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Problem:  Entity Extraction
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GOAL:  Predictive model of single-neuron 
responses throughout the ventral stream to 

arbitrary image stimuli. 

Problem:  Entity Extraction
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Layer components are basic neural-like operations.

Hubel and Wiesel (1965-1975) Lecun (2004), Carandini et. al (2005),
Lennie & Movshon (2005) , DiCarlo (2012)

‣ Linear-Nonlinear neurally-plausible basic operations within layer
Linear Nonlinear

What We Learned from V1
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      ~1970s and formalized later 
via Gabor wavelets

Gaussian tuning curve of  V1 simple cell

adapted from Adrienne Fairhall

What We Learned from V1



from Wandell 1996

What We Learned from V1
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orientations, positions and spatial scales. The resulting synthetic 
images had the same overall orientation and spatial-frequency con-
tent as the original (that is, the same spectral properties) but lacked 
its higher-order statistical dependencies (Fig. 1a). Naturalistic tex-
ture images were generated by also matching correlations between 
filter responses (and their energies) across orientations, positions and 
spatial scales (Fig. 1b). We used an iterative procedure (Fig. 1c) to 
match the spatially averaged filter responses, the correlations between 
filter responses, and the mean, variance, skewness and kurtosis of the 
pixel luminance distribution (‘marginal statistics’). Synthetic images 
matched for these properties contain many complex naturalistic 
structures seen in the original photograph19, readily recognizable by 
human observers22.

We synthesized images based on 15 original texture photographs, 
yielding 15 different ‘texture families’; for each original, we made 
ensembles of self-similar naturalistic texture samples, each different in 
detail but all having identical statistical dependencies and containing 
similar visual properties (Supplementary Fig. 1). Since each of these 
15 texture families was based on a different original photograph, they 
varied in their appearance and in the form and extent of their higher-
order statistical dependencies.

Differentiating V2 from V1 in macaque
We recorded in 13 anesthetized macaque monkeys the responses of 
102 V1 and 103 V2 neurons to a sequence of texture stimuli, presented 
in suitably vignetted 4° patches centered on each neuron’s receptive 
field. The sequence, which was identical for all cells, included 20 rep-
etitions for each of 15 samples of naturalistic and 15 samples of noise 
stimuli from 15 different texture families (9,000 stimuli in total). The 
textures were each presented for 100 ms and were separated by 100 ms 
of a blank gray screen, so the entire sequence lasted 30 min.

V1 neurons responded similarly to both stimulus types, whereas 
V2 neurons often responded more vigorously to naturalistic textures 
than to spectrally matched noise. This distinction between V2 and 
V1 was evident when examining individual responses as a function 
of time from stimulus onset (averaged over all samples of all texture 
families) (Fig. 2a) and when the responses were averaged over the cell 
populations (Fig. 2b). We use the term ‘modulation’ to capture the 
differential responses to textures and noise, and index its magnitude 
by taking the difference of responses divided by the sum (Fig. 2c). The 
average modulation index of neurons in V1 was near zero for most of 
the response time course, except for a modest late positive modula-
tion (Fig. 2c). Neurons in V2 showed a substantial modulation that 
was evident soon after response onset and persisted throughout the 

duration of the response (Fig. 2c). The late modulation in V1 might 
reflect feedback from V2 or other higher areas23.

V2 responses were substantially modulated by naturalistic struc-
ture on average, but the modulation was typically more pronounced 
for some texture families than for others. We examined responses as 
a function of texture family, averaged over all samples. There was a 
consistent trend across the V2 population for some texture families to 
evoke stronger modulation than others, although the most effective 
families varied from cell to cell (Fig. 2d,e). By contrast, all families 
yielded negligible modulation of V1 responses (Fig. 2d,e). In V2, the 
modulation strength across texture families was not significantly cor-
related with the response magnitude (r = 0.42, P = 0.12, correlation 
computed after averaging across cells). An analysis of the distribution 
and ranking of modulation across individual neurons ruled out the 
possibility that modulation in V1 was present but concealed by the 
process of taking means (Supplementary Fig. 2).

Some neurons were more sensitive overall to naturalistic structure 
than others. We computed a modulation index for each neuron, averaged 
over the response duration and over all samples of all texture families 
(Fig. 2f). Significant positive modulation was observed in 15% of V1 
neurons and 63% of V2 neurons (P < 0.05, randomization test for each 
neuron). The difference in modulation between V1 and V2 was signifi-
cant (P < 0.0001, t-test on signed modulation; P < 0.0001, t-test on mod-
ulation magnitude ignoring sign). Results were similar when examining 
firing rates instead of modulation index (Supplementary Fig. 3).

