.

(A)

Gaussian-like
Max-like
Gaussian-like

Max-like

Gaussian-like

e (@3
Categor Zatic fication

PIT

2B o

( ) 3D Rotation Scale Translation Distractors
1 1 o I 1

y S o

S g Q o %

2 o o (o} .

3 ;

« o= & 4 II “ ”
0 0 Q 0

-20 0 20 2 -1 0 1 : 0 30 60

Viewing Angle (degrees) Size (octave) y (degrees) x (degrees) Paperclip ID

from Kouh and Poggio (2008)

(Actudlly, if you're running a CNN, you basically *have® to do pooling +

downsampling, for memory reasons. )



Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

Filter

®.
®:

®o.

Threshold
Saturate

-y |

&

)

P00

Normalize

= O

Layer components are basic neural-like operations.




Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

neuro:

data:

Filter

®.
®:

®o.

synaptic
welghts
patterns

untangling
through

dimension

expansion

Threshold &

)

Saturate

_/_

P00

)

Normalize

= O

Layer components are basic neural-like operations.

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

Filter Threshold & |
X P Saturate P00 Normalize

O | wap [ /] wep [ - ()
X P,

Layer components are basic neural-like operations.

synaptic

. . single-unit
neuro: welights o
activations
patterns
untangling “"AND" operation
data: through by limrting dynamic
' dimension
. range
expansion

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

Filter Threshold & |
X P Saturate P00 Normalize

O | wap [ /] wep [ - ()
X P,

Layer components are basic neural-like operations.

syngptlc single-unit
neuro: weights > complex cells
activations
patterns
U:k’]tlilgfhgg “AND" operation adding robustness
data: dimenséizon by limrting dynamic by dimension
. range reduction
expansion

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

Filter Threshold & |
X P Saturate P00 Normalize

O | wap [ /] wep [ - ()
X P,

Layer components are basic neural-like operations.

syngptlc single-unit "
neuro: weights o complex cells competitive
activations RN
patterns inhibrtion
untangling “AND" operation adding robustness .
through " . . . put results back into
data: . . by limrting dynamic by dimension
dimension e eduction standard range
expansion &

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



Linear-Nonlinear Operations

» Linear-Nonlinear neurally-plausible basic operations within layer

Linear | Nonlinear
Filter Threshold & |
X P Saturate P00 Normalize

o /] > - ()
X P,

Laygqr components are basic neural-like operations.

syngptlc single-unit "

neuro: weights > complex cells competitive
| | tit
activations RN

patterns inhibrtion

untangling “AND" operation adding robustness .

through " . . . put results back into
data: . . by limrting dynamic by dimension

dimension e eduction standard range

expansion &

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



representation read-out

Stimulus > Neurons > Behavior
)
f) V4 ? PIT CIT AIT
>0 B O—>
B - - == e
S \
Madame
Curie!
Filter Threshold & e

R Saturate Pool Normalize
®¢ P - | | = = @
Q. Layer components are basic neural-like operations.

Linear-Nonlinear neurally-plausible basic operations within layer



You are here. ‘

7a

STP

1 P 1 F ~10M
(IT representation)
AIT

~16 M

STP

CIT

~17 M

VvOoT

LIP | |msT| |FST
DP
kmp PO | |mT
PIP

PIT

~36 M

~15M (V4 representation)

~29 M (V2 representation)

~150 M

~37 M (V1 representation)

~190 M

~1M (LGN representation)
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Latency

~100 ms

~90 ms

~80 ms

~/70ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012



Area V2 (first cortical area afterV|):

Original V1-like filters matched: Correlations matched:
photographs  spectrally matched noise naturalistic texture

Jeremy Freeman

06 4 "1 Interpretation:
0.4 -
g 02 - - V2 neurons apply “and-like”
g 0, , , , operators on V| outputs
E 08 4 V2 Naturalist Ny .
E . aluraliste - those “ands’ are tuned toward
= s natural co-occurring V| statistics
0.2 -+ o o
. So, maybe a hierarchically-

— | ; built sparse auto-encoding in
° 0 290 300 a 2-layer model with max

Time from stimulus onset (ms)

Adapted from Freeman, Ziemba, Heeger, Simoncelli, & Movshon, Nature Neuro (2013) POOllngn



