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Yamins* and Hong* et. al. PNAS (2014)
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Model early layers are best explanation 
of  fMRI data in V1.  (with Darren 
Seibert and Justin Gardner)

Layer-area correspondence

Similar result:    Guclu & Van Gerven (2015)Kaligh-Razavi and Kriegeskorte (2014)

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:
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A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:
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A = architecture class = circuit neuro-
                                   anatomy   

1.

2.
T = task/objective = ecological niche

3.
D = dataset = environment

4.
L = learning rule = natural selection 
                    +  synaptic plasticity

Four Principles of Goal-Driven Modeling

solving

situated in

updating according to

A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:
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Big Problems in Each Area *bad = obviously deeply wrong as model of the brain
or behavior

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

❌bad

❌bad

❌bad

❌bad

PROBLEM

TOO MUCH LABELLED DATA REQUIRED!!?

BACKPROP AND ITS DISCONTENTS

REAL NOISY VIDEO DATASTREAMS vs 
STEREOTYPED CLEAN STILL IMAGES

e.g. CNNs

e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.

RECURRENCE and FEEDBACK!!?



Effective proxy, but just obviously deeply wrong. 

There’s just no way that these creatures receive millions of high-level semantic 
labels during learning. 

The Supervision Problem



The Problem

There’s just no way that these creatures receive millions of high-level semantic 
labels during learning. 

Effective proxy, but just obviously deeply wrong. 

Must find some sort of semi-, self-, or 
unsupervised loss function / task that is 

“realistically costly” to the creature but is 
sufficiently powerful that it constructs useful 

representations.  
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Survey of Unsupervised Methods

Generic:
‣Clustering
‣Mixtures
‣Factorization
‣Manifold learning

Semi-generic:
‣Auto encoders
‣BiGANs

Not generic:
‣Other problem-domain specific stuff



Survey of Unsupervised Methods: Clustering

Clustering:  assign datapoint to natural groups based on the 
way the data is laid out. 

Some of the many methods of clustering



Survey of Unsupervised Methods: Clustering

K-means (Lloyd’s algorithm)

k = number of clusters

C = partition into clusters

= mean of i-th clusterµi

C assignment chosen (‘learned’) 
to minimize:

1 parameter, k,  learned via 
supervision

kX

i=1

X

x2Ci

||x� µi||2 =
kX

i=1

|Ci| · V ar(Ci)



Survey of Unsupervised Methods: (Linear) Factorization

PCA



Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)

x = A · s
siwhere the      are statistically independent signals



Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)

x = A · s
siwhere the      are statistically independent signals



Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
Woman speaking
Car accelerating
Biting and chewing
Laughing
Typing
Car engine starting
Running water
Breathing
Keys jangling
Dishes clanking
Ringtone
Microwave
Dog barking

Road traffic
Zipper
Cellphone vibrating
Water dripping
Scratching
Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking
Car horn
Writing
Computer startup sound
Background speech
Songbird
Pouring water
Pop song
Water boiling

Guitar
Coughing
Crumpling paper
Siren
Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum
Wind
Boy speaking
Chair rolling
Rock song
Door knocking

.

.

.

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott

fMRI response data collected* on 165 commonly heard natural sound stimuli. 

Survey of Unsupervised Methods: Factorization



Response Magnitude

11065 Voxels

16
5 

So
un

ds

For each voxel, measured average response to each sound:

Data matrix:   voxels  X  sounds. 

Survey of Unsupervised Methods: Factorization



Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)

x = A · s
siwhere the      are statistically independent signals

Norman-Haigniere, et. al. 2015



Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)
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X

ij

(Xij � (W ·H)ij)
2

X ⇠ W ·H W,H � 0

Sebastian Seung

minimize:
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Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)

1

2

X

ij

(Xij � (W ·H)ij)
2

X ⇠ W ·H W,H � 0

Sebastian Seung

minimize:

1

2

X

ij

(Xij � (W ·H)ij)
2 + ↵(||W ||1 + ||H||1)regularization:



Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)



Survey of Unsupervised Methods: Autoencoders

......

...

...

...