The receptive fields of V2 neurons are larger than those of V1, but 
this distinction did not explain the observed differences in sensitiv-
ity to naturalistic structure (Fig. 3). The stimuli presented to V1 and 
V2 cells were of the same diameter, roughly twice that of a typical V2 
receptive field and four times that of a typical V1 receptive field. There 
was no evidence of a correlation between receptive field size and 
modulation in either visual area (V1, r = 0.13, P = 0.23; V2, r = –0.13,  
P = 0.26, Fig. 3a,b). When we restricted our analysis to subsets of neu-
rons matched for average receptive field size, the difference in modu-
lation index between areas was reduced by only 9% and remained 
significant (P < 0.0001, randomization test).
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Figure 1 Analysis and synthesis of naturalistic textures. (a) Original 
texture photographs. (b) Spectrally matched noise images. The original 
texture is analyzed with linear filters and energy filters (akin to V1 simple 
and complex cells, respectively) tuned to different orientations, spatial 
frequencies and spatial positions. Noise images contain the same spatially 
averaged orientation and frequency structure as the original but lack many 
of the more complex features. (c) Naturalistic texture images. Correlations 
are computed by taking products of linear and energy filter responses 
across different orientations, spatial frequencies and positions. Images 
are synthesized to match both the spatially averaged filter responses 
and the spatially averaged correlations between filter responses. The 
resulting texture images contain many more of the naturalistic features 
of the original. More examples in Supplementary Figure 1. (d) Synthesis 
of naturalistic textures begins with Gaussian white noise, and the noise is 
iteratively adjusted using gradient descent until analysis of the synthetic 
image matches analysis of the original (see ref. 19). Initializing with 
different samples of Gaussian noise yields distinct but statistically  
similar images.

So, maybe a 
hierarchically-built sparse 
auto-encoding in a 2-layer 
model with max pooling??   
… but doesn’t really work 
well in practice. 

Problem:  
No predictions for any other 

images. 
i.e. 

is not an “image-
computable” model

V2:

V4:

What We Learned from V2 and V4?



Tsunoda et al. 1 mm

IT: 

What We Learned from IT?
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Hierarchical Convolutional Neural Networks
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Hierarchical Convolutional Neural Networks



Lower areas, (RGC, LGN, V1) have been reasonably captured by single-
layer models:  ~40% of variance explained.  Carandini et. al (2005), Lennie & Movshon (2005)
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Lower areas, (RGC, LGN, V1) have been reasonably captured by single-
layer models:  ~50% of variance explained.  Carandini et. al (2005), Lennie & Movshon (2005)
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Hierarchical Convolutional Neural Networks
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Push up the ventral stream? 

Hierarchical CNNs

Lower areas, (RGC, LGN, V1) have been reasonably captured by single-
layer models:  ~50% of variance explained.  Carandini et. al (2005), Lennie & Movshon (2005)

Hierarchical Convolutional Neural Networks
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Tensor dimensionality: 

(s0, s0, c0) 7�! (s1, s1, c1)

(kx, ky, c0, c1)

s0 = input dimension size; s1 = output dimension

kx, ky = kernel size

c0 = number of input channels;  c1 = number of output channels

filter is 4-tensor

Hierarchical Convolutional Neural Networks



→  Convolutional Neural Networks (CNNs) Fukushima, 1980; Lecun, 1995

CNNs condense rough neuroanatomy of the ventral stream b:

   1) being hierarchical

   2) being retinotopic (spatially tiled)

Hierarchical Convolutional Neural Networks



Fukushima, 1978

Hierarchical Convolutional Neural Networks



Kunihiko Fukushima!

Tokyo, November 2015

Hierarchical Convolutional Neural Networks



Kunihiko Fukushima!

Developed first convnet
in the late 1970s

while Japan Broadcasting 
Corporation (NHK)

… office directly next 
door to Keiji Tanaka’s

Tokyo, November 2015

Hierarchical Convolutional Neural Networks



1. Selectivity 2. Tolerance

“AND” “OR”

Serre, Kouh, Cadieu, Knoblich, 
Kreiman & Poggio 2005

• Examples: 

• Hubel & Wiesel (1962) 

• Fukushima (1980) 

• Perrett & Oram (1993) 

• Olshausen & Field (1996) 

• Wallis & Rolls (1997) 

• LeCun et al. (1998) 

• Riesenhuber & Poggio (1999) 

• Serre, Kouh, et al. (2005)

Various attempts at models …. 



