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Outline

e Comparison methods

1. The early days
- Examples: subjective comparisons, sparsity, response properties.

2. Using stimulus-by-stimulus similarity matrices.
- Examples: RSA, CKA

3. Learning a mapping from models to neural data.
- Examples: One to one matching, linear regression, procrustes, soft matching, nonlinear mapping

e Selecting the right method:

> Bidirectionally vs symmetry.
> Using IATC for choosing the correct metric

 Noise celling estimates



Why do we compare neural networks to the brain?

As scientists we care about understanding the brain:

* Does the model encode similar features as neural populations?
» |s the model solving the task using similar transformations?

* Which architectural or learning constraints are allow us to better explain neural responses.

As engineers we care about building a good model of the brain:

» Models allow rapid, large-scale testing of hypotheses that would be infeasible in humans or animals
(ablation studies)

* Models can inform brain—computer interfaces and personalized treatments.



Early days: subjective comparisons

Idea: subjectively compare properties in models and neural data

Zipser & Andersen (1988): Study how the brain encodes retinal location and eye position together to represent
object location in posterior parietal cortex.

Neural data

e Single-unit recordings from area 7a in awake monkeys

e \Visual stimulus is flashed at many retinal (X, y) locations
during fixation

* Firing rate measured for each location

FIX CENTRE FIX LEFT

Zipser & Andersen, 1988
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Comparing neural data with the model

Monkey receptive fields
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| data with the model
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| data with the model
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Early days: comparing sparseness

Idea: Move beyond subjective comparison by comparing
sparseness and population statistics

Rolls & Tovee (1995): Are object representation in IT
encoded using a dense, localist, or sparse distributed code?

Neural data

e Single-unit recordings from macaque IT

e Monkeys viewed large “diverse” sets of complex visual
stimuli (objects, faces, scenes)

Rolls & Tovee, 1995



Representational theories

1.Dense distributed coding: Many neurons active for most stimuli
2.Localist (grandmother-cell) coding: One neuron per object
3.Sparse distributed coding: Few neurons active per stimulus

Results
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Representational theories

1.Dense distributed coding: Many neurons active for most stimuli
2.Localist (grandmother-cell) coding: One neuron per object
3.Sparse distributed coding: Few neurons active per stimulus
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Comparing neural data with theory
_ Distribution of lifetime spareness

o Lifetime sparseness: how selectively a neuron >
responds across a large set of different visual
stimuli over its lifetime.

e “Which class of representations could plausibly
generate these neural response statistics?”

Number of Cells
w
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&\\\\\\\\\\\\\Q

®

.05 R 2 3 .45 5 6 7 .85
Sparseness

"The mean response sparseness of 0.60 of this population of face-selective neurons indicates that, within the
class faces, these neurons implement distributed encoding”



Early day: Comparing response properties

Idea: compare tuning properties of cells with those of
networks

De Valois et al. (1982):

- How selectively do V1 neurons respond to different
spatial frequencies in sine gratings? (Are V1 neurons
bandpass filters?)

Neural data

* single-unit recordings from macaque V1

* Present sinusoidal gratings at many orientations and
spatial frequencies

e Spatial frequency = Number of cycles (dark-light)/ visual
angle (degrees)



Comparing results to neural networks
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Comparing results to neural networks

Input the same grating stimuli to a trained model
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Comparing results to neural networks
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o Neurons span a wide range of preferred
spatial frequencies

o Many neurons are narrowly tuned
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Brain score platform

How to use

score = benchmark(my_model)

Model scores

Rank

—_—

& O B~ W BN

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_DeValois1982-peak_sf")

Model

resnet-18-LC_w_sh_100_iter_ m

resnet50_imagenet_10_seed-0

alexnet_training_seed_01

resnet-18-LC_m

resnet50 linf 4 robust

alexnet_training_seed_08

88 Benchmark API

¢) Code examples

Score Legend

Min Alignment

Score

Data:
Marques2020_DeValois19
82

) Find on GitHub

Metric: peak_sf

¢) Find on GitHub

WwWw.brain-score.org



2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships

III

% Ignore neuron-to-neuron correspondence entirely
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2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships

% Ignore neuron-to-neuron correspondence entirely




2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships
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2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships
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2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships

% Ignore neuron-to-neuron correspondence entirely




2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships
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2. Using stimulus-by-stimulus similarity matrices

< Compare representations via stimulus—stimulus relationships
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Example: Representational Similarity Analysis (RSA)

dissimilarity matrix

“Do two systems organize stimuli in the same geometric way?