7a

LIP

MST

FST

DP

You are here. I

PIP

STP

~16 M
I |

STP, CIT

PIT

~17 M

~36 M

VvOoT

V3

1 P 1 F ~10M
(IT representation)
AIT

~15M (V4 representation)

~29 M (V2 representation)

~150 M

~37 M (V1 representation)

~190 M

~1M (LGN representation)
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Latency

~100 ms

~90 ms

~80 ms

~/70ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012



Area V4 (cortical area afterV2):

V4 Responses to Non-Cartesian Gratings
Gallant et al. 1996

Cell 2HSE0

Cell 2H2I0




Area V4 (cortical area afterV2):

Make a basis for shapes:
each shape = set of curved elements
each element = (ang position, curvature)

Hypothesis: |
V4 neurons are tuned in this basis

Curvature

136

180

225 315

d e 270 A A0
Origntatio® Ngular posit'®

A structural (parts-based) shape-coding scheme based on contour fragments. .4, The example shape, a bold numeral 2, can
be decomposed into contour fragments (a-g) with different curvatures, orientations, and positions. B, The curvature and
orientation of each contour fragment is plotted on a 2-D domain. C; The positions of the contour fragments (relative to
the object center) are plotted on a 2-D domain. Together, plots B and C represent a 4-D domain for describing contour

fragments.



What shape features drive V4 response!

Adapted from C.E. Connor

Q Two convex projections

— Stimulus ornientation —
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Make a basis for shapes:
each shape = set of curved elements
each element = (ang position, curvature)

Hypothesis:
V4 neurons are tuned in this basis

Pasupathy and Connor (V4)
Brincat and Connor (PIT)



What shape features drive V4 response!

Adapted from C.E. Connor Make a basis for shapes:
each shape = set of curved elements

each element = (ang position, curvature)

a Two convex projections Three convex projections Four convex projections H _th L
— Stimulus orientation — — Stimulus orientation — — Stimulus orientation — YDO €sls. . . .
, 12345878 52‘_?‘45678 ,<1>2345678 | V4 neurons are tuned in this basis
i \J \/ 30
% 5 o ‘( o (= P4 o : »
5 g§290 T 20 g
2 > 5 < -
b 5 Q 5O 10 @ .
% ' O 5O ; Experimental result;
2 5 2 -0 ' : : :
§” .(_E (‘E -~ (0)
51 O. 229 5SS & Hypothesis explains ~50% of the explainable
<5 a g 20 response variance for these types of stimuli
= <
Ik
25
<g
?3 8- g g Q b Shape tuning function
=L o 1.0 o
A SRS 0 |
s Q0 5 05 10.3
e o g g 0.2
g S 00 0.1
% o 8 00. 3 0
2 270
< Q Angular posmon
C Observed ¢y O d 150
A 40 ©
Predicted QLOCQ o 00 |® ¢ Pasupathy and Connor (V4)
WU @90 “O00 i, & Brincat and Connor (PIT)

QLG @0 OO0



What shape features drive V4 response!

Adapted from C.E. Connor

a Twoconvex projections

— Stimulus ornientation —
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Make a basis for shapes:
each shape = set of curved elements
each element = (ang position, curvature)

Hypothesis:
V4 neurons are tuned in this basis

Experimental result:
Hypothesis explains ~50% of the explainable
response variance for these types of stimuli

Problem:
No predictions for any other images.
i.e.
is not an “image-computable” model

Pasupathy and Connor (V4)
Brincat and Connor (PIT)



“IT” (Inferior temporal cortex)

N~10M Latency

representation)
You are here. q ~100ms
7a STPp ~90 ms
LIP| |msT| |FST ~80 ms
~36 M
oF vot ~15M (V4 representation)
}vup PO | |MT ~/70ms
PIP | V3A |
~29 M (V2 representation)
~60 ms
~150 M
~37 M (V1 representation)
~50 ms
~190 M
~1M (LGN representation) ~40 ms
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Adapted from DiCarlo et al. 2012



I'T statistics (rhesus monkey)

~ 7.7 cm2

~ 8% of neocortex (~ 5% of visual cortex)