Aggregation over identity-preserving transformations, e.g. translation.

“Intuitive idea” of hierarchical processing



Beyond categorization
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Aggregation over identity-preserving transformations, e.g. translation.



Beyond categorization

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

(e.g.) Position Sensitivity ↓

position / size estimation

pose?

categorization

Aggregation over identity-preserving transformations, e.g. translation.
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Q: How to discover the “right” parameters to understand real cortex? 

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network structure”

ii. filter parameters:  continuous valued pattern templates — “network contents”

Hierarchical Convolutional Neural Networks
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      ~1970s and formalized later 
via Gabor wavelets

Gaussian tuning curve of  V1 simple cell

adapted from Adrienne Fairhall

Recall from V1
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→ can just “see” what the right 
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curves are, if we’re smart enough

Gaussian tuning curve of  V1 simple cell

adapted from Adrienne Fairhall
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“Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 
via Gabor wavelets
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Where did this come from? 

(1) “Hubel and Wiesel’s Intuition”
      ~1970s and formalized later 

→ can just “see” what the right 
axes for measuring good tuning 
curves are, if we’re smart enough

Gaussian tuning curve of  V1 simple cell

adapted from Adrienne Fairhall

Recall from V1

REALLY HARD TO GENERALIZE  
TO MULTI-LAYER NETWORKS
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Huge number of parameters consistent with HCNN concept. 



Sparse Coding Foldiak, Olshausen,    
      mid 1990s
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environment, as efficiently as possible
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at least not directly.
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x

hidden layer 
H(x) output layer 

O(H(x))

parameters

 V1as Sparse Autoencoder

Also turns out not to generalize to multi-
layer networks very well . . . 

at least not directly.
but we will return to this point when we study self-supervised learning
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Step 2:  Compare to Neural Data
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Visual Recognition Task

Optimize for Performance, Test Against Neurons



1. Performance:  accuracy on a challenging, high-variation visual 
object categorization task. 

2. Neural predictivity: the ability of model to predict each 
individual neural site’s activity.    

Optimize for Performance, Test Against Neurons



1. Performance:  accuracy on a challenging, high-variation* visual 
object categorization task. 

2. Neural predictivity: the ability of model to predict each 
individual neural site’s activity.    

Optimize for Performance, Test Against Neurons

*challenging for neural network engineers, not the 
animal



1. Performance:  accuracy on a challenging, high-variation* visual 
object categorization task. 

2. Neural predictivity: the ability of model to predict each 
individual neural site’s activity.    

Optimize for Performance, Test Against Neurons

Our hypothesis:  Performance (1)  →  neural predictivity (2).   

*challenging for neural network engineers, not the 
animal
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= Array

10mm

Multi-array electrophysiology in macaque V4 and IT.  
(somewhere between single and multi-unit recording)

Multi-array Electrophysiology Experiment



Multi-array Electrophysiology Experiment

5760 images

64 objects 

8 categories

uncorrelated photo backgrounds

Animals Boats Cars Chairs Faces Fruits Planes Tables

Pose, position, scale, and background variation

640 images
Low variation

2560 images

Medium variation

High variation

2560 images



IT unit 53
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Responses to 1600 test images of two example units

Images sorted first by category, then variation level. 
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Multi-array Electrophysiology Experiment



IT Neurons Track Human Performance

At high variation levels,  IT much better than  V4 and existing models.

Low Variation Medium Variation High Variation
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Basic
categorization

Yamins* and Hong* et. al. PNAS (2014)

… but humans are much less affected. 

V4 loses out at higher variation:

… as is the IT neural population. 



Neural Recordings from IT and V4

 

V1

ITV2

V4

. . . . . .

LN

LN

...
LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

. . .

. . .

Neural predictivity: the ability of model to predict each individual 
neural site’s activity.    



Neural Response Prediction

Some kind of mapping is necessary.

Source Brain Target Brain

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

??



Here, we use linear regression.  

Target Brain

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

Img 1       
Img 2       
.
.
.
.
Img 5760

...

Neuron 1        2       .   .   .   .                   150

...

T = M * S

Source Brain

Neural Response Prediction



Neural predictivity: the ability of model to predict each individual 
neural site’s activity.    