N/
0‘0

< Pros: For the first time allowed comparison between any systems as
long as the stimuli was the same. Also doesn’t need any training params.

dissimilarity

<+ Cons: Very similar systems (up to a linear transform) can look very
different under RSA

compute dissimilarity
(1-correlation across space)

Kriegeskorte et al, 2008




Example: RSA

r=0.49

Gl
animate | inanimate animate | inanimate
human |not human natural | artificial human |[not human natural | artificial
body|face body|face body|face |body|face
oy @F € B—9 ,..,, NEFD .,Ja%ﬁ mwu9.~'q N
5 » " il RT e M- .ﬂ"' .aﬁ Ny i*w‘i'-‘ ) Bn-"
l ‘W&*i*r E"" e L f:l SN A Eé DT 40 - 4 W0
ﬂ,&snsb& )OY )QAOT i ; ‘?sng § )o'r )QA@T - S
> ' a u ;
2170 X A e T R L EEE T

:_8i B s . ..:.s...-._n =t =T EH

g - &% i &84 o g

_:.._§; | A, . §w a
% %%gﬁ‘ - 1 1 '-1.-1!:'-. | %ﬁ‘ﬁgag
& g.oi‘ Tk g*'ﬁ;% :'§'
k= < =
cZeelia Sii8752

g*étaQJ gtiﬁmJQ
2 ons%h Fos® S
O © X * _ X o 5 Q)

= = J a=P 53
cS Sty h 8=t o3
=2 ?’,ﬂw ' 2 30

s gr =

£ LM 5

- z__t-l ® : —

monkey IT

dissimilarity

T e

0 [percentile of 1-r] 100

human IT

Kriegeskorte et al, 2008



Example: Centered Kernel Alignment (CKA)

< Similar method to RSA, but operates on similarities rather than dissimilarity matrix
distance

< Computes cosine similarity between centered gram matrices

<+ Pros: more flexible than RSA, invariant to rotation, scaling

< Cons: Similar systems (up to a linear transform) can look different
under CKA.

compute

(1-correla Gram matrix for X is:
XXT = Rn)(n

activity patterns

vV oV oy

experimental conditions




3. Learning mappings from the model to the brain

X € RNy e R™N

* Most methods focus on learning a linear mapping Rows = stimuli. Columns = neurons / features

* Let X be the model representations, and Y the

neural responses to the same set of stimuli. &
TR
i &

- Goal: Find the best mapping from X to Y.
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Why Linear Mapping?
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Why Linear Mapping?
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Example: One to one mapping

Idea: for 2 systems to be similar their parts should be similar
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Example: One to one mapping

Idea: for 2 systems to be similar their parts should be similar

< For each neuron, find the model unit with the highest correlation, then compute the optimal

linear mapping from neuron to model unit

<+ Each model unit can be matched with multiple neurons

vy oy oy

Features

Linear regression




Example: One to one mapping

Idea: for 2 systems to be similar their parts should be similar

< For each neuron, find the model unit with the highest correlation, then compute the optimal
linear mapping from neuron to model unit

<+ Each model unit can be matched with multiple neurons

< Pros: Simple and strict, effective for comparing very similar regions
where parts of the system are consistent across individuals (ex: retina)

% Cons: Most brain areas don’t have the exact same units in different
subjects (ex: IT)

Features

Linear regression

vy v v




Example: Linear Regression

Idea: Find linear combinations of model units that together produce a 'synthetic neuron’

< Learn a mapping from all model units to each target neuron.
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Example: Linear Regression

Idea: Find linear combinations of model units that together produce a 'synthetic neuron’

< Learn a mapping from all model units to each target neuron.

Features
Linear regression
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Example: Linear Regression

Idea: Find linear combinations of model units that together produce a 'synthetic neuron’

< Learn a mapping from all model units to each target neuron.
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Example: Linear Regression

Idea: Find linear combinations of model units that together produce a 'synthetic neuron’

< Learn a mapping from all model units to each target neuron.

