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Outline

•  Comparison methods

1. The early days 

‣Examples: subjective comparisons, sparsity, response properties.

2. Using stimulus-by-stimulus similarity matrices. 
‣Examples: RSA, CKA

3. Learning a mapping from models to neural data. 
‣Examples: One to one matching, linear regression, procrustes, soft matching, nonlinear mapping

•  Selecting the right method:


‣Bidirectionally vs symmetry. 

‣Using IATC for choosing the correct metric


•  Noise ceiling estimates 




Why do we compare neural networks to the brain? 

As scientists we care about understanding the brain:


•Does the model encode similar features as neural populations?

•Models allow rapid, large-scale testing of hypotheses that would be infeasible in humans or animals 
(ablation studies)

As engineers we care about building a good model of the brain:


• Is the model solving the task using similar transformations?

•Which architectural or learning constraints are allow us to better explain neural responses.

•Models can inform brain–computer interfaces and personalized treatments.




Early days: subjective comparisons

Neural data 

• Single-unit recordings from area 7a in awake monkeys


• Visual stimulus is flashed at many retinal (x, y) locations 
during fixation


• Firing rate measured for each location

Zipser & Andersen, 1988

Idea: subjectively compare properties in models and neural data 


Zipser & Andersen (1988):  Study how the brain encodes retinal location and eye position together to represent 
object location in posterior parietal cortex.




• 3-layer feedforward trained with 
backpropagation


• Inputs:  
1. Retinal position 

2. Eye position


Neural Network Model 

• Task: Learn head-centered target 
locations 


Zipser & Andersen, 1988



Monkey receptive fields 

Comparing neural data with the model

Zipser & Andersen, 1988

Single peak

Eccentricity

Single peak + complexities

Multi peak



Monkey receptive fields Model receptive fields 

Comparing neural data with the model

Zipser & Andersen, 1988



…“The comparison process contains an element of subjectivity, but it demonstrates that the trained model 
generates retinal receptive fields remarkably similar to the experimentally observed fields.”…

Monkey receptive fields Model receptive fields 

Comparing neural data with the model

Zipser & Andersen, 1988



Early days: comparing sparseness

Rolls & Tovee, 1995

Idea: Move beyond subjective comparison by comparing 
sparseness and population statistics

Neural data 
• Single-unit recordings from macaque IT 

• Monkeys viewed large “diverse” sets of complex visual 

stimuli (objects, faces, scenes)

Rolls & Tovee (1995): Are object representation in IT 
encoded using a dense, localist, or sparse distributed code?



Face stimuli

Non-face stimuli

All images

Results 

Representational theories  

1.Dense distributed coding: Many neurons active for most stimuli

2.Localist (grandmother-cell) coding: One neuron per object

3.Sparse distributed coding: Few neurons active per stimulus
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• “Which class of representations could plausibly 
generate these neural response statistics?”

"The mean response sparseness of 0.60 of this population of face-selective neurons indicates that, within the 
class faces, these neurons implement distributed encoding” 

Comparing neural data with theory 

• Lifetime sparseness: how selectively a neuron 
responds across a large set of different visual 
stimuli over its lifetime. 

Distribution of lifetime spareness



Early day: Comparing response properties

Idea: compare tuning properties of cells with those of 
networks  

De Valois et al. (1982): 

- How selectively do V1 neurons respond to different 

spatial frequencies in sine gratings? (Are V1 neurons 
bandpass filters?) 


Neural data 
• single-unit recordings from macaque V1 
• Present sinusoidal gratings at many orientations and 

spatial frequencies

• Spatial frequency = Number of cycles (dark-light)/ visual 

angle (degrees)



Comparing results to neural networks 

◦ Neurons span a wide range of preferred 
spatial frequencies

◦ Many neurons are narrowly tuned
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Comparing results to neural networks 

Compare distributions of peak 
SF in model and neural data 

u1
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.

SF1 SF2 SF3 .    .    .  