Neural Recordings from IT and V4

. . . . . .

LN

LN

...

LN

LN
...

LN

LN

LN

...

Neural site unit ~ sparse 
linear combination of model 
units

Linear regression with fixed 
training images.

Accuracy  =  goodness-of-fit 
on held-out testing images 
(Cross validated)

Neural predictivity = median 
accuracy over all units.



Initial Validation of Idea

High-throughput experiments to directly test the relationship 
between performance and IT neural predictivity. 

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)



different model
(architectural params)

random
r = 0.55 ± .08

(n=2000)

Initial Validation of Idea

-0.2

-0.1

0.0

0.1

0.2

Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of Idea

High-throughput experiments to directly test the relationship 
between neural predictivity and performance.

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)

‣ Optimize parameters for performance; measure neural predictivity. optimization 

techniques:  Bergstra Yamins & Cox (2013)



performance-
optimized

r = 0.79 ± .05
(n=2000)

Initial Validation of Idea

Yamins* and Hong* et. al. PNAS (2014)



Initial Validation of Idea

‣ Random selection of model parameters;  measure performance and 
neural predictivity  Pinto et. al (2008, 2009)

‣ Optimize parameters for performance; measure neural predictivity optimization 

techniques:  Bergstra Yamins & Cox (2013)

‣ Optimize parameters for neural predictivity; measure performance

High-throughput experiments to directly test the relationship 
between neural predictivity and performance.



Performance vs IT predictivity: Predictivity-Optimized

predictivity-
optimized

r = 0.80 ± .04
(n=2000)

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity: Predictivity-Optimized

r = 0.55 ± .08
r = 0.79 ± .05
r = 0.80 ± .04

Performance is a potentially very good driver of neural prediction. 

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity 

Yamins* and Hong* et. al. PNAS (2014)



Performance vs IT predictivity 

But, not doing that well.   Really want to be here:



Optimization Strategy

→ Ensembles of models chosen through modified boosting  Yamins et. al (2013, 2014)

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network 
structure”

→ Automated meta-parameter optimization in high-dimensional discrete parameter spaces 
Bergstra Yamins & Cox (2013)



Optimization Strategy

→ Ensembles of models chosen through modified boosting  Yamins et. al (2013, 2014)

→GPU-accelerated stochastic gradient descent  Pinto et. al., (2009), Krizhevsky et. al. (2012)

i. architectural params:  (# layers, # filters, receptive field sizes, &c) — “network 
structure”

ii. filter parameters:  continuous valued pattern templates — “network contents”

→ Automated meta-parameter optimization in high-dimensional discrete parameter spaces 
Bergstra Yamins & Cox (2013)

L = loss function Gradient descent eq: 

In current practice: 

 𝜆 = learning rate

L = loss computed from large numbers of externally-provided object category 
labels. 



Model Training Regimen

ImageNet (2012).   Thousands of images in thousands of categories.  



Model Training Regimen

train: real photos



generalize?
Basic

categorization

Model Training Regimen

train: real photos test: neural stimuli



Basic
categorization

removed categories of photos that 
appeared in the test stimuli 

(animals, boats, cars, chairs, faces, fruits, planes, tables)

Model Training Regimen

train: real photos test: neural stimuli

generalize?



Basic
categorization

removed categories of photos that 
appeared in the test stimuli 

(animals, boats, cars, chairs, faces, fruits, planes, tables)

Model Training Regimen

train: real photos test: neural stimuli

generalize?

→  Specific 4-layer model that achieved high recognition performance.



Performance Generalization

Basic
categorization
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At high variation levels,  IT much better than  V4 and existing models
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Yamins* and Hong* et. al. PNAS (2014)



New model comparable to IT / human performance levels. 
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At high variation levels,  IT much better than  V4 and existing models

Yamins* and Hong* et. al. PNAS (2014)

Performance Comparison
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Car
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Performance Comparison



Behavioral match between models and data at category confusion level is 
pretty good …

IT V4

Model Decode Performance

Model

Neural Decode Performance
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Performance Comparison



Does it predict neurons better? 



unit 53
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Does it predict neurons better? 

Images sorted first by category, then variation level. 

Neural data

Yamins* and Hong* et. al. PNAS (2014)



unit 53

Does it predict neurons better? 

