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Problem: Entity Extraction

“Core object perception”
regime
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Problem: Entity Extraction

GOAL: Predictive model of single-neuron
responses throughout the ventral stream to
S —— arbitrary . image stimuli.----;
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What We Learned fromV |

» Linear-Nonlinear neurally-plausible basic operations within layer

Linear | Nonlinear
Filter Threshold & |
X P Saturate P00 Normalize

o /] > - ()
X P,

Laygqr components are basic neural-like operations.

syngptlc single-unit "
neuro: welights > complex cells competitive
activations RN
patterns inhibrtion
untangling “AND" operation adding robustness .
through " . . . put results back into
data: . . by limrting dynamic by dimension
dimension e eduction standard range
expansion &

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)



What We Learned fromV |

_ representation read-out _
Stimulus > Neurons > Behavior
V1 V2|
‘() f) V4 2 PIT CIT AIT
dd .1---'-,. - . - - B - - - - [sseooc[lNlecoceo IR
' Madame
Curie!
»_ Filter Threshold & S
X @, Saturate Pool Normalize
0 | wp [ d®

@, Layer components are basic neural-like operations.

Linear-Nonlinear neurally-plausible basic operations within layer



. What We Learned fromV |
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"Hubel and Wiesel's Inturtion”
~1970s and formalized later
via Gabor wavelets

S (orientation angle in degrees)

adapted from Adrienne Fairhall



. What We Learned fromV |
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What We [earned from V2 and V4!

V2.

Original V1-like filters matched: Correlations matched:
photographs  spectrally matched noise naturalistic texture

So, maybe a
hierarchically-built sparse
auto-encoding in a 2-layer
model with max pooling??
... but doesn’t really work
well in practice.

V4.

V4 Responses to Non-Cartesian Gratings

a Two convex projections Three convex projections Four convex projections
Gallant et al. 1996 +— Stimulus orientation — — Stimulus orientation — +— Stimulus orientation —
2123456787(1)2345678'62345678 Problem.
5! 9 - : o ° *
g’g ] 4] ‘IZ() o 20 2 . .
2 i3 -+ No predictions for any other
5%3 0s° 2239 %8 g ° :
gg S % 20 Im ag €s.
h? Eo ’. e.
Cell 2H5EQ as
g.g N M “.
: R L Is not an “Iimage-
20 O o :
A} o o4 »»
i205808 7 1o 3 computable” model
%’ 8 S 001 - 0.1
é’o _ 003060 180 270 360
< & Angular position (%)
3 / W C Observed (3 d 50
Cell 2H210 Precced €) Q 33 |§3 :
Q0 990 68 23
-10
Q0L Q0 OO



. What We Learned from |7

1T

%% 00 -3

2, > [ q*' @
.,_.%




Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations: approx. retinopy

4

Operations in Linear-Nonlinear Layer

X P
X o,
Filter

Threshold Pool Normalize




Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations: approx. retinopy

4

image-like output

Image-input

Operations in Linear-Nonlinear Layer

X P
X o,
Filter

Threshold Pool Normalize




Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations: approx. retinopy

@/ /\

one slice of output
for each filter pattern

Operations in Linear-Nonlinear I
X P

<4

X o,
Filter

Threshold Pool Normalize




Hierarchical Convolutional Neural Networks

Lower areas, (RGC, LGN,V 1) have been reasonably captured by single-
Iayer models: ~40% of variance explained. Carandini et. al (2005), Lennie & Movshon (2005)




Hierarchical Convolutional Neural Networks

Lower areas, (RGC, LGN,V 1) have been reasonably captured by single-
Iayer models: ~50% of variance explained. Carandini et. al (2005), Lennie & Movshon (2005)
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Hierarchical Convolutional Neural Networks

Lower areas, (RGC, LGN,V 1) have been reasonably captured by single-
Iayer models: ~50% of variance explained. Carandini et. al (2005), Lennie & Movshon (2005)

Push up the ventral stream?

Hierarchical CNNs



Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations

p Stacked hierarchically to produce more complex operations

layer 1
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Hierarchical Convolutional Neural Networks

» Individual layers of neurally-plausible basic operations

» Applied convolutionally — same at all locations

p Stacked hierarchically to produce more complex operations

-

layer 2



Hierarchical Convolutional Neural Networks

Tensor dimensionalrty:

(50,80, C0) = (81,51, 1)

(kx, ky, Co, Cl) filter i1s 4-tensor
sO = input dimension size; s| = output dimension

cO = number of input channels; ¢l = number of output channels

kx, ky = kernel size



Hierarchical Convolutional Neural Networks

— Convolutional Neural Networks (CNNS) fuushima, 1980; Lecun, 1995

CNNs condense rough neuroanatomy of the ventral stream b:
|) being hierarchical

2) being retinotopic (spatially tiled)



Hierarchical Convolutional Neural Networks

Fukushima, 1978

. visual areq -l Qssociation area —
e oal - _lower-order __ higher-order _ ., __grandmother
\wtm LGB) simple — complex hyper x| o cell 2

"
.

—d modifiable synapses
—> unmodifiable synapses

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron




Hierarchical Convolutional Neural Networks

Kunihiko Fukushimal

Tokyo, November 2015



Hierarchical Convolutional Neural Networks

Tokyo, November 2015

Kunihiko Fukushimal

Developed first convnet
in the late 1970s
while Japan Broadcasting
Corporation (NHK)
... office directly next
door to Kelji Tanaka's
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Various attempts at models .. ..