◦ Neurons span a wide range of preferred 
spatial frequencies

◦ Many neurons are narrowly tuned

Input the same grating stimuli to a trained model



Brain score platform

www.brain-score.org



2. Using stimulus-by-stimulus similarity matrices
❖ Compare representations via stimulus–stimulus relationships


❖ Ignore neuron-to-neuron correspondence entirely


n1
n2
n3
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Example: Representational Similarity Analysis (RSA)

❖ “Do two systems organize stimuli in the same geometric way?

Kriegeskorte et al, 2008
RDMX

RSA(X, Y) = corr(rX, rY)

RDMY

❖ Cons: Very similar systems (up to a linear transform) can look very 
different under RSA

❖ Pros: For the first time allowed comparison between any systems as 
long as the stimuli was the same. Also doesn’t need any training params.



Example: RSA

Kriegeskorte et al, 2008

r=0.49



Example: Centered Kernel Alignment (CKA)
❖ Similar method to RSA, but operates on similarities rather than 

distance


❖ Computes cosine similarity between centered gram matrices

KX = CXX⊤C

CKA(X, Y ) = cos(∠(KX, KY))

KY = CYY⊤C

Gram matrix for X is: 
XX⊤ ∈ ℝn×n

❖ Pros: more flexible than RSA, invariant to rotation, scaling


❖ Cons: Similar systems (up to a linear transform) can look different 
under CKA.



3. Learning mappings from the model to the brain 

   , 





X ∈ ℝn×Nx Y ∈ ℝn×Ny

Rows = stimuli, Columns = neurons / features

X Y

…

n1
n2
n3

•Goal: Find the best mapping from X to Y. 

•Most methods focus on learning a linear mapping


•Let X be the model representations, and Y the 
neural responses to the same set of stimuli.




Hung et al, 2005

Why Linear Mapping?



Hung et al, 2005

Behavior

Linear transform

Linear transform

Linear transform

Why Linear Mapping?



Example: One to one mapping
Idea: for 2 systems to be similar their parts should be similar

X
Y

n1

n2

n3

X

Features …



Example: One to one mapping
Idea: for 2 systems to be similar their parts should be similar

Linear regression 

X
YY’

n1

n2

n3

n1

n2

n3

X

Features … …

❖ For each neuron, find the model unit with the highest correlation, then compute the optimal 
linear mapping from neuron to model unit


❖ Each model unit can be matched with multiple neurons



Example: One to one mapping
Idea: for 2 systems to be similar their parts should be similar

Linear regression 

X
YY’

n1

n2

n3

n1

n2

n3

X

Features … …

❖ Pros: Simple and strict, effective for comparing very similar regions 
where parts of the system are consistent across individuals (ex: retina)


❖ Cons: Most brain areas don’t have the exact same units in different 
subjects (ex: IT)

❖ For each neuron, find the model unit with the highest correlation, then compute the optimal 
linear mapping from neuron to model unit


❖ Each model unit can be matched with multiple neurons

Compare 



Example: Linear Regression
Idea: Find linear combinations of model units that together produce a 'synthetic neuron'

Linear regression 

X YY’

n1

n2

n3

n1

n2

n3

Features

❖ Learn a mapping from all model units to each target neuron. 
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Example: Linear Regression
Idea: Find linear combinations of model units that together produce a 'synthetic neuron'

X YY’

n1

n2

n3

n1

n2

n3

Compare

Features

❖ Pros: More flexible than RSA & one to one matching, not prone to errors when systems are similar 


❖ Cons: Need to train parameters

❖ Learn a mapping from all model units to each target neuron. 