< Pros: More flexible than RSA & one to one matching, not prone to errors when systems are similar

<+ Cons: Need to train parameters

Features
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Example: Linear Regression

HCNN top
hidden layer
response
prediction

IT neural
response

> 50| Monkey V4 501 Monkey IT
3 _ (n = 128) (n = 168)
S 3 -
88 [
Q
T > | -
5 3 o
Q C o
28 28 4 ‘
IT site 56 0% |BF = o 0
2= [3< N O i iy 1
7)) QA —_—
0 | N 1TI>Emi121314 0 N 21314
. ldeal Control HCNN |deal Control HCNN
Test images (sorted by category) observers  models layers observers  models layers

Yamins & DiCarlo, 2016



Example: Soft Matching

Idea: Match individual model units to individual neurons without requiring an exact one to one match

“ Solve an Optimal Transport (OT) problem: “how much is a source unit matched to a target unit subject
to mass conservation constraints”
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Example: Soft Matching

Idea: Match individual model units to individual neurons without requiring an exact one to one match

“ Solve an Optimal Transport (OT) problem: “how much is a source unit matched to a target unit subject
to mass conservation constraints”

< Pros: Supports the idea of privileged axes: Individual neurons have specific tuning directions
that matter mechanistically and should not be arbitrarily remixed.

<+ Cons: Mass constraint means that every model unit gets the same mass that has to be
distributed somewhere
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Nonlinear mapping

Idea: Use a neural network (transformer, convnet, etc) to learn the brain data from the stimuli or model features

< Predict neural data using back propagation

< Pros: Very useful for engineering purposes where explanation does not matter as much as

prediction accuracy

% Cons: not great for forming theories and answering questions about the brain

Model features

Stimuli
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Selecting the right method

What is your goal?

Studying the brain -> linear mapping methods, RSA, CKA, etc

Building a model of the brain -> nonlinear mapping (brain foundation models)



Selecting the right method (for studying the brain)

Symmetry vs bidirectionally

Vv oy

Vv v v

Symmetry

e Many metrics are symmetric by definition (RSA, CKA, soft matching)
* Problem: we have access to all model units but often only a small amount of brain units

Vv v oY

Bidirectionally

e Brain-brain transform is not symmetric, why should model-brain be?



The inter animal transform class (IATC) framework

» |dentify the narrowest class of transforms that maps
responses between subjects for a given brain area and
species.

* The right class of transform should be:

Predictive
* Maximally predict neural responses

Strict

 Distinguish brain areas while recognizing the
same areas across subjects

“how well can the model masquerade
as a member of the population?”

Thobani et al, 2025



Assessing same-area similarity in a model population

Linear Regression, Same Layer Between Model Subjects
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Model: Modified AlexNet

» Trained with contrastive learning
« Softplus activation function +
Poisson-like noise
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vary the random seed
controlling initialization
and training data order.

Zippering effect

Thobani et al, 2025



Assessing same-area similarity in a model population

Model: Modified AlexNet

» Trained with contrastive learning
« Softplus activation function +
Poisson-like noise

Population simulation:
vary the random seed
controlling initialization
and training data order.

New transform class:
The zippering transform

excitatory post
synaptic pote

Linear Regression, Same Layer Between Model Subjects
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Thobani et al, 2025



Applying IATC to the mouse neural data

Dataset

*Neuropixel recordings for 31 subjects
*6 brain areas

* The mice passively viewed 118 different visual stimuli.



Applying IATC to the mouse neural data
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Applying IATC to the mouse neural data

A Mouse visua | area
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JATC Guided Model Separability
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JATC Guided Model Separability
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JATC Guided Model Separability

O

0.15

o
A
o

' s

,I

Soft Mat

(Ar)

0.05

Model separability

0.00

Model-to-brain & :°

_|

g

L
chin

0.20

0.15

0.10

0.05

0.00

Soft

Brain-to-model ©

LWL
—
&

ipperin

Z

te:

RSA

0.15

0.10

0.05

0.00

Bidirectional

- -

O)

_Ac

tch

I
|
d

Soft M

.........
____________

ippering

Z

RSA




Noise In neural data

e A fundamental challenge in evaluating the performance of NN models lies in the noise inherent in
empirical data

e Examples of noise:
- Motion artifacts (head motion)
- Attention fluctuations
- Arousal
- Eye movements

 Why does this matter?

- If a model only captures 20% variance in the data, this could indicate poor model performance.
- If there is a high degree of noise, 20% may be as good as it gets.



Noise celling estimates: Inter animal vs cross animal

Inter animal spit-half reliability

e Common for evaluating individual participant data when you

have repeats ry, = C()rr(Y(l), Y(2))

» Repeated measurements are divided into two halves and the
responses are correlated.

Brain1 @' %‘
Cross animal S (=

\\\§'

* Fundamental question: How do we decide how to measure similarity across different animals?
» Use the IATC framework to find the right class of transforms