Examples:

input
layer

Hubel & Wiesel (1962)

1. Selectivity

Fukushima (1980)

Perrett & Oram (1993)
Olshausen & Field (1996)
Wallis & Rolls (1997)
LeCun et al. (1998)
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“Inturtive idea’” of hierarchical processing

Aggregation over identity-preserving transformations, e.g. translation.
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Beyond categorization

Aggregation over identity-preserving transformations, e.g. translation.

categorization

Receptive Field Size 1T

Category Invariance T

© @




Beyond categorization

Aggregation over identity-preserving transformations, e.g. translation.

categorization

IT

Receptive Field Size 1T
Category Invariance T

(e.g.) Position Sensitivity {

© @

position / size estimation



Hierarchical Convolutional Neural Networks

Huge number of parameters consistent with HCNN concept.
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Hierarchical Convolutional Neural Networks

Huge number of parameters consistent with HCNN concept.
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. architectural params: (# layers, # filters, receptive field sizes, &c) — “network structure”



Hierarchical Convolutional Neural Networks

Huge number of parameters consistent with HCNN concept.
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Filter
. architectural params: (# layers, # filters, receptive field sizes, &c) — “network structure”

iI. filter parameters: continuous valued pattern templates — “network contents”



Hierarchical Convolutional Neural Networks

Huge number of parameters consistent with HCNN concept.

. W %W%%
) —1N—> I layer N?
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| ;/F: / A ;
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4k ;g /? /- z - % _»@ Filte Threshold Pool Normalize
o — m — % — @ I—E);‘Itqekr Threshold  Pool ~ Normalize
Operations in Linear-Nonlinear Eayer'|™" ™ ™™
®;
O | [ —»@
X o, .
. Threshold Pool Normalize
Filter
. architectural params: (# layers, # filters, receptive field sizes, &c) — “network structure”
iI. filter parameters: continuous valued pattern templates — “network contents”

: How to discover the “right® parameters to understand real cortex?



Recall from V|
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S (orientation angle in degrees)

adapted from Adrienne Fairhall



Recall from V|
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Gaussian tuning curve of VI simple cell

"Hubel and Wiesel's Inturtion”
~197/0s and formalized later
via Gabor wavelets

— can just “see” what the right
axes for measuring good tuning
curves are, If we're smart enough

S (orientation angle in degrees)

adapted from Adrienne Fairhall



Recall from V|
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REALLY HAARD TO GENERALIZE
TO MULTI- LAYER NETWORKS
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Neural Frtting Strategy?

Huge number of parameters consistent with HCNN concept.
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Obvious alternative strategy: fit
barameters to neural data.




Neural Frtting Strategy?

Huge number of parameters consistent with HCNN concept.
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..not enough neural data to

constrain model class. caliant 2007 Rust &
Movshon (2006)




Neural Frtting Strategy?

Huge number of parameters consistent with HCNN concept.
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..not enough neural data to

constrain model class. caliant 2007 Rust &
Movshon (2006)

Overfitting.




Vlas Sparse Autoencoder

hidden layer

L\

\

parameters

output layer

O(H()

L(z) = |z — O(H(z))[* + A - |H(2)]

Sparse Coding Foldiak, Olshausen,

mid [990s



Vlas Sparse Autoencoder

L(z) = |z — O(H(x))

L\

hidden layer
H(x)

output layer

O(H(X))
5N i i
ESNNIl %2z

parameters

Sparse Coding Foldiak, Olshausen,

mid [990s

—neurons have to represent their
environment, as efficiently as possible
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Vlas Sparse Autoencoder

hidden layer
H(x) output layer
/
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Also turns out not to generalize to multi-
layer networks very well ...
at least not directly.

Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible
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Vlas Sparse Autoencoder

hidden layer
H(x) output layer
/[

L\

Imi
8

$
:

!
:

a
|

|

7
-

- BT oA
28

-

i
:
s

~
.
-

10 m
Fi 71 v

"

=
-==EE
SNSSS
NENINENNE

-

il >
Also turns out not to generalize to multi-
layer networks very well ...
at least not directly.

k— but we will return to this point when we study self-supervised learning

Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible
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Optimize for Performance, Test Against Neurons

Visual Recognition Task

Spatial Convolution
over Image Input




Optimize for Performance, Test Against Neurons

Visual Recognition Task

Spatial Convolution
over Image Input

: . : : iy Jlayer4
| |
| Step 2: Compare to Neural Data

,
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e A YR ——  Visual —>
: ",. Presentation / \
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Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.



Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation® visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.

*challenging for neural network engineers, not the
animal




Optimize for Performance, Test Against Neurons

|. Performance: accuracy on a challenging, high-variation® visual
object categorization task.

2. Neural predictivity: the ability of model to predict each
individual neural site’s activity.

Our hypothesis: Performance (1) — neural predictivity (2).

*challenging for neural network engineers, not the
animal




Multi-array Electrophysiology Experiment

Multi-array electrophysiology in macaque V4 and IT.

(somewhere between single and multi-unit recording)
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Multi-array Electrophysiology Experiment

Low variation

5760 images S .. 640 images

64 objects Medium variation

q / ' -+« 2560 images

High variation

uncorrelated photo backgrounds ‘ /y ‘ ... 2560 images

Animals Boats Cars Chairs Fruits Planes Tables

8 categories

o,
‘*’*ﬂ




Multi-array Electrophysiology Experiment

Responses to | 600 test images of two example units

[T unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted first by category, then variation level.



T Neurons Track Human Performance

V4 loses out at higher variation:

... but humans are much less affected.

... as Is the I'T neural population.
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Yamins* and Hong* et. al. PNAS (2014)
At high variation levels, IT much better than V4 and existing models.




Neural predictivity: the ability of model to predict each individual
neural site’s activity.
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Neural Recordings from IT and V4



Neural Response Prediction

Some kind of mapping Is necessary.

Source Brain Target Brain
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Neural Response Prediction

Here, we use linear regression.

Source Brain

—
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V1 V4 /:
V2
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Neuron 1
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Neural predictivity: the ability of model to predict each individual
neural site’s activity.

Neural site unit ~ sparse

Inear combination of model
units

i
7 /////VJ

Linear regression with fixed
training images.

Accuracy = goodness-of-Tit sl
on held-out testing images
(Cross validated)

Neural predictivity = median
accuracy over all units.

Neural Recordings from IT and V4



Initial Validation of |dea

High-throughput experiments to directly test the relationship
between performance and T neural predictivity.

» Random selection of model parameters; measure performance and
neural P red| CJ[iViJEy Pinto et. al (2008, 2009)



Inrtial Validation of |dea
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Initial Validation of |dea

High-throughput experiments to directly test the relationship
between neural predictivity and performance.