Animals Boats Cars Chairs Faces Fruits Planes Tables

Neural data

Model prediction

Images sorted first by category, then variation level. 
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Yamins* and Hong* et. al. PNAS (2014)



IT Site 150 IT Site 56 IT Site 42

Predicting IT Neural Responses 

Images sorted first by category, then variation level. 
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Neural data

Model prediction



Key Underlying Principle
IT
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Categorization Performance (balanced accuracy)

V2-like
HMAX

PLOS09

SIFT

r = 0.87 ± 0.15

0.6    0.8    1.0

HMO
50

40

30

20

10

0

V1-like

Pixels = distinct model

Yamins* and Hong* et. al. PNAS (2014)



Predicting IT Neural Responses 

What about intermediate layers?

i. compare intermediate model layers to IT neural data

ii. compare all model layers to intermediate visual areas (V4)



Layer 
1

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Captures low variation image response patterns … 



Layer 
1

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Captures low variation image response patterns … 



Layer 
1

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

… but fails to capture higher 
variation response patterns. 



Layer 
1

Neural data Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables

Layer 
2



Layer 
1

Neural data Model prediction
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Layer 
2

Layer 
3



Layer 
1

Neural data Model prediction

Layer 
2

Layer 
3

Animals Boats Cars Chairs Faces Fruits Planes Tables

Top 
Layer

Building tolerance while maintaining selectivity
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Yamins* and Hong* et. al. PNAS (2014)
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Performance constraints Yamins* and Hong* et. al. PNAS (2014)
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Predicting IT Neural Responses 

Architectural constraints

Performance constraints Yamins* and Hong* et. al. PNAS (2014)



IT
 E

xp
la

in
ed

 V
ar

ia
nc

e 
(%

)

0

10

20

50 

30

40

Ideal
Observers

Control
Models

HMO
Layers

C
at

eg
or

y
A

ll 
Va

ria
bl

es

P
ix

el
s

V
1-

Li
ke

P
LO

S
09

H
M

A
X

V2
-L

ik
e

H
M

O
 L

1
H

M
O

 L
2 H

M
O

 L
3 H

M
O

 T
op

S
IF

T

Predicting IT Neural Responses 

Performance constraints + architectural constraints → better neural prediction



Predicting IT Neural Responses 

What about intermediate layers?

ii. compare all model layers to intermediate visual areas (V4)

i. compare intermediate model layers to IT neural data



Predicting V4 Neural Responses 

V4 unit 60
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Predicting V4 Neural Responses 

V4 unit 60

Animals Boats Cars Chairs Faces Fruits Planes Tables

Layer 
1

Top 
Layer

Neural data Model prediction



Predicting V4 Neural Responses 

Layer 
1

Layer 
2

Layer 
3

Top 
Layer

Neural data

Model prediction

Animals Boats Cars Chairs Faces Fruits Planes Tables
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Yamins* and Hong* et. al. PNAS (2014)



Investigating fits as a function of model layer :

IT fit increases at each layer.   In contrast, V4 fit peaks and then 
goes down. 

1 2 3 Top 1 2 3 Top

0.1

0.3

0.5

Model Layers

E
xp

la
in

ed
 V

ar
ia

nc
e IT Predicitivity V4 Predicitivity

Layer-area correspondence

Yamins* and Hong* et. al. PNAS (2014)



Layer-area correspondence

Hong* and Yamins*et. al. 
Nature Neuroscience 

(2016)

Nothing special about 4 layers — deeper models can be better :



Layer-area correspondence

Hong* and Yamins*et. al. 
Nature Neuroscience 

(2016)

Top hidden layer (not 
explicit categorization layer)



Layer-area correspondence

Hong* and Yamins*et. al. 
Nature Neuroscience 

(2016)
Khaligh-Razavi & 

Kriegestkorte (2014)

Top hidden layer (not 
explicit categorization layer)

Macaque ephys human fMRI



Layer-area correspondence

Best recent models:  ~13 layers deep, with IT best predicted around 
~80% of the way through (e.g. 10 layers)

Hong* and Yamins*et. al. 
Nature Neuroscience 

(2016)
Khaligh-Razavi & 

Kriegestkorte (2014)

Top hidden layer (not 
explicit categorization layer)

Macaque ephys human fMRI



Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:

Layer-area correspondence



Layer-area correspondence

LN

...

LN

LN

Compare to: 

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:



Layer-area correspondence

LN

...