...

... ...

encoder decoder

||X � X̂||2 + Penalty(H(X))

X X̂

Loss = 
reconstruction                  complexity metric



Survey of Unsupervised Methods: Autoencoders

......

...

...

...

...

... ...

encoder decoder

||X � X̂||2 + Penalty(H(X))

X X̂

Loss = 
reconstruction                  complexity metric

Various penalties: 

H(X)

- low dimensionality of H(X) e.g. compression

- Penalty(X) = |X|, e.g. activation sparseness

- Penalty(X) = KL divergence to some simple distribution 

Parameters:  whatever the parameters of the encoder & decoder are. 



Survey of Unsupervised Methods: Autoencoders

......

...

...

...

...

... ...

encoder decoder

X X̂

original method:     

H(X)

“dictionary” learned offline
by e.g. backdrop            

reconstruction weights 
estimated “online” in 

an inner loop (no params)        

modern method:     “dictionary” learned offline
by e.g. backprop            

also learned via backprop 
parametrizing FF neural 

network



Sparse Coding Foldiak, Olshausen,    
      mid 1990s

→neurons have to represent their 
environment, as efficiently as possible

L(x) = |x�O(H(x))|2 + � · |H(x)|

...

LN

LN

LN

LN

LN

LN

...

x

hidden layer 
H(x) output layer 

O(H(x))

parameters

Survey of Unsupervised Methods: Sparse Autoencoders
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→neurons have to represent their 
environment, as efficiently as possible

L(x) = |x�O(H(x))|2 + � · |H(x)|

...

LN

LN

LN

LN

LN

LN

...

x

hidden layer 
H(x) output layer 

O(H(x))

parameters

Survey of Unsupervised Methods: Sparse Autoencoders



Survey of Unsupervised Methods: Variational Autoencoders

......

...

...

...

...

... ...X

z

X̂

encoder decoder

X

z

q(z|x) log p(z, x)

q(z|x)

want to 
minimize 

X

z

q(z|x) log p(x|z)p(z)
q(z|x)= 

Bayes rule

= 
property of logarithms

= 
definition of “expectation" and KL divergence

�log(p(x̂)) ≤ − −

�
X

z

q(z|x) log p(z)

q(z|x) �
X

z

q(z|x) log(p(x|z))

�Ez[log p(x|z)] +KL(q(z|x)||p(z))



Survey of Unsupervised Methods: Variational Autoencoders

......

...

...

...

...

... ...X

z

X̂

encoder decoder

z = (“identity”, 
“gender”, “age”, 
“expression”)

just need dataset varying with the four variables, and the decision to use one 
uniform and and three gaussian knobs … automatically discovers them



Survey of Unsupervised Methods:  Context Prediction

This is a discrete 
classification task. 



Survey of Unsupervised Methods:  Context Prediction



Survey of Unsupervised Methods:  Context Prediction



Survey of Unsupervised Methods:  Colorization
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Survey of Unsupervised Methods:  Colorization
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Survey of Unsupervised Methods:  Rotation



Survey of Unsupervised Methods:  Rotation

Colorization, jigsaw, rotation, &c approaches are of this form

X 7! f✓(X)

f✓(X)

✓

ex:                   =  rotation by 

f✓(X)ex:                   =  masking (e.g. jigsaw) at some location(s)

f✓(X)ex:                   =  grayscaling (no dependence on theta)

Key common feature of colorization, jigsaw, rotation, &c approaches:  no 
dependence on X is allowed.  Only              is given as input for figuring out    .f✓(X)

✓

. . . unlike auto-encoders.   Giving X makes the problem too easy. 

Goal: from             , predict                            f✓(X) ✓



......

...

...

...

...