» Random selection of model parameters; measure performance and
neural P red| CJ[iViJEy Pinto et. al (2008, 2009)

p Optimize parameters for performance; measure neural predictivity. opimiaton

techniques: BergstraYamins & Cox (2013)



Inrtial Validation of |dea
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Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of |dea

High-throughput experiments to directly test the relationship
between neural predictivity and performance.

» Random selection of model parameters; measure performance and
neural P red| CJ[iViJEy Pinto et. al (2008, 2009)

» Optimize parameters for performance; measure neural predictivity optmiaton

techniques: BergstraYamins & Cox (2013)

» Optimize parameters for neural predictivity; measure performance



Performance vs |1 predictivity: Predictivity-Optimized
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Performance vs IT predictivity: Predictivity-Optimized

Performance Is a potentially very good driver of neural prediction.
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Yamins* and Hong* et. al. PNAS (2014)



Performance vs | T predictivity

®®¢ Random selection

#®¢ Performance Optimized
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Performance vs | T predictivity
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Optimization Strategy

.. architectural params: (# layers, # filters, receptive field sizes, &c) — “network
structure”

— Automated meta-parameter optimization in high-dimensional discrete parameter spaces
Bergstra Yamins & Cox (2013)

— Ensembles of models chosen through modified boosting vamins ec.al 2013, 2014)



Optimization Strategy

.. architectural params: (# layers, # filters, receptive field sizes, &c) — “network
structure”

— Automated meta-parameter optimization in high-dimensional discrete parameter spaces
Bergstra Yamins & Cox (2013)

— Ensembles of models chosen through modified boosting vamins ec.al 2013, 2014)

I filter parameters: continuous valued pattern templates — “network contents”

— GPU-accelerated stochastic gradient descent Ppinto et.al, (2009), Krizhevsky et.al. (2012)

d OL _ |
Gradient descent eq; —p — _)\(t) : a—P '/—1 ||OSS ffmCt'Otﬂ
) — carning ratc

In current practice:

L = loss computed from large numbers of externally-provided object category
labels.



Model Training Regimen

ImageNet (2012). Thousands of images in thousands of categories.

Treemap Visualization Images of the Synset Downloads
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Model Training Regimen

train: real photos

Treemap Visualization Images of the Synset Downloads
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Model Training Regimen

train: real photos

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural object
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Model Training Regimen

Treemap Visualization

train: real photos

Images of the Synset

A  ImageNet 2011 Fall Release ' Natural object
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Model Training Regimen

Treemap Visualization

train: real photos

Images of the Synset

A  ImageNet 2011 Fall Release ' Natural object

Downloads
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— Specific 4-layer model that achieved high recognition performance.




Performance Generalization

0.75¢1
i,I O
i) . O
- C
g S
=

Basi folel

: categ?riszla(iion ; “8 O 55
S b
+

0.35}

training time —

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release ' Natural objec

Pla

i o g e g
E2E - f=wED
FIR el =l i T

el o [t o] el
TP
R AR R ln
EF i em] lEEs

nﬂlInII
I-mﬂ "+

DiUimEmERE
,

Enﬂn--nﬂln-
BEIBHHE-IEUEHJ
dEfEA~EmE iems
Benca D el B N e

Encmes B ram [ =5 Y Rl e
WS e [ e
Rl KGR R =il
EmmERCEN Eme T mE




Performance Comparison

At high variation levels, |T much better than V4 and existing models
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Yamins* and Hong* et. al. PNAS (2014)



Performance Comparison

At high variation levels, IT much better than V4 and existing models
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Yamins* and Hong* et. al. PNAS (2014)

New model comparable to IT / human performance levels.



Performance Comparison
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Performance Comparison

Behavioral match between models and data at category confusion level is

pretty good ...
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Does It predict neurons better?



Does It predict neurons better?

Yamins* and Hong* et. al. PNAS (2014)

unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted first by category, then variation level.

Neural data



Does It predict neurons better?

Yamins* and Hong* et. al. PNAS (2014)

unit 53

Response
Magnitude

Animals Boats Cars Chairs Faces Fruits Planes Tables

Images sorted first by category, then variation level.

Neural data

Model prediction



Predicting IT Neural Responses

IT Site 150 IT Site 56 IT Site 42

Response
Magnitude

Images sorted first by category, then variation level.

Neural data

Model prediction



Key Underlying Principle

Yamins™ and Hong* et. al. PNAS (2014)
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Predicting I Neural Responses

What about intermediate layers?

.. compare intermediate model layers to |1 neural data

. compare all model layers to intermediate visual areas (V4)



Captures low variation image response patterns ...
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Animals Boats Cars Chairs Faces Fruits Planes Tables

VSV WA

Neural data

Model prediction



Captures low variation image response patterns ...

e W'

Animals Boats Cars Chairs Faces Fruits Planes Tables

VSV WA

Neural data

Model prediction



e \'d

Animals Boats Cars Chairs Faces Fruits Planes Tables

SV (PN

Neural data ... but fails to capture higher
variation response patterns.

Model prediction
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Layer

Layer

Layer

Animals

Boats

Cars

Neural data

Chairs

Faces Fruits

Model prediction

Planes

Tables



Building tolerance while maintaining selectivity

Animals Boats Cars Chairs Faces Fruits Planes Tables



Yamins* and Hong* et. al. PNAS (2014)
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Yamins* and Hong* et. al. PNAS (2014)
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Predicting IT Neural Responses

, Yamins™ and Hong* et. al. PNAS (2014)
Performance constraints
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Predicting IT Neural Responses

, Yamins* and Hong* et. al. PNAS (2014)
Performance constraints
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Predicting IT Neural Responses

Performance constraints + architectural constraints = better neural prediction
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Predicting IT Neural Responses

What about intermediate layers?