LN

LN

Compare to: 

actually, this is “better” than Gabor model b/c it naturally has “color opponency”
Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:



Model early layers are best explanation 
of  fMRI data in V1.  (with Darren 
Seibert and Justin Gardner)

Layer-area correspondence

Similar result:    Guclu & Van Gerven (2015)Kaligh-Razavi and Kriegeskorte (2014)

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:



Layer-area correspondence



Layer-area correspondence



Layer-area correspondence

finer resolution



Layer-area correspondence

50% explained variance vs 
‣ 17% for Linear-Nonlinear-

Poisson (with gabor filters)
‣ 39% for Berkeley Wavelet 

Transform

finer resolution



Layer-area correspondence

50% explained variance vs 
‣ 17% for Linear-Nonlinear-

Poisson (with gabor filters)
‣ 39% for Berkeley Wavelet 

Transform

Peak V1 Peak IT 
(unpublished)

Peak V4
(unpublished)



Layer-area correspondence

50% explained variance vs 
‣ 17% for Linear-Nonlinear-

Poisson (with gabor filters)
‣ 39% for Berkeley Wavelet 

Transform

Peak ITPeak V4

Peak V2

subcortical??

Peak V1



Layer-area correspondence



Layer-area correspondence

Three-layer CNN best fits retinal ganglion cell response patterns to natural images. 



Better models of the ventral visual stream:

‣  V4 at 6th convolutional layer
‣  pIT at 7th convolutional layer
‣  cIT/aIT at layers 8-10, depending on neurons position on A/P axis

V4

V4 pIT cIT/aIT 
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Preferred Model Layer
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Jonas KubiliusDan Bear

pIT cIT/aIT

Layer-area correspondence



Post-AlexNet Developments

(1) Residual Connections and ResNets

(2) Vision Transformers



Post-AlexNet Developments

(1) Residual Connections and ResNets

Residual connection stabilizes gradient backflow. 



Post-AlexNet Developments

(1) Residual Connections and ResNets

Lots of skip connections present in 
actual brain. 

Residual connection 
stabilizes gradient 
backflow. 



Post-AlexNet Developments
(2) Vision Transformers



Post-AlexNet Developments
(2) Vision Transformers



Post-AlexNet Developments
(2) Vision Transformers

NB:  still hierarchical, still with residual connections, potential 
locality from patches . . . 



Post-AlexNet Developments
(2) Vision Transformers

Looking at receptive field analysis of  ViTs vs ResNet:



Post-AlexNet Developments
(2) Vision Transformers

ViT

ResNet

Looking at receptive field analysis of  ViTs vs ResNet:



Post-AlexNet Developments
(2) Vision Transformers

ViT

ResNet

. . . we see learned ViT is mostly local, with increasing receptive field 
sizes.

Looking at receptive field analysis of  ViTs vs ResNet:



Post-AlexNet Developments
(2) Vision Transformers

ViT is a bit like a CNN with sparse global connections.



Principles of  Visual Architecture
(1) Hierarchical (2) Mostly local (3) Rectification-like nonlinearity 

(4) Some residual connections (5) Normalization

DOG

pixels

RGC LGN

V1 V2

V4 PIT

T(•) 
PITV2

V4

100ms
Visual

Presentation

V1

CIT
AIT

CIT AIT

?? ?

...

Φ1

Φ2

Φ k

⊗
⊗

⊗

NormalizePool
Filter Threshold &

Saturate

Layer components are basic neural-like operations.



Complement standard “from below” approach … 

Behavioral “Top-Down” constraints

→
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Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



→

Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



→

Complement standard “from below” approach … 

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



←

Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



“Further Confirmation”



Figure 3
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Adapted from DiCarlo et al. 2012

You are here.



Pasupathy and Connor (V4) 
Brincat and Connor (PIT)

Experimental result: 
Hypothesis explains ~50% of the explainable 
response variance for these types of stimuli  

Problem:  
No predictions for any other images. 

i.e. 
is not an “image-computable” model

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

Recall ….



“Further Confirmation”

Bashivan et al (2019)
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“Further Confirmation”

Bashivan et al (2019)
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Ponce et al (2020)
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Beyond categorization

Category

Identity

 plane

f16



Beyond categorization

Position



Beyond categorization

Size



Beyond categorization

Aspect Ratio
and Angle



Beyond categorization

Category

Identity

3-D Object Scale

Perimeter

2-D Retinal Area

 plane

f16

rz

rx ry

Bounding Box 

Aspect Ratio

Major Axis Length

Major Axis Angle

X and Y Axis
Position

Pose in 
each axis

We can quickly assess the scene as a whole. 