Linear regression 



Yamins & DiCarlo, 2016

Example: Linear Regression



Example: Soft Matching

P⋆
ij = arg min

P≥0 ∑
i,j

Pij Mij

Idea: Match individual model units to individual neurons without requiring an exact one to one match

Mij = 1 − corr(xi, yj),

X Y

n1

n2

n3

Features
Use OT and 

compare distance

SMD(X, Y) =
Nx

∑
i=1

Ny

∑
j=1

P⋆
ij Mij

Khosla & Williams, 2023

❖ Solve an Optimal Transport (OT) problem: “how much is a source unit matched to a target unit subject 
to mass conservation constraints”



Example: Soft Matching
Idea: Match individual model units to individual neurons without requiring an exact one to one match

X Y

n1

n2

n3

Features
Use OT and 

compare distance

❖ Pros: Supports the idea of privileged axes: Individual neurons have specific tuning directions 
that matter mechanistically and should not be arbitrarily remixed.


❖ Cons: Mass constraint means that every model unit gets the same mass that has to be 
distributed somewhere

Khosla & Williams, 2023

❖ Solve an Optimal Transport (OT) problem: “how much is a source unit matched to a target unit subject 
to mass conservation constraints”



Nonlinear mapping 

Non linear mapping

X YY’

Compare

❖ Pros: Very useful for engineering purposes where explanation does not matter as much as 
prediction accuracy 


❖ Cons: not great for forming theories and answering questions about the brain  

❖ Predict neural data using back propagation

X

Or

Stimuli

Model features

Idea: Use a neural network (transformer, convnet, etc) to learn the brain data from the stimuli or model features



Selecting the right method

What is your goal?  

Studying the brain -> linear mapping methods, RSA, CKA, etc 

Building a model of the brain -> nonlinear mapping (brain foundation models)



Selecting the right method (for studying the brain)

Bidirectionally 

Symmetry vs bidirectionally 

• Brain-brain transform is not symmetric, why should model-brain be?

Symmetry

• Many metrics are symmetric by definition (RSA, CKA, soft matching)

• Problem: we have access to all model units but often only a small amount of brain units



Thobani et al, 2025

•  Distinguish brain areas while recognizing the 
same areas across subjects

• Maximally predict neural responses

•The right class of transform should be: 

Predictive

Strict

“how well can the model masquerade 
as a member of the population?”

The inter animal transform class (IATC) framework

•  Identify the narrowest class of transforms that maps 
responses between subjects for a given brain area and 
species.



Assessing same-area similarity in a model population

Thobani et al, 2025

Model: Modified AlexNet 

•Trained with contrastive learning 
•Softplus activation function + 
Poisson-like noise 

Population simulation: 
vary the random seed 
controlling initialization 
and training data order.

Zippering effect



Assessing same-area similarity in a model population

Thobani et al, 2025

Model: Modified AlexNet 

•Trained with contrastive learning 
•Softplus activation function + 
Poisson-like noise 

Population simulation: 
vary the random seed 
controlling initialization 
and training data order.

New transform class:
The zippering transform

excitatory post 
synaptic potentials



Dataset

•Neuropixel recordings for 31 subjects

•6 brain areas

•The mice passively viewed 118 different visual stimuli.

Applying IATC to the mouse neural data



Applying IATC to the mouse neural data



Applying IATC to the mouse neural data



Applying IATC to the mouse neural data

a(i): within-area dissimilarity
b(i): between-area dissimilarity

Good specificity: low a(i) and high b(i)



IATC Guided Model Separability 



IATC Guided Model Separability 



IATC Guided Model Separability 



Noise in neural data

• A fundamental challenge in evaluating the performance of NN models lies in the noise inherent in 
empirical data

• Examples of noise:
- Motion artifacts (head motion)
- Attention fluctuations
- Arousal
- Eye movements

• Why does this matter?

- If a model only captures 20% variance in the data, this could indicate poor model performance. 
- If there is a high degree of noise, 20% may be as good as it gets.



Noise ceiling estimates: Inter animal vs cross animal

• Common for evaluating individual participant data when you 
have repeats rsh = corr(Y(1), Y(2))

Inter animal spit-half reliability

• Fundamental question: How do we decide how to measure similarity across different animals?

‣ Use the IATC framework to find the right class of transforms

Cross animal

• Repeated measurements are divided into two halves and the 
responses are correlated.

Brain1 Brain1

Brain1 Brain2