. compare all model layers to intermediate visual areas (V4)



Predicting V4 Neural Responses

V4 unit 60

Animals  Boats Cars Chairs Faces Fruits Planes  Tables



Predicting V4 Neural Responses

V4 unit 60

Top
Layer

Layer

Animals  Boats Cars Chairs

Neural data

Faces Fruits

Model prediction

Planes

Tables



Predicting V4 Neural Responses

Top
Layer

Layer
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Layer-area correspondence

Investigating fits as a function of model layer:

IT Predicitivity

V4 Predicitivity

O
O
T

Explained Variance

1 2 3 Top 1 2 3 Top
MOdel Layers Yamins* and Hong* et. al. PNAS (2014)

[T fit increases at each layer. In contrast,V4 fit peaks and then
goes down.



Layer-area correspondence

Nothing special about 4 layers — deeper models can be better:
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Nature Neuroscience
(2016)



Layer-area correspondence

Top hidden layer (not
explicit categorization layer)

/

Top Layer

Hong* and Yamins*et. al.
Nature Neuroscience
(2016)



Layer-area correspondence

Top hidden layer (not
explicit categorization layer)
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Hong* and Yamins*et. al.
Nature Neuroscience

(2016)
Khaligh-Razavi &

Kriegestkorte (2014)



Layer-area correspondence

Top hidden layer (not
explicit categorization layer)

/

o
w
1

Macaque ephys human fMRI

(=]
&
a

Top Layer
[Kendall 7,)

RDM correlation with LOC ©

0.1+

Hong* and Yamins*et. al.
Nature Neuroscience

(2016)
Khaligh-Razavi &

Kriegestkorte (2014)

Best recent models: ~13 layers deep, with T best predicted around
~80% of the way through (e.g. 10 layers)



Layer-area correspondence

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:




Layer-area correspondence

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:




Layer-area correspondence

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:

Cactually, this is “better’ than Gabor model b/c it naturally has “color opponency”




Layer-area correspondence

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:

A 05

% 04

3. Model early layers are best explanation
S3 of fMRI data inVI. (with Darren

g2 oz Seibert and Justin Gardner)

2 .

555‘

oonvolutlonal ful!y
connected

Kaligh-Razavi and Kriegeskorte (2014) Similar result:  Guclu & Van Gerven (2015)



Layer-area correspondence

Deep convolutional models improve predictions of macaque
V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,
Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764
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Layer-area correspondence

Deep convolutional models improve predictions of macaque

V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,

Matthias Bethge, Alexander S Ecker
doi: https://doi.org/ 10.1101/201764
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Layer-area correspondence

Deep convolutional models improve predictions of macaque
V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,
Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764
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Layer-area correspondence

Deep convolutional models improve predictions of macaque

V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,

Matthias Bethge, Alexander S Ecker
doi: https://doi.org/ 10.1101/201764
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Layer-area correspondence

Deep convolutional models improve predictions of macaque

V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,

Matthias Bethge, Alexander S Ecker
doi: https://doi.org/ 10.1101/201764

40x40x64

40x40x3

'llx10x256
5x5x512

VGG19

3x3x512
B

m max pooling

m convolution + Rell

@ selected layer

feature maps

Linear readouts Nonlinearity + noise V1 responses

/—.

ﬁﬁ—.

g —

Mean FEV

50% explained variance vs

» | /% for Linear-Nonlinear-
Poisson (with gabor filters)

» 39% for Berkeley Wavelet
Transform

N = Fixed input size
== Rescaled input

I 1 1 1 1 T L] I 1 T T Ll L L} L 1

\ﬂxmxm%, (I
&/ s;\ RO gl pf >

R > 2 Q‘) \Q
& &

& & & ‘\\0
& & @& Looooo.k_o

Tttt

Peak VI PeakV4 Peak [T

(unpublished)  (unpublished)



Layer-area correspondence

Deep convolutional models improve predictions of macaque

V1 responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,

Matthias Bethge, Alexander S Ecker
doi: https://doi.org/ 10.1101/201764
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Layer-area correspondence

Deep Learning Models of the Retinal Response to
Natural Scenes

Lane T. McIntosh™*, Niru Maheswaranathan™', Aran Nayebi’,
Surya Ganguli*, Stephen A. Baccus®
! Neurosciences PhD Program, “Department of Applied Physics, “Neurobiology Department
Stanford University
{lmcintosh, nirum, anayebi, sganguli, baccusl}@stanford.edu



Layer-area correspondence

Deep Learning Models of the Retinal Response to
Natural Scenes

Lane T. McIntosh™*, Niru Maheswaranathan™', Aran Nayebi’,
Surya Ganguli“*, Stephen A. Baccus®
! Neurosciences PhD Program, “Department of Applied Physics, “Neurobiology Department
Stanford University
{lmcintosh, nirum, anayebi, sganguli, baccusl}@stanford.edu

Three-layer CNN best fits retinal ganglion cell response patterns to natural images.
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Layer-area correspondence

Better models of the ventral visual stream:

» V4 at 6th convolutional layer
» plT at /th convolutional layer
» clT/alT at layers 8-10, depending on neurons position on A/P axis
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Post-AlexNet Developments

(1) Residual Connections and ResNets

(2) Vision Transformers



Post-AlexNet Developments

(1) Residual Connections and ResNets
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Residual connection stabilizes gradient backflow.




Post-AlexNet Developments

(1) Residual Connections and ResNets
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Residual connection
stabilizes gradient Lots of skip connections present in
backflow. actual brain.



Post-AlexNet Developments

(2) Vision Transformers

Transformer Encoder

A
O
MLP

A

Norm ‘
Multi-Head
Attention

i)

Norm

e——

Embedded
Patches




Post-AlexNet

Developments

(2) Vision Transformers

Transformer Encoder
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Post-AlexNet Developments

(2) Vision Transformers

Transformer Encoder Vision Transformer (ViT)

1(3:3': Head
MLP
: \/

Norm Transformer Encoder
Yy e - 69 0) €00 6)8) 8) 0)8) )
{_f_} Tclzl);lsrzllcemﬁilsing Lmear PrOJectlon of Flattened Patches

Norm - . | ) l,,, |
Embedded s s P

Patches ‘

NB: still hierarchical, still with residual connections, potential
locality from patches ...