... ...

encoder decoder

Loss = 
reconstruction                      complexity metric

Xt
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Lotter et al. 2017
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Auto-Encoding like methods: Predictive Coding
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van den Oord et al. 2018

Auto-Encoding like methods: 
Contrastive Predictive Coding
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Downstream Task Performance

Images Downstream Tasks

Pretrained DCNN
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AutoEncoder, PredNet, and CPC show 
relatively poor downstream performance

Object SizeObject Position
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Best Pearson correlations across all layers are reported

AutoEncoder is only good for V1
CPC is good for V1, not bad in V4 and IT
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Self-supervised tasks show 
slightly better downstream performance

Hong et al. 2016
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Self-supervised tasks show 

better V4 and IT neural predictivity

Best Pearson correlations across all layers are reported



0.76

0.73

0.70

N
oi

se
-C

or
re

ct
ed

 
P

re
di

ct
iv

ity

0.84

0.77

0.70

0.80

0.40

0.60

ITV4V1

A
ut

o-
E

nc
od

er
U

nt
ra

in
ed

In
st

. R
ec

og
.

S
im

C
LR

Lo
ca

l A
gg

.

P
re

dN
et

C
P

C

R
el

at
. P

os
.

C
ol

or
.

Su
pe
rv
is
ed

55

Still, none of the algorithms show good 
task performance and IT predictivity.
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Contrastive learning tasks

High-level idea of these methods: make the representations 
non-trivially robust to data augmentations
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Contrastive learning tasks: Instance Recognition

Wu et al. 2018

DCNN
Further

Closer
Augmented InputRaw Input

t-2t-1

Running 
Averages

Embedding 
(128D)
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Contrastive learning tasks: Instance Recognition

Wu et al. 2018

DCNN
Further

Closer
Augmented InputRaw Input

t-2t-1

Running 
Averages

Embedding 
(128D)
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Contrastive learning tasks: Instance Recognition

Wu et al. 2018

DCNN
Further

Closer
Augmented InputRaw Input

t-2t-1

Running 
Averages

Embedding 
(128D)

Robust Recognition to Data Augmentations
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Contrastive learning tasks: Instance Recognition

Wu et al. 2018

DCNN
Further

Closer
Augmented InputRaw Input

t-2t-1

Running 
Averages

Embedding 
(128D)

Avoid Collapsing through Spreading across the Space
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Why separating everything given that there are 
naturally examples within the same category?

DCNN
Further

Closer
Augmented InputRaw Input

t-2t-1

Running 
Averages

Embedding 
(128D)



 

Constrastive Embedding Models

Chengxu Zhuang

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

Zhuang et al.  Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.11581

 Zhuang et al.  Unsupervised Learning from Video with Deep Neural Embeddings. (CVPR 2020)
https://arxiv.org/abs/1905.11954

Zhuang et al. Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS, 2021)

http://github.com/neuroailab/tnn
https://arxiv.org/abs/1905.11581
https://arxiv.org/abs/1905.11954
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Zhuang et al. 2019a

Local Aggregation

DCNN

Augmented InputRaw Input
Embedding 

(128D)

Backgroud
Neighbors

Other
Neighbors
(not used in loss)

Close
Neighbors
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Zhuang et al. 2019a

DCNN

Augmented InputRaw Input
Embedding 

(128D)

Backgroud
Neighbors

Other
Neighbors
(not used in loss)

Close
Neighbors

Dynamic 
neighbor 

identification

Close neighbor
Background 

neighbor
Other neighbor

Embedding Space

Dynamic neighbor identification in the embedding space for each image.

Local Aggregation
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Zhuang et al. 2019a

DCNN
Further

Closer
Augmented InputRaw Input

Embedding 
(128D)

Backgroud
Neighbors

Other
Neighbors
(not used in loss)

Close
Neighbors

Locally aggregate the close neighbors and the current image.

Local Aggregation
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Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

eg. increase probability of 
being clustered together, 
if close in neural code

“neural code” spaceProgressively modify network synapses to minimize:

Before training…

Family of new methods from unsupervised learning called 
deep contrastive embeddings.

L(C,B) = � log
P (C \B)

P (B)

Constrastive Embedding Models
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Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

L(C,B) = � log
P (C \B)

P (B)

eg. increase probability of 
being clustered together, 
if close in neural code

... after training… after training

“neural code” spaceProgressively modify network synapses to minimize:

Family of new methods from unsupervised learning called 
deep contrastive embeddings.