Where and how are all these properties coded neurally? 

rz

rx ry

Category

Identity

 plane

f16

Position

Size

Bounding Box

Pose

Aspect and Angle

 

V1

ITV2

V4 ???



Aggregation over identity-preserving 
transformations, e.g. translation.

Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 



Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 

Aggregation over identity-preserving 
transformations, e.g. translation.

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

categorization



Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

(e.g.) Position Sensitivity ↓

position / size estimation

pose?

categorization
Aggregation over identity-preserving 
transformations, e.g. translation.



Where and how are all these properties coded neurally? 

rz

rx ry

Category

Identity

 plane

f16

Position

Size

Bounding Box

Pose

Aspect and Angle

 

V1

ITV2

V4 earlier visual areas? 

dorsal stream?
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Beyond categorization

X-Axis Position

Training Timecourse
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Unexpected observation: 

Training on 
categorization task

Increased performance on 
position estimation task.

even though the goal was to become INVARIANT to position

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Category optimization → improved performance on non-categorical tasks. 

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Unexpected observation #2: 

Increased performance on 
position estimation task

at each model layer.
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Beyond categorization

Performance on non-categorical tasks increases at each layer. 

For all tasks of visual interest we could measure in our test dataset:



Beyond categorization

What do the data say? 



Population Decoding

IT cortex V4 cortex
V1-like model pixel control
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Population Decoding

 V4 >  V1    for most tasks IT > V4,  V1   for all tasks 

Categorization Identification

X-axis Position Y-axis Position

X-axis Size Y-axis Size Bounding Box Area

2-D Retinal Area 3-D Object Scale

Aspect Ratio

Perimeter

Major Axis Length Major Axis Angle
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0.0

0.23

0.47

category: plane
identity:  f16

o

rz

rx ry

0.0

0.34

0.68

ITV
4P

ix V
1

0.0

0.18

0.36

0.0

0.33

0.66

0.0

0.32

0.63

0.0

0.29

0.58

0.0

0.29

0.58

0.0

0.28

0.55

0.0

0.28

0.57

0.0

0.31

0.61

0.0

0.30

0.61

Y-axis Rotation X-axis RotationZ-axis Rotation

0.0

0.20

0.40

0.0

0.14

0.29 0.18

0.09

0.0

IT cortex V4 cortex
V1-like model pixel control

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Best single position-encoding sites.
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Single Site Responses

heat map value at x, y =
     response averaged over all
     images where object center is in 
     position x, y

Best single position-encoding sites.
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Population Decoding

“Standard” receptive field-mapping stimuli w/ position and orientation variation:

X-position

Y-position

Orientation



Population Decoding

  V1 > V4, IT    for “standard” tasks

X-Position Y Position

0.0

0.6

0.0

0.6

Orientation

0.0

0.4

IT cortex V4 cortex
V1-like model pixel control

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Human Psychophysical Measurements



Monkey Neurons vs Humans 

performance  ~ k * log(N)
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Monkey Neurons vs Humans 

Basic Categorization
Subordinate Identification

X-axis Position
Y-axis Position

Bounding Box Size
X-axis Size 
Y-axis Size
3-D Object Scale
Major Axis Length
Aspect Ratio 
Major Axis Angle

Z-axis Rotation
Y-axis Rotation
X-axis Rotation  

Pix

—
—

—
—

—
—

—

IT

773 ± 185
496 ± 93

1414 ± 403
918 ± 309

322 ± 90
256 ± 87

237 ± 87
401 ± 90
201 ± 70
163 ± 61
804 ± 136

1932 ± 1061
369 ± 115

1570 ± 530

V4

2.2 × 106 
4.4 × 106

5.2 × 105

2.5 × 104

1.7 × 104

9.8 × 103

3.8 × 103

3.2 × 104

1.1 × 104

951 ± 59

—
2.8 × 105

—

V1

—
—

3.0 × 107

8.7 × 106

—
3.4 × 107

9.5 × 106

—
—

6.5 × 103

—

—
—
—

—
—
—
—

—
—
—

= more than 10 billion sites required —

3.2 × 106

Mean over tasks, human-parity for IT is at ~700 multi-unit trial-averaged sites.
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Subordinate Identification
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Bounding Box Size
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2.2 × 106 
4.4 × 106

5.2 × 105
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9.8 × 103

3.8 × 103
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1.1 × 104

951 ± 59

—
2.8 × 105

—

V1

—
—

3.0 × 107

8.7 × 106

—
3.4 × 107

9.5 × 106

—
—

6.5 × 103

—

—
—
—

—
—
—
—

—
—
—

= more than 10 billion sites required —

3.2 × 106

Mean over tasks, human-parity for IT is at ~350000 single-unit single-trial neurons.
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Somewhat newish ideas about IT? 