Post-AlexNet Developments

(2) Vision Transformers

Looking at receptive field analysis of Vils vs ResNet:



Post-AlexNet

Developments

(2) Vision Transformers

Looking at receptive field analysis of Vils vs ResNet:

ViT

ResNet

Layer O Layer 2 Layer 4 Layer 6 Layer 8 Layer 10
L ® ] ] ] B
Layer 1.0 Layer 2.0 Layer 2.2 Layer 3.1 Layer 3.4 Layer 4.1
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Post-AlexNet Developments

(2) Vision Transformers

Looking at receptive field analysis of Vils vs ResNet:

Layer O Layer 2 Layer 4 Layer 6 Layer 8 Layer 10
: L ] = = =
Vil
Layer 1.0 Layer 2.0 Layer 2.2 Layer 3.1 Layer 3.4 Layer 4.1
ResNet " . . . *

... we see learned VIl Is mostly local, with increasing receptive field
sizes.




Post-AlexNet Developments

(2) Vision Transformers

a) Convolutional Neural Networks L= local kernel

II"- ooo_._> [ |

Y= Linear/Nonlinear (“fast”)
~" "= Residual (’fast’)
---------- = attention (“slow”)

Vil is a bit like a CNIN with sparse global connections.




Principles of Visual Architecture

(1) Hierarchical (2) Mostly local  (3) Rectification-like nonlinearrity

(4) Some residual connections (o) Normalization

- Filter Threshold &

X @, Saturate Pool Normalize

D | wp [ /] A ®
X b,

Layer components are basic neural-like operations.




Behavioral “Top-Down’ constraints

Complement standard “from below" approach ...
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Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ... with behavioral constraints
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Behavioral “Top-Down’ constraints

Complement standard "“from below’ approach ... with behavioral constraints




“Further Confirmation”

RESEARCH ARTICLE

NEUROSCIENCE

Neural population control via deep
image synthesis
Pouya Bashivan®, Kohitij Kar*, James J. DiCarlot

Particular deep artificial neural networks (ANNs) are today’s most accurate models of the
primate brain’s ventral visual stream. Using an ANN-driven image synthesis method, we
found that luminous power patterns (i.e., images) can be applied to primate retinae to
predictably push the spiking activity of targeted V4 neural sites beyond naturally occurring
levels. This method, although not yet perfect, achieves unprecedented independent control
of the activity state of entire populations of V4 neural sites, even those with overlapping
receptive fields. These results show how the knowledge embedded in today’s ANN models
might be used to noninvasively set desired internal brain states at neuron-level resolution, and
suggest that more accurate ANN models would produce even more accurate control.
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LIP

MST

FST

DP

You are here. I

PIP

STP

~16 M
I |

STP, CIT

PIT

~17 M

~36 M

VvOoT

V3

1 P 1 F ~10M
(IT representation)
AIT

~15M (V4 representation)

~29 M (V2 representation)

~150 M

~37 M (V1 representation)

~190 M

~1M (LGN representation)
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Latency

~100 ms

~90 ms

~80 ms

~/70ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012



Recall

Adapted from C.E. Connor

a Two convex projections

— Stimulus ornientation —
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Curvature
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00. 3 0

Spikes/s

04
10.3
02
0.1

Spikes/s

Make a basis for shapes:
each shape = set of curved elements
each element = (ang position, curvature)

Hypothesis:
V4 neurons are tuned in this basis

Experimental result:
Hypothesis explains ~50% of the explainable
response variance for these types of stimuli

Problem:
No predictions for any other images.
i.e.
is not an “image-computable” model

Pasupathy and Connor (V4)
Brincat and Connor (PIT)



“Further Confirmation”

A Maximal Neural Drive (Stretch)

Neuron 1 (target) Responses

Natural Image

Neuron 1

One-Hot-Population Control

Neuron 1 (target) Responses

A A

Neuron 2

Natural Image

Neuron 2

B image ON

Normalized Firing
Rate (a.u.)

o
L

18+
@
o
§
£ 18
©
i =
F ' .o ' '~v..
L e e
0 100 200 300
L8 Time from image onset (ms)
o
* D
* — Monkey M
\ : { —— Monkey N
e —> Cat i —— Monkey S
o
o
o

|eeeoeeceecce o5
s

Bashivan et al (2019)

Central 82 Visual Field



“Further Confirmation”

N=59

Bashivan et al (2019)

A 5 - \ // /
—_ \\ / // T — 1
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> \ / [ Stretch Control Gain
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“Further Confirmation”

Fig. 4. Example of 4- 4-
independent control Bashivan et al (2019)
of each neural site

on a subset of V4 neural
sites with highly
overlapping cRFs.
Controller images were
synthesized to try to
achieve a one-hot
population over

a population of eight

neural sites (in each
control test, the target
neural site is shown in

dark red and designated

by an arrow). Despite
highly overlapping receptive
fields (center), most of

the neural sites could be
individually controlled to

a reasonable degree.
Controller images are Target Ste §
shown along with the 9
extended cRF (2 SD) of I
each site (red dashed _ '

ovals). Error bars "

denote 95% confidence 1 8

interval. Neural Site
Number

=
]

o
1

Measured Neural
Firing Rate (a.u.)

1
=
L




“IT” (Inferior temporal cortex)

N~10M Latency

representation)
You are here. q ~100ms
7a STPp ~90 ms
LIP| |msT| |FST ~80 ms
~36 M
oF vot ~15M (V4 representation)
}vup PO | |MT ~/70ms
PIP | V3A |
~29 M (V2 representation)
~60 ms
~150 M
~37 M (V1 representation)
~50 ms
~190 M
~1M (LGN representation) ~40 ms
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Adapted from DiCarlo et al. 2012



Cell

Evolving Images for Visual Neurons Using a Deep
Generative Network Reveals Coding Principles and

Neuronal Preferences

Graphical Abstract

v ﬁ‘ "
"/neuronal responses i H—+
IMage COUES mmmmmn  cxmrrzs

old codes
EE‘E genetic algorithm

“EE mutate, recombine

74
-~ : new codes
: eep generator
new images ~ "k S

average synthetlc |mage per generation
P M "y T IR
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generation
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Carlos R. Ponce, Will Xiao,
Peter F. Schade, Till S. Hartmann,
Gabriel Kreiman, Margaret S. Livingstone
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crponce@wustl.edu (C.R.P.),
mlivingstone@hms.harvard.edu (M.S.L.)