Constrastive Embedding Models



Chengxu
Zhuang

We have achieved substantial boost above previous state-of-the-art
using a method we call Local Aggregation. 

New Unsupervised Method: Local Aggregation

Close Neighbors

Background 
Neighbors

Embedding SpaceEmbedding Space ... after training. . . after training

. . .

Allows similar points to move closer while pushing dissimilar points further away

SotA unsupervised results on ImageNet by a large margin
(Better ImageNet transfer performance >> supervised AlexNet)

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)
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New Unsupervised Method: Local Aggregation

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

Performance increases not just on object categorization but also many 
other visual tasks … suggesting general improvement in representation. 
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New Unsupervised Method: Local Aggregation

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)
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New Unsupervised Method: Local Aggregation

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

Performance increases not just on object categorization but also many 
other visual tasks … suggesting general improvement in representation. 
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Comparison to Neural Data

Chengxu
Zhuang

How well does it match neural data? 

V1 data from Cadena et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images PLoS Comp. Bio., (2019)

V4 & IT data from Majaj et al.  Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance J. Neurosci. (2015)

https://journals.plos.org/ploscompbiol/article?rev=2&id=10.1371/journal.pcbi.1006897
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Quantitatively accurate unsupervised model 
of a higher brain area.

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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Deep Contrastive Embeddings
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Chengxu
Zhuang

Can also measure “anatomical mapping consistency”:

Auto-Encoder
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2. ❌bad

Actually they do get SOME labels …. 

T = task/objective

e.g. Object Categorization

The Supervision Problem



New Semi-supervised Method: Local Label Propagation
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Zhuang
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Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.11581
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LLA(C,B|✓) = L(C,B|✓) + �||✓||22recall:

Lsemi(x|✓) ⇠ confidence(ypseudo) · [LLA(x|✓) + LCross-Ent(y, ypseudo)]

Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.11581

New Semi-supervised Method: Local Label Propagation

https://arxiv.org/abs/1905.11581


Rajalingham, et al. Large-scale, high-resolution comparison of the core visual object 
recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. 

Journal of Neuroscience 38.33 (2018): 7255-7269.
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Quantitatively accurate unsupervised model 
of a higher brain area.

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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not really better!

how to fill 
the gap???



Take-aways:

Contrastive unsupervised approaches finally have largely 
made up the “supervision gap” in performance & neural fits. 



This is more like what real visual experience looks like:

Clerkin, Hart, Rehg, Yu, & Smith (2017)
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Q: How would you use this dataset to learn a representation? 

Mono video and audio channels

Contrastive Embeddings in the Wild
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Learning from real datastreams

Learning from real kids’ data is a harder problem than learning 
from ImageNet because:

1. online vs buffered/randomized
2. many fewer distinct examples 
3. but from wider variety of viewpoints



Mike Frank

SAYCam Dataset:

Three infants aged 6-32 months

Head-mounted camera

~2 hours per week

Q: How would you use this dataset to learn a representation? 

Mono video and audio channels

Learning from real datastreams

A: Extend deep embedding approach to videos?
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 Unsupervised Learning from Video with Deep Neural Embeddings.
(CVPR 2020) https://arxiv.org/abs/1905.11954

Learning from real datastreams

https://arxiv.org/abs/1905.11954


SAYCam Dataset:
Head-mounted camera, 3 infants aged 6-32 months

 Unsupervised Learning from Video with Deep 
Neural Embeddings.

(CVPR 2020) https://arxiv.org/abs/1905.11954
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neurons substantially than stronger alternatives (predictive coding)

Learning from real datastreams

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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Learning from real datastreams

Advantage to video compared to still-frames

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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Video learning from SAY-Cam with deep contrastive embeddings predicts 
neurons substantially than stronger alternatives (predictive coding)

Learning from real datastreams

Advantage to video compared to still-frames

But, still some gap between training on ImageNet and training on SAY-Cam

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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Deep Contrastive Embeddings,
trained on infant head-cam data, yield models 

that match or exceed training on e.g. ImageNet
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Mike Frank

Possible reasonable model for actual developmental trajectories??