~ 90 million neurons
Subregions: (PIT, CIT AIT) (TEO,TE)

Prefrontal Cx
Frontal Eye Field Cx
Parietal Cx (73)

V4 f: il
4 '\
[\

Parahippocampal Cx
Amygdala

A J
Thalamus
Hypothalamus
Brain stem

Striatum
Thalamus



Stimulus selectivity in inferotemporal cortex
Gross, Rocha-Miranda & Bender 1972

ON Ml =vayy

Increasing ability to drive this IT neuron —->

The use of [these] stimuli was begun one day when, having failed to drive a unit with any light stimulus,
we waved a hand at the stimulus screen and elicited a very vigorous response from the previously

unresponsive neuron...

We then spent the next | 2 hr testing various paper cutouts in an attempt to find the trigger feature
for this unit. When the entire set of stimuli used were ranked according to the strength of the response
that they produced, we could not find a simple physical dimension that correlated with this rank order.
However, the rank order of adequate stimuli did correlate with similarity (for us) to the shadow of @

monkey hand" (Gross et al., 197/2).



Stimulus selectivity in inferotemporal cortex
Gross, Rocha-Miranda & Bender 1972

ON Ml =vayy

Increasing ability to drive this IT neuron —->

The use of [these] stimuli was begun one day when, having failed to drive a unit with any light stimulus,
we waved a hand at the stimulus screen and elicited a very vigorous response from the previously

unresponsive neuron...

We then spent the next | 2 hr testing various paper cutouts in an attempt to find the trigger feature
for this unit. When the entire set of stimuli used were ranked according to the strength of the response
that they produced, we could not find a simple physical dimension that correlated with this rank order.
However, the rank order of adequate stimuli did correlate with similarity (for us) to the shadow of @

monkey hand" (Gross et al,, 1972). Joyce Carol Oates!

Charlie Gross




What stimulus feature are IT neurons actually “tuned” to?

B WO W R N N

VIRV VA

10 Spikes/
ML&HMMM e aterlldd b Seo l_

10 Sec

Desimone et al. (1984)
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Degrees of visual angle Azimuth and elevation
(x = 2.25°

Logothetis et al. (1995)

IT neurons can be tuned to
specific combinations of
features (high “selectivity’”)

That selectivity I1s tolerant
to changes In position and
size



What stimulus feature are IT neurons actually “tuned” to?
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IT has spatial organization at 500 um - | mm scale

0
4

Tanaka et al.

AL
ANy

1 mm Tsunoda et al.



Larger scale (2-6 mm) organization for some image contrasts

Face Patches in IT
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16 32 48 64 80 96
Faces Bodies Fruits Gadgets Hands Scram

Tsao, Freiwald, and Livingstone used fMRI to Most of the single neurons in these regions
reveal a set of face selective regions in showed a preference for frontal faces
macaque |T (aka “face patches™)

Tsao et al., Science 2006



Multi-array Electrophysiology Experiment

Multi-array electrophysiology in macaque V4 and IT.

Sl

10mm

About 300 total sites

Ha Hong

)

Jim DiCarlo



Multi-array Electrophysiology Experiment

Low variation

5760 images S .. 640 images

64 objects Medium variation

q / ' -+« 2560 images

High variation

uncorrelated photo backgrounds ‘ /y ‘ ... 2560 images

Animals Boats Cars Chairs Fruits Planes Tables

8 categories

o,
‘*’*ﬂ




Multi-array Electrophysiology Experiment




Multi-array Electrophysiology Experiment

complex, uncorrelated backgrounds prevent low-level
Cheating part of what we mean by “complex task’”



Multi-array Electrophysiology Experiment

Ellie. C.Shay & K Kar (Winter
2019)

complex, uncorrelated backgrounds prevent low-level
Cheating part of what we mean by “complex task”



Multi-array Electrophysiology Experiment

About 300 total sites

Output = Binned spike counts /0ms-1/70ms post stimulus presentation
averaged over 25-50 reps of each image.

Neuron1 (Il I | [}

Img1  Img 2 Img 5760
Neuron2 || | | |
Neuron3 | || | ||l

fa

"

Neuron296 | || | |



Multi-array Electrophysiology Experiment

Responses to | 600 test images of two example units

[T unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted first by category, then variation level.



Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms
site

site
296

Wb o
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Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

100ms 100ms 100ms 100ms 100ms

linear combination of units

site
296

-50 0 50 100 150 200 250 -50 0 50 100 150 200 250 -50 0 50 100 150 200 250




Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

Animal or not?

100ms 100ms 100ms 100ms 100ms

linear combination of units

site
296

-50 0 50 100 150 200 250 -50 0 50 100 150 200 250 -50 0 50 100 150 200 250




Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

Animal or not?

100ms 100ms 100ms 100ms 100ms

linear combination of units

different linear combination

Car or not!

site
296

.
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Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

Animal or not?

100ms 100ms 100ms 100ms 100ms /

linear combination of units

different linear combination

T~

Car or not!

W/\\M . Chair or not?
/\w

| ] ] ] ] ] | ] ] ] ] ] | ] ] ] ] ] Face Or no-t?

-50 0 50 100 150 200 250 -50 0 50 100 150 200 250 -50 0 50 100 150 200 250

site
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Neural-Behavior Decoding

img 1 blank img 2 blank img 5760

Animal or not?

100ms 100ms 100ms 100ms 100ms /

linear combination of units

< linear coefficients discovered
| A on training data, evaluated on
~ < separate test data
different linear combination

T~

Car or not!

W/\\M . Chair or not?
W

| ] ] ] ] ] | ] ] ] ] ] | ] ] ] ] ] Face Or no-t?
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Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:

Basic
M categorization

AN

100

Performance
(% correct)
s & 3 3 8 8

W
o
T

N
o
T

Low Variation Medium Variation High Variation

Yamins* and Hong* et. al. PNAS (2014)



Range of Human Behavior
Variation Level
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Low
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Face 7
Face 8

. at
chance




Decoding Behaviorally Output from Neural Populations

V4 loses out at higher variation:

... but humans are much less affected.
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Yamins* and Hong* et. al. PNAS (2014)



T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected.

... as Is the I'T neural population.
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T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected.

... as Is the I'T neural population.
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Yamins* and Hong* et. al. PNAS (2014)
At high variation levels, IT much better than V4 and existing models.




T Neurons Track Human Performance

Human Performance

|T matches human error patterns as well as raw performance.
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Rhesus monkey
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| Elephant |
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(sp. identification) are indistinguishable
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Does not depend on reporting effector (touch vs. eye movement)
A '

Table
Calculator
Rear NS | B .
Upshot: human and non-human primate basic level core object percept,
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014)
R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (2015)

Dy L
Adapted from Motter and Mountcastle 1981



Feature Space as Encoding

Pixel space:; R~ 1000000 Feature space: R10000)

g6

Dim 1

CHAIRS

Dim 3

pixel RGC LGN



Feature Space as Encoding

Behavior = Feature space + Simple decision rule
= encoding + decoding

Pixel space: R1000000 Feature space: R#000() Behavioral
Output

Nim 1 Linear Classifier Category JUdgement

T g
Linear Regressor S
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-5 » Nim 2
q S 0L

! ' ' . T
5 Distance Function “Subjective” Similarity

Dim 3 judgement




Encoding & Decoding

Behavior = Feature space + Simple decision rule
= encoding + decoding

V- .
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“ Simple Decision Rule

Feature representation




Encoding & Decoding

Stimulus

representation
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Encoding & Decoding

_ representation read-out _
Stimulus > Neurons > Behavior
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Encoding & Decoding

_ representation read-out _
Stimulus > Neurons > Behavior
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Encoding & Decoding

_ representation read-out _
Stimulus > Neurons > Behavior
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éz) very nonlinear*

< > RN

*which is presumably why
SO much brainmeat needs to
devoted to it.




Ventral Stream

GOAL: Predictive model of single-neuron
responses throughout the ventral stream to

Key questions:
(a) how many layers?
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Ventral Stream

GOAL: Predictive model of single-neuron
responses throughout the ventral stream to

Key questions:
(a) how many layers?

(b) what's in each layer, specifically?

(c) what behavioral goals and biophysical facts constrain it to be as it is!



How are we supposed to use all this hard-won

(Retina-IT) neuroscience knowledge to make
an actual model?