In Brief

Neurons guided the evolution of their own
best stimuli with a generative deep neural
network.
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Ponce et al (2020)



Figure 4. Evolution of Synthetic Images by
Maximizing Responses of Single Neuron Ri-
10, Same Unit as Figure 3
(A) Mean response to synthetic (black) and reference
(green) images for every generation (spikes per
s + SEM). Solid straight lines show an exponential fit
to the response over the experiment.
(B) Last-generation images evolved during three
independent evolution experiments; the leftmost
image corresponds to the evolution in (A); the other
two evolutions were carried out on the same single
unit on different days. Red crosses indicate fixation.
The left half of each image corresponds to the
contralateral visual field for this recording site. Each
image shown here is the average of the top 5 images
from the final generation.
(C-E) Selectivity of this neuron to 2,550 natural im-
\ ages. (C) In (C) are the top 10 images from this image
@ set for this neuron. (D) In (D) are the worst 10 images
Q from this image set for this neuron. The entire rank
ordered natural image set is shown in Figure S2. (E) In
S (E) is the selectivity of this neuron to different image
categories (mean + SEM). The entire image set
comprised 2,550 natural images plus selected syn-
thetic images. Early synthetic is defined as the best
image from each of the first 10 generations and late
from the last 10. Each image response is the average
over 10-12 repeated presentations. See Figure S3
for additional independent evolutions from this site.
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Beyond categorization

Category

[dentity



Beyond categorization

Position




Beyond categorization

: Size




Beyond categorization

Aspect Ratio
and Angle




Beyond categorization

VWe can quickly assess the scene as a whole.
Category

Bounding Box

Identity
Aspect Ratio
X and Y Axis Major Axis Length
Position
Major Axis Angle
Perimeter
. 2-D Retinal Area Pose in
i each axis

3-D Object Scale




Where and how are all these properties coded neurally? Category

Identity

Position

Size

Bounding Box

Aspect and Angle

Pose




Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation.

\_

§&60 0s



Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation. categorization

Receptive Field Size 1T

Category Invariance T




Beyond categorization

“Standard word model” predicts: not at the top of the ventral
stream.

Aggregation over identity-preserving
transformations, e.g. translation. categorization

IT

Receptive Field Size 1

Category Invariance T

&66% (e.g.) Position Sensitivity |

position / size estimation




Where and how are all these properties coded neurally? Category

Identity

dorsal stream?

Position

Size

Bounding Box

Aspect and Angle

Pose




Somewhat newish ideas about | T

State of knowledge
from previous studies . . .

Categorization
1
(\mO\Nm
V1 V2 V4 IT

Orthogonal Properties

?? ?? ?? ??

0 y(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

Population Decode Performance
(relative to human performance)
o




Somewhat newish ideas about | T

Population Decode Performance

(relative to human performance)

State of knowledge Multiple hypotheses consistent with
from previous studies . . . the existingdata...
Categorization H1

(\mO\Nm

V1 V2 V4 IT

\V/1 \/2 V4 IT

Orthogonal Properties

?? ?? ?? ??

y(known)

V1 V2 V4 IT

Depth Along Ventral Stream
(increasing receptive field size —)

HI: Tolerance /
sensitivity
tradeoftf?



Somewhat newish ideas about | T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization
1
(know™)
V1 V2 V4 IT 0

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 IT

?? ?? ?? ??
y(known) 0
V1 V2 V4 IT
Depth Along

(increasing receptive field size —)

V1 V2 V4 IT

Ventral Stream

V1 V2 V4 IT

H3: Information
preservation?



Beyond categorization

Unexpected observation:

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release = Natural object
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

0.80}

0.75}

0.70}

X-Axis Position

Training Timecourse

Increased performance on
position estimation task.

even though the goal was to become INVARIANT to position



Beyond categorization

Category optimization = improved performance on non-categorical tasks.
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Unexpected observation #2:

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release = Natural object
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Beyond categorization

Unexpected observation #2:

Treemap Visualization Images of the Synset Downloads

A  ImageNet 2011 Fall Release = Natural object
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Beyond categorization

For all tasks of visual interest we could measure in our test dataset:

0.9 Categorization 0.9 X-Axis Position

0.5F

0.1+

3-D Object Scale Z-Axis Rotation

0.7F 0.35f

0.25}

Test Performance

015

0.05

Model Layers

Performance on non-categorical tasks increases at each layer.



What do the data say?



Population Decoding

Categorization |[dentification
0.68f 0.36}
0.0 0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model —— D xe| cCONtrol



Population Decoding

Categorization |[dentification

0.68f 0.36}

0.0 0.0
X-axis Position Y-axis Position
0.63 | 0.66 |
0.32 | 0.33 1
0.0 0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model —— D xe| cCONtrol



Population Decoding

IT >V4, VI

Categorization

0.68}

0.34}

0.0

X-axis Position
0.63

0.32

0.0

X-axis Size

0.58

0.29
|
0.0 . |

0.36

0.18

0.0

0.66

0.33}

0.0

0.58

0.29

0.0

Identification

Y-axis Position

Y-axis Size

T cortex

0.55

0.28

0.0

for all tasks

Bounding Box Area

V| -like model

V4 > V|

1 0.28

for most tasks

2-D Retinal Area

0.57

0.0

0.61

0.31

0.0

Major Axis Length

0.61

0.31

0.0

Z-axis Rotation

0.40

0.20

0.0

0.56

0.28

0.0

Perimeter

Aspect Ratio

Y-axis Rotation

V4 cortex

3-D Object Scale
0.61

0.30

0.0

Major Axis Angle

0.47

0.23

0.0

X-axis Rotation

0.18

0.09

0.0

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Single Site Responses

Site 10 Site 54 Site 43

Best single position-encoding sites.
Y
| heat map value at x,y =
. response averaged over all
Site 11 Site 77 Site 102 Images where object center Is In

E position X, y
.l |




Single Site Responses

Best Site Performance
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Best single position-encoding sites.
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position X,y

gl Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

X-AXIs Size
Y-Axis Size
Bounding Size

T cortex

Object Scale
Major Axis Length
Aspect Ratio

2D Area
Perimieter

|
Major Axis Angle 3-D Rotations

V4 cortex



Population Decoding

“Standard” receptive field-mapping stimuli w/ position and orientation variation:

7
X-position

Y-position
. : NS N
Orientation
. .