Deep Contrastive Embeddings,
trained on infant head-cam data, yield models 

that match or exceed training on e.g. ImageNet

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo JJ, & Yamins D (2021). 
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)

https://arxiv.org/abs/1905.11954


Big Problems in Each Area

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

❌bad

PROBLEM

TOO MUCH LABELLED DATA REQUIRED!!?

BACKPROP AND ITS DISCONTENTS

REAL NOISY VIDEO DATASTREAMS vs 
STEREOTYPED CLEAN STILL IMAGES

e.g. CNNs

e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.

NO TOPOGRAPHICAL STRUCTURE

*✓ok-ish

*✓ok-ish

*✓ok-ish

*✓ok-ish = harder to reject out of hand
*✓ok = we’ve really nailed it

*bad = obviously deeply wrong
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Problem: Current algorithms trained on 
existing developmentally-appropriate datasets 

don’t learn very strong representations. 
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Since then, many more algorithms have been 
proposed.

Chen et al. 2020
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SimCLR

Chen et al. 2020

MLP Further

Training Input
DCNN

Embedding

DCNN

Closer

FurtherMLP

Current
Batch

Multi-Layer-Perceptron



SimCLR

Chen et al. 2020

MLP Further

Training Input
DCNN

Embedding

DCNN

Closer

FurtherMLP

Current
Batch

Multi-Layer-Perceptron
View 2

View 1

Other images from Memory
(negative samples)
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MoCo v2 (Momentum Contrast)

X. Chen et al. 2020

MLP Further

Training Input
DCNN

Embedding

DCNN

Closer

FurtherMLP

Momentum
Encoder

Encoder

Temporal 
Average

Previous 
Batches

Earlier but More MemorySlower-updated Variant?
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BYOL (Bootstrap Your Own Latent)
Grill et al. 2020

Get rid of “memory” component (negative samples) due to 
implementation/hardware concerns 

Slower-updated Variant?

MLP

MLP

Training Input
DCNN

Embedding
DCNN

Closer

MLP

Momentum
Encoder

Encoder

Temporal 
Average

Predictor
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SwAV (Swapping Assignments between Views)

Caron et al. 2020

More but Abstracted Memory

MLP

Training Input
DCNN

Embedding

DCNN

MLP

Codes

Codes

Prototypes Cross
Predict

Cluster Centroids of 
Previous Batches



Masked Autoencoders (MAEs)



F(img-25%)              ➔              img-all



F(img-25%)              ➔              img-all



Trends:

Remove Memory 

Remove contrasting 







Problem: Current algorithms trained on 
existing developmentally-appropriate datasets 

don’t learn very strong representations. 

Learning from real kids’ data is a harder problem than learning 
from ImageNet because:

1. online vs buffered/randomized
2. many fewer distinct examples 
3. but from wider variety of viewpoints
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Two Main Hypotheses:

The algorithms are insufficient

vs.

The data are insufficient

Until very recently, not enough data to know.

Problem: Current algorithms trained on 
existing developmentally-appropriate datasets 

don’t learn very strong representations. 
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40 Bay Area families
6 months - 3 years
Recording ~5 hours/week 
Custom high resolution 
babycam video+accelerometer
Unprecedented resource for 
studying development

BabyCam++ (~10 child-years)SAYCam (~0.1 child-years)

1 child-year

BabyCam++

Our strategy: Get more data!



now starting her lab at UCSD!

Bria Long
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Text Transcript
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BabyView v2.0 data to be released Sep. 2025

4000+ hours 
Audio/Video/Gyroscope

Text Transcript
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random initialization

ego4D pretraining
BabyView pretraining

Categorization
11,000 years of data
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1. You need other *kinds* of data:
a. other modalities

— audio-visual? (but blind/deaf people learn fine?)

— language? (but monkeys learn vision fine?)

b. embodiment e.g. action streams/joint policy learning

2. You need other kinds of algorithms. 

0.  You just need *more* (developmental, egocentric) data.

(not clear evidence for this)

 A new hypothesis is probably needed.  Like what??