V1 V2 V4 IT
0

1

Categorization

V1 V2 V4 IT
0

1
Orthogonal Properties

??

V1 V2 V4 IT
0

1

V1 V2 V4 IT

V1 V2 V4 ITV1 V2 V4 IT

P
op

ul
at

io
n 

D
ec

od
e 

P
er

fo
rm

an
ce

(r
el

at
iv

e 
to

 h
um

an
 p

er
fo

rm
an

ce
) 

Depth Along Ventral Stream 
(increasing receptive field size →)

??????

State of knowledge
from previous studies . . .
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H4: Simultaneous build-up of encoding



Somewhat newish ideas about IT? 

Provides support to a hypothesis for what IT does:  

“Inverting the generative model of the scene”

2. “Lower-level” properties are not that low-level — at least, with complex objects 
and backgrounds.  

1. IT is NOT invariant. Strict generalization of simple-to-complex cells:  no.   

3. Categorization and non-categorical properties “go together” — not just that 
“not all (e.g.) position information is lost” (MacEvoy 2013, DiCarlo 2003)



But what type of understanding is this? 



But what type of understanding is this? 

LN

...

LN

LN

not saying this type of understanding is impossible … 



Principle of “Goal-Driven Modeling”
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Model Architecture Class

Deeper networks ...

...
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...

> Formulate 
comprehensive 
model class (CNNs)

Yamins & DiCarlo.  
Nat. Neuro. (2016)
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Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

> Implement generic 
learning rules (gradient 
descent)

> Formulate 
comprehensive 
model class (CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)

Yamins & DiCarlo.  
Nat. Neuro. (2016)



> Map to brain data. (ventral stream)
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> Formulate 
comprehensive 
model class (CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)

> Implement generic 
learning rules (gradient 
descent)
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T = task/objective

3.
D = dataset

4.
L = learning rule
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2.
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3.
D = dataset

4.
L = learning rule

A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:



A = architecture class = circuit neuro-
                                   anatomy   

1.

2.
T = task/objective = ecological niche
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A = architecture class = circuit neuro-
                                   anatomy   

1.

2.
T = task/objective = ecological niche

3.
D = dataset = environment

4.
L = learning rule = natural selection 
                    +  synaptic plasticity

Four Principles of Goal-Driven Modeling

solving

situated in

updating according to

A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:



“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky



“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd



“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd

Nothing in neuroscience makes sense except in light of 
optimization.

computational



“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd

Nothing in neuroscience makes sense except in light of 
optimization.

computational

Restated:

Behavior is highly constraining of the brain.
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Principle of “Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”

… after all at some point, for any given task, 
you’ll probably “go over the hump”  …

perhaps when you exceed human 
performance or overfit on that task
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“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at 
compromising”

visual
cortex

auditory
cortex

Can we go beyond vision?



V1

. . .

primary auditory cortex

. . .

“Mercedes behind 
Lamborghini, on a field in 

front of mountains.”

“Hannah is good at 
compromising”

Can we go beyond vision?



> Map to brain data. (Parietal cortex, PFC)
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> Formulate 
comprehensive 
model class (RNNs)

> Choose challenging, 
ethologically-valid tasks 
(task switching/
memory)

> Implement generic 
learning rules (??)

Yamins & DiCarlo.  
Nat. Neuro. (2016)
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e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.
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Big Problems in Each Area *bad = obviously deeply wrong as model of the brain
or behavior

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

❌bad

❌bad

❌bad

❌bad

PROBLEM

TOO MUCH LABELLED DATA REQUIRED!!?

BACKPROP AND ITS DISCONTENTS

REAL NOISY VIDEO DATASTREAMS vs 
STEREOTYPED CLEAN STILL IMAGES

e.g. CNNs

e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.

RECURRENCE and FEEDBACK!!?



So far, we’ve done the basic idea

Basic idea



Next we’ll fix some of the problems . . .

Fixing 
problems

Basic idea



. . . and then go beyond vision.

Fixing 
problems

Basic idea

Beyond
Vision