Population Decoding

VI >V4,|IT for‘standard’” tasks

X-Position Y Position
|

| 06}

0.0

Orientation

0.41 |

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

T cortex

V| -like model —— D xe| cCONtrol



Human Psychophysical Measurements




Monkey Neurons vs Humans

performance ~ k * log(N)

Basic Categorization Subordinate Identification
1.2 | 7
O e R
O
C e e S e
“ Qe
6 £
S .
IR -
g &
£ c s
- Pix
j | | ] |
2 e .

109 10’ 102 103 10* 10° 10 1072 103 10*

number of neural sites

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Monkey Neurons vs Humans

Basic Categorization Subordinate ldentification X-axis Position Y-axis Position

Fraction of Human Performance

108

] L R |

" Il

102

" Il

10°

10* 10" 102

Number of Neural Sites

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Monkey Neurons vs Humans

IT V4 V1 Pix
Basic Categorization 773 + 185 22 x10° — _
Subordinate ldentification 496 + 93 4.4 x10° — —
X-axis Position 1414 + 403 52x10°  3.0x10’ -
Y-axis Position 918 £+ 309 2.5x10* 8.7 x10° -
Bounding Box Size 322 + 90 1.7 x10* — —
X-axis Size 256 + 87 9.8 x10° 3.4 x107 —
Y-axis Size 237 + 87 3.8x10° 95x10° —
3-D Object Scale 401 + 90 3.2 x 104 — _
Major Axis Length 201 + 70 1.1 x10% — _
Aspect Ratio 163 + 61 951 + 59 6.5x10°  —
Major Axis Angle 804 + 136 3.2x10° — —
Z-axis Rotation 1932 + 1061 — _ _
Y-axis Rotation 369 + 115 2.8 %x10° — _
X-axis Rotation 1570 + 530 — — _

— = more than 10 billion sites required

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Mean over tasks, human-parity for IT is at ~700 multi-unit trial-averaged sites.



Monkey Neurons vs Humans

IT V4 V1 Pix
Basic Categorization 773 + 185 22 x10° — _
Subordinate ldentification 496 + 93 4.4 x10° — —
X-axis Position 1414 + 403 52x10° 3.0x10" —
Y-axis Position 918 £+ 309 2.5x10* 8.7 x10° -
Bounding Box Size 322 + 90 1.7 x10* — —
X-axis Size 256 * 87 9.8 x10° 3.4 x107 —
Y-axis Size 237 + 87 3.8x10° 95x10° —
3-D Object Scale 401 + 90 3.2 x 104 — _
Major Axis Length 201 + 70 1.1 x10% — _
Aspect Ratio 163 + 61 951 + 59 6.5x10°  —
Major Axis Angle 804 + 136 3.2x10° — —
Z-axis Rotation 1932 + 1061 — _ _
Y-axis Rotation 369 + 115 2.8 %x10° — _
X-axis Rotation 1570 + 530 — — _

— = more than 10 billion sites required

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Mean over tasks, human-parity for [T is at ~350000 single-unit single-trial neurons.



Somewhat newish ideas about | T

Population Decode Performance
(relative to human performance)

State of knowledge
from previous studies . . .

Categorization

(\mO\Nm

V1 V2 V4 IT

Multiple hypotheses consistent with

the existing data . . .
H1

H2

Orthogonal Properties

V1 V2 V4 IT

H4

?? ?? ?? ??
y(known) 0
V1 V2 V4 IT
Depth Along

(increasing receptive field size —)

V1 V2 V4 IT

Ventral Stream

V1 V2 V4 IT

H4. Simultaneous bulld-up of encoding



Somewhat newish ideas about | T

|.IT i1s NOT invariant. Strict generalization of simple-to-complex cells: neo.

2. "Lower-level” properties are not that low-level — at least, with complex objects
and backgrounds.

3. Categorization and non-categorical properties “go together’ — not just that
“not all (e.g.) position information Is lost” (MacEvoy 2013, DiCarlo 2003)

Provides support to a hypothesis for what T does:

“Inverting the generative model of the scene”



But what type of understanding is this?



But what type of understanding is this?

not saying this type of understanding is impossible ...



Principle of “Goal-Driven Modeling”



> Formulate
comprehensive
model class (CNNs)
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Yamins & DiCarlo.
Nat. Neuro. (2016)




Model Architecture Class i {

-

> Formulate
comprehensive
model class (CNNs)

Localization

"\

Q

Categorization IHEtW‘: p—

> Choose challenging,
ethologically-valid tasks
(categorization)

e ——

y—!

J Word recognition

Yamins & DiCarlo.
Nat. Neuro. (2016)



Model Architecture Class -

> Formulate ( ol |
L

comprehensive .\ ocalization
model class (CNNs)

> Choose challenging,
ethologically-valid tasks
(categorization)

L,-VVOQGC‘Ognition

> [mplement generic
learning rules (gradient Nat. Newro, (oot
descent)



Model Architecture Class

> Formulate (
Localization

comprehensive \

model class (CNNs) ’(‘/

> Choose challenging,
ethologically-valid tasks
(categorization)

Categorization | - H{tfm e
aw—! \ M
L

> [mplement generic

Yamins & DiCarlo.

learning rules (gradient Nat. Neuro. (2016)
descent)

> Map to brain data. (ventral stream)



Four Principles of Goal-

Driven Modeling

1.

A = architecture class

2.

T = task/objective

3.

D = datagset

4.

L = learning rule




Four Principles of Goal-Driven Modeling

1 Best proxies thus far for ventral stream:
A = architecture class A = ConvNets of reasonable depth
2.
T = task/objective T = multi-way object categorization
3.
D = dataset D = ImageNet images
4. | |
— , L = evolutionary architecture search +
L = learning rule filter learning through gradient descent




Four Principles of Goal-Driven Modeling

Best proxies thus far for ventral stream:

1 [ ]

A = architecture class = circuit neuro-
anatomy

2.

T = task/objective = ecological niche

3.

D = dataset = environment

4.

L = learning rule = natural selection
+ synaptic plasticity

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search +
filter learning through gradient descent



Four Principles of Goal-Driven Modeling

1.

Best proxies thus far for ventral stream:

A = architecture class = circuit neuro-

anatomy
< solving
2.

T = task/objective = ecological niche

< situated in
3.

D = dataset = environment

< updating according to
4.

L = learning rule = natural selection
+ synaptic plasticity

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search +
filter learning through gradient descent



“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky



“Nothing in biology makes sense except in light of evolution”

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd



“Nothing in biology makes sense except in light of evolution”

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd

computational
Nothing in(:)euroscience makes sense except in light of St aIlfOl'd
optimization. & ¢ Neuro Al Lab




“Nothing in biology makes sense except in light of evolution”

Restated: Dobzhansky

“Nothi . w .
P Behavior is highly constraining of the brain.

Gordon Shepherd

computational
Nothing inﬁeuroscience makes sense except in light of St anfOl'd
optimization. L5 Neuro Al Lab




Prinretple of “Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”
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Priretple of "Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”
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V2-like .
SIET et HMAX
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PLOS09
Vi-like
../Pixels
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Categorization Performance (balanced accuracy)
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res-net!

... after all at some point, for any given task,
you'll probably “go over the hump”
perhaps when you exceed human
performance or overfit on that task



Can we go beyond vision?

visual audrtory
cortex cortex

"Mercedes behind

Lamborghini, on a field
in front of mountains.”

"Hannah 1s good at
compromising”



Can we go beyond vision?

<

primary audrtory cortex

i !
!

!

"Mercedes behind
Lamborghini, on a field in

front of mountains.”

"Hannah i1s good at
compromising”



Model Architecture Class

gczcazation

> Formulate
comprehensive
model class (RNNs)

> Choose challenging,
ethologically-valid tasks
(task switching/
memory)

> |mplement generic
learning rules (?7?)

Yamins & DiCarlo.
Nat. Neuro. (2016)

> Map to brain data. (Parietal cortex, PFC)



“*bad = obviously deeply wrong as model of the brain

Big Problems in Each Area or behavior

1 xbad PROBLEM

A = architecture class
e.g. CNINs

2.
T = task/objective

e.g. Object Categorization

3.

D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : *bad = obviously deeply wron model of the brain
Big Problems Iin Each Area 6 = obviousy deeply WIONE a5 model of fne bre
PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!I?
e.g. CNINs
2.

T = task/objective

e.g. Object Categorization

3.

D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : *bad = obviously deeply wron model of the brain
Big Problems in Each Area fEg e s
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3.

D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : * = obviously deeply wron model of the brain
Big Problems in Each Area ¢~ errewyeeny e s moddorne e
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3. xbad REAL NOISY VIDEO DATASTREAMS vs
D = dataset STEREOTYPED CLEAN STILL IMAGES

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : * = obviously deeply wron model of the brain
Big Problems in Each Area ¢~ errewyeeny e s moddorne e
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3. xbad REAL NOISY VIDEO DATASTREAMS vs
D = dataset STEREOTYPED CLEAN STILL IMAGES

e.g. ImageNet

4. Xbad

L = learning rule BACKPROP AND ITS DISCONTENTS

e.g. Arch. Srch. + Grad. Desc.



So far, we've done the basic idea

Date Session
01/06 Introduction to NeuroAl
Visual Systems Neuroscience Background
DNN Models of the Visual System I Basic idea
DNN Models of the Visual System II
01/20 [NO CLASS-MLK DAY]
01/22 Recurrent Models in Vision and Beyond
01/27 Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain
01/28
01/29 Unsupervised Learning and the Brain
02/03 Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation
02/05 Auditory and Somatosensory Models
02/10 Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning
02/11
02/12 Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex
02/17 [NO CLASS-PRESIDENT'S DAY]
02/19 Learning Rules in the Brain
02/24 Models of the Motor System
02/25
02/26 Guest Lecture — Scott Linderman (Stanford): Dynamical Systems Models in Neuroscience
03/03 Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs
03/05 The Hippocampus: Memory and Spatial Navigation
03/10 Topographic Models: A Unified Theory of the Brain

03/12 Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling



Next we'll fix some of the problems . ..

Date Session
01/06 Introduction to NeuroAl

Visual Systems Neuroscience Background

DNN Models of the Visual System I Basic idea
DNN Models of the Visual System II

01/20 [NO CLASS-MLK DAY]
Recurrent Models 1n Vision and Beyond
Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain F iXi n g
Unsupervised Learning and the Brain P ro b I ems
Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation

02/05 Auditory and Somatosensory Models

02/10 Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning

02/11

02/12 Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex

02/17 [NO CLASS-PRESIDENT'S DAY]

02/19 Learning Rules in the Brain

02/24 Models of the Motor System

02/25

02/26 Guest Lecture — Scott Linderman (Stanford): Dynamical Systems Models in Neuroscience

03/03 Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs

03/05 The Hippocampus: Memory and Spatial Navigation

03/10 Topographic Models: A Unified Theory of the Brain

03/12 Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling



...and then go beyond vision.

Date
01/06

Session

Introduction to NeuroAl

Visual Systems Neuroscience Background

DNN Models of the Visual System I Basic idea
DNN Models of the Visual System II

[NO CLASS-MLK DAY]

Recurrent Models 1n Vision and Beyond

Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain

Fixing
Unsupervised Learning and the Brain P ro b I ems
Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation
Auditory and Somatosensory Models
Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning
Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex
[NO CLASS-PRESIDENT'S DAY]
Learning Rules in the Brain
Models of the Motor System Beyond
Vision

Guest Lecture — Scott Linderman (Stanford): Dynamical Systems Models in Neuroscience
Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs

The Hippocampus: Memory and Spatial Navigation
Topographic Models: A Unified Theory of the Brain
Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling



