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Yamins* and Hong* et. al. PNAS (2014)
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Layer-area correspondence

Emergently, AlexNet filters at lowest layer resemble Gabor wavelets:
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3. Model early layers are best explanation
S3 of fMRI data inVI. (with Darren

g2 oz Seibert and Justin Gardner)
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Kaligh-Razavi and Kriegeskorte (2014) Similar result:  Guclu & Van Gerven (2015)



Four Principles of Goal-

Driven Modeling

1.

A = architecture class

2.

T = task/objective

3.

D = datagset

4.

L = learning rule




Four Principles of Goal-Driven Modeling

1 Best proxies thus far for ventral stream:
A = architecture class A = ConvNets of reasonable depth
2.
T = task/objective T = multi-way object categorization
3.
D = dataset D = ImageNet images
4. | |
— , L = evolutionary architecture search +
L = learning rule filter learning through gradient descent




Four Principles of Goal-Driven Modeling

Best proxies thus far for ventral stream:

1 [ ]

A = architecture class = circuit neuro-
anatomy

2.

T = task/objective = ecological niche

3.

D = dataset = environment

4.

L = learning rule = natural selection
+ synaptic plasticity

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search +
filter learning through gradient descent



Four Principles of Goal-Driven Modeling

1.

Best proxies thus far for ventral stream:

A = architecture class = circuit neuro-

anatomy
< solving
2.

T = task/objective = ecological niche

< situated in
3.

D = dataset = environment

< updating according to
4.

L = learning rule = natural selection
+ synaptic plasticity

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search +
filter learning through gradient descent



“*bad = obviously deeply wrong as model of the brain

Big Problems in Each Area or behavior

1 xbad PROBLEM

A = architecture class
e.g. CNINs

2.
T = task/objective

e.g. Object Categorization

3.

D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : *bad = obviously deeply wron model of the brain
Big Problems Iin Each Area 6 = obviousy deeply WIONE a5 model of fne bre
PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!I?
e.g. CNINs
2.

T = task/objective

e.g. Object Categorization
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D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.
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: : * = obviously deeply wron model of the brain
Big Problems in Each Area ¢~ errewyeeny e s moddorne e
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3. xbad REAL NOISY VIDEO DATASTREAMS vs
D = dataset STEREOTYPED CLEAN STILL IMAGES

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.



: : * = obviously deeply wron model of the brain
Big Problems in Each Area ¢~ errewyeeny e s moddorne e
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3. xbad REAL NOISY VIDEO DATASTREAMS vs
D = dataset STEREOTYPED CLEAN STILL IMAGES

e.g. ImageNet

4. Xbad

L = learning rule BACKPROP AND ITS DISCONTENTS

e.g. Arch. Srch. + Grad. Desc.



The Supervision Problem

There’s just no way that these creatures receive millions of high-level semantic
labels during learning.

Effective proxy, but just obviously deeply wrong.



The Problem

Must fmdéoéte sort of semi-
unsupervised loss function / task
“realistically costly” to the ¢
sufficiently powerful that it cc
\ representations

There’s just no way that these creatures receive millions of high-level semantic
labels during learning.

Effective proxy, but just obviously deeply wrong,



Goal: Developmental Model
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Survey of Unsupervised Methods

Generic:
>Clustering
»Mixtures
»Factorization
>Manifold learning

Semi-generic:
» Auto encoders

*BIGANS

Not generic:
>Other problem-domain specific stuff



Survey of Unsupervised Methods: Clustering

Clustering: assign datapoint to natural groups based on the
way the data is laid out.

Some of the many methods of clustering

MiniBatchKMeansAffinityPropagation =~ MeanShift SpectralClustering Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




Survey of Unsupervised Methods: Clustering

K-means (Lloyd’s algorithm)

k = number of clusters
C = partition into clusters

Hi = mean of I-th cluster

C assignment chosen (‘learned’)
to minimize:

k k
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Survey of Unsupervised Methods: (Linear) Factorization

PCA

&

g
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3

PCA example: Eigen Faces

input: dataset of N face images

4

i

face: K x K bitmap of pixels

e

“fold” into a K x K bitma

“unfold” each bitmap to

= K2-dimensional vector

arrange in a matrix
each face = column

11K2x N

2
P K2 x m

set of m eigenvectors

| each is K2-dimensional



Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)

r=A-s

where the §; are statistically independent signals

Observations (mixed signal)
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Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)
r=A-s

where the §; are statistically independent signals

genfaces - PCA using randomized SVD - Train time 0.:

Independent components - FastlCA - Train time 0.2s




Survey of Unsupervised Methods: Factorization

MRl response data collected™ on 165 commonly heard natural sound stimul.

Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
VWoman speaking
Car accelerating
Biting and chewing
Laughing

Typing

Car engine starting
Running water
Breathing

Keys jangling
Dishes clanking
Ringtone
Microwave

Dog barking

Road traffic

Zipper

Cellphone vibrating
Water dripping
Scratching

Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking

Car horn

Writing

Computer startup sound
Background speech
Songbird

Pouring water

Pop song

Water bolling

Guitar

Coughing
Crumpling paper
Siren

Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum

Wind

Boy speaking
Chair rolling

Rock song

Door knocking

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott



Survey of Unsupervised Methods: Factorization

For each voxel, measured average response to each sound:

165 Sounds

Response Magnitude

ata matrix: voxels X sounds.



Survey of Unsupervised Methods: Factorization

Independent Component Analysis (ICA)
r=A-s

where the §; are statistically independent signals

B Component Voxel Weights Plotted in Anatomical Coordinates
Component 1 Component 2 Component 3 Component 4 Component 5 Component 6

S NS

-24 493 -1.8 412 09 315 -24 495 -5.8 828 22 226

== | Ow-Frequency Primary Area

Significance of Component Voxel Weight (-lo
9 P ght (-ogyglP) High-Frequency Primary Area

D Component Response Profiles to All 165 Sounds Colored by Category

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6
L Speech Music
-‘g 2 |J-I Music ,—l—l“"'.':\' ")l"‘.A“:'.th"'R::.
o | with Vocals W ant .
@ 'L Whistling
= 1 First non-vocal “Teleohone D
sound
3
§ 0
2 All Sounds Tested

Sorted by Component Response Magnitude, Colored By Category Labels

B 'nstr. Music [} English Speech il NonSpeech Vocal [} Human NonVocal [] Nature [l Env. Sounds
Bl Vocal Music ] Foreign Speech [l] Animal Vocal B Animal NonVocal [l Mechanical

Norman-Haigniere, et. al. 2015



Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)

Sebastian Seung 7



Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)

mMiNIMIze; % Z(X” — (W ' H)ij)2
©]

Sebastian Seung

genfaces - PCA using randomized SVD - Train time 0. Non-negative components - NMF - Train time 0.3s




Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)
X~W-H W, H >0

minimize; —Z ij — W H)@J)

Sebastian Seung

genfaces - PCA using randomized SVD - Train time O.: Non-negative components - NMF - Train time 0.3s

regularization:



Survey of Unsupervised Methods: Factorization

Non-negative Matrix Factorization (NMF)

NEUVRURCOUVUURLWE

Simultaneous Denoising, Deconvolution, and Demixing of Calcium
Imaging Data
Eftychios A. Pnevmatikak L ! Daniel Soudry, Yuanjun Gao, Timothy A. Machado, Josh Merel, David Pfau, Thomas Reardon, Yu Mu,

Clay Lacefield, Weijian Yang, Misha Ahrens, Randy Bruno, Thomas M. Jessell, Darcy S. Peterka, Rafael Yuste, Liam Pan ns<L .
Published Online: January 07, 2016
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Open Archive
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Survey of Unsupervised Methods: Autoencoders
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Loss = || X — X||? + Penalty(H (X))

reconstruction complexity metric



Survey of Unsupervised Methods: Autoencoders

y H(X)
'-) ‘ i l LS ‘
i e-=—al

encoder

Loss = || X — X||? + Penalty(H (X))

reconstruction complexity metric

Various penalties:
- low dimensionality of H(X) e.g. compression

- Penalty(X) = |X|, e.g. activation sparseness

- Penalty(X) = KL divergence to some simple distribution

Parameters: whatever the parameters of the encoder & decoder are.



Survey of Unsupervised Methods: Autoencoders

i

‘N

encoder decoder

l l

reconstruction weights
estimated “online” in
an inner loop (no params)

“dictionary” learned offline

original method: by e.g, backdrop

also learned via backprop
parametrizing FF neural
network

“dictionary” learned offline

modern method:
by e.g. backprop



Survey of Unsupervised Methods: Sparse Autoencoders

hidden layer
H(x) output layer
| O(H(x))

L\

N

parameters

L(z) = |z — O(H(z))[* + A - |H(2)]

Sparse Coding Foldiak, Olshausen, —neurons have to represent their
mid 1990s environment, as efficiently as possible



Survey of Unsupervised Methods: Sparse Autoencoders

hidden layer
H(x) output layer

X O(H(x
/.

N ESSNNm®?Z2
=SNNMI % #Z

=xN\un7z

/ : - -\

\T 7
parameters
2
L(z)=|x—OH(x))|*+ X-|H(z)
Sparse Coding Foldiak, Olshausen, —neurons have to represent their

mid 1990s environment, as efficiently as possible
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Survey of Unsupervised Methods: Variational Autoencoders

x = E-»m:;( B
want 16 encoder
minimize Bayes rule (2 2)p(2)
A p(z, ) plx|z)plz
—log(p(x)) =< —Z:Q(ZISB) log " Ty = —Z;Q(Z\QS) log =)

property of logarithms

= =3 alelo)log 2L = 3 aelo) log(aal2)

z

definition of “expectation" and KL divergence

= —F,|logp(z|z)] + KL(q(z|z)||p(2))



Survey of Unsupervised Methods: Variational Autoencoders

-> /
— ‘“ m
X . <
i L
2 = (“identity’

“gender’, "age’,
“expression’)

just need dataset varying with the four variables, and the decision to use one
uniform and and three gaussian knobs ... automatically discovers them



Survey of Unsupervised Methods: Context Prediction

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Abhinav Gupta, Alexei A. Efros
(Submitted on 19 May 2015 (v1), last revised 16 Jan 2016 (this version, v3))

Example: . :-"_: :"-.:
bans Laas

. - B

MY >4 R

R T R T

I I 1 I

1 11 11 1

VOC-2007 Test | scro bike bard boat bottle bus  car  cat char cow table dog horse mbike person plant sheep sofa tramn v | mAP

DPM-vS[ | 33.2 603 102 161 273 545 82 230 200 241 267 127 S8.1 482 432 120 21.1 361 460 435[ 357

(7] wio context 526 526 192 254 187 47.5 69 421 166 414 419 277 419 =15 299 00 41.1 364 486 532|385

Regionlets[~ | S4.2 520 203 240 201 555 687 426 192 442 491 266 S0 =45 434 164 366 510 594 525|417

Scratch-R-CNN[1] | 499 60.6 247 237 203 3525 648 329 204 435 342 299 49.0 604 415 280 4235 286 512 SO0 | 40.7

o . Scratch-Ours 526 605 238 243 181 506 659 202 195 435 352 276 465 594 465 256 424 235 500 S0.6] 398
Th|S IS a d|SC|"e‘te Ours-projection S84 628 335 277 244 585 685 412 263 495 426 373 557 625 494 290 475 284 547 S68| 457
Ours-color-dropping | 60.5 665 296 285 263 56.1 704 448 246 455 454 351 522 602 300 281 46.7 426 548 586 463

' ' Ours-Yahool(0m 56.2 639 298 278 239 574 698 356 237 474 430 295 529 620 487 284 451 336 490 555 442
C|aSSIﬂcatIOﬂ taSk. TmageNel-R-CNN[. 1] | 64.2 69.7 50 419 320 626 710 607 327 385 465 561 606 668 542 315 S28 489 370 647 54.2
K-means-rescale [11] 557 600 270 309 120 591 637 470 214 452 558 403 675 612 483 210 328 469 616 51.7] 456

Ours-rescale [ 1] | 619 633 358 326 172 630 6/9 S48 296 524 629 513 671 643 505 244 437 549 611 527 511

ImageNet-rescale [ 1] [64.0 60.6 337 444 249 657 606 692 289 636 628 639 7133 646 358 357 505 554 69.3 564 | 36.5

VGG-K-means-rescale | 56.1 98.6 233 257 128 578 612 452 214 471 395 356 601 614 449 173 377 332 3519 S12[az2a

VGG-Ours-rescale | 71.1 724 541 482 299 752 780 719 383 605 623 681 743 742 648 326 565 664 140 60.3[ 617

VGG-ImageNet-rescale | 6.6 19.6 685 574 408 799 784 854 417 770 693 80.1 786 746 701 375 660 615 114 649 636

Table 1. Mean Average Precision on VOC-2007.



Survey of Unsupervised Methods: Context Prediction

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Abhinav Gupta, Alexei A. Efros
(Submitted on 19 May 2015 (v1), last revised 16 Jan 2016 (this version, v3))

Context Encoders: Feature Learning by Inpainting

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros
(Submitted on 25 Apr 2016 (v1), last revised 21 Nov 2016 (this version, v2))

(c) Context Encoder {d) Context Encoder
(L2 loss) (L2 + Adversarial loss)



Survey of Unsupervised Methods: Context Prediction

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Abhinav Gupta, Alexei A. Efros
(Submitted on 19 May 2015 (v1), last revised 16 Jan 2016 (this version, v3))

Context Encoders: Feature Learning by Inpainting

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros
(Submitted on 25 Apr 2016 (v1), last revised 21 Nov 2016 (this version, v2))

Learning Features by Watching Objects Move

Deepak Pathak'>*, Ross Girshick', Piotr Dolldr’, Trevor Darrell?, and Bharath Hariharan'

'Facebook AI Research (FAIR)
*University of California, Berkeley

-
DR
e

S , . O i .
we s A eahn ST N AN
1. Collect videos 2. Segment using motion 3. Train ConvNet
Figure 2. Overview of our approach. We use motion cues to seg-
ment objects in videos without any supervision. We then train a
ConvNet to predict these segmentations from static frames, i.e.

without any motion cues. We then transfer the learned representa-
tion to other recognition tasks.



Survey of Unsupervised Methods: Colorization

Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros}@eecs.berkeley.edu

University of California, Berkeley

Fig. 1. Example input grayscale photos and output colorizations from our algo-
rithm. These examples are cases where our model works especially well. Please visit
http://richzhang.github.io/colorization/ to see the full range of results and to
try our model and code. Best viewed in color (obviously).



Survey of Unsupervised Methods: Colorization

Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros}@eecs.berkeley.edu

University of California, Berkeley

Fig. 1. Example input grayscale photos and output colorizations from our algo-
rithm. These examples are cases where our model works especially well. Please visit
http://richzhang.github.io/colorization/ to see the full range of results and to
try our model and code. Best viewed in color (obviously).




Survey of Unsupervised Methods: Colorization

Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros}@eecs.berkeley.edu

University of California, Berkeley

/

ILSVRC2012 Linear Classification

Fig. 1. Example input grayscale photos and output colorizations from our algo-
rithm. These examples are cases where our model works especially well. Please visit
http://richzhang.github.io/colorization/ to see the full range of results and to
try our model and code. Best viewed in color (obviously).
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Survey of Unsupervised Methods: Colorization

Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros

{rich.zhang,isola,efros}@eecs.berkeley.edu

University of California, Berkeley

ILSVRC2012 Linear Classification

Fig. 1. Example input grayscale photos and output colorizations from our algo-
rithm. These examples are cases where our model works especially well. Please visit
http://richzhang.github.io/colorization/ to see the full range of results and to
try our model and code. Best viewed in color (obviously).
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Survey of Unsupervised Methods: Rotation

Under review as a conference paper at ICLR 2018

UNSUPERVISED REPRESENTATION LEARNING BY PRE-
DICTING IMAGE ROTATIONS

Anonymous authors
Paper under double-blind review

90° rotation 270° rotation 180° rotation (° rotation

270° rotation
Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the
concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.



Survey of Unsupervised Methods: Rotation

Under review as a conference paper at ICLR 2018

UNSUPERVISED REPRESENTATION LEARNING BY PRE-
DICTING IMAGE ROTATIONS

Anonymous authors
Paper under double-blind review

I
Maxiomize prob. I
FYX’) |

| Predict 270 degrees rotation 0=3)

Figure 2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet model F'(.) to recognize the rotation that is applied to the image that it gets as input.
F¥(X¥") is the probability of rotation transformation y predicted by model F/(.) when it gets as
input an image that has been transformed by the rotation transformation y*.



Survey of Unsupervised Methods: Rotation

Colorization, jigsaw, rotation, &c approaches are of this form

X = fo(X)

Goal: from fg(X') predict @

rotation by @

ex. fo(X)
ex: f@ (X) = masking (e.g. jigsaw) at some location(s)

ex: f@ (X) = grayscaling (no dependence on theta)

Key common feature of colorization, jigsaw, rotation, &c approaches: no
dependence on X is allowed. Only Jo (X) s given as input for figuring out 6.

... unlike auto-encoders. Giving X makes the problem too easy.



ods: Predictive Coding

-

Auto-Encoding like meth

encoder decoder

Loss :HXt—I—l — Xt—|-1 H + Pena'lty(H(Xt))

reconstruction complexity metric

Lotter et al. 2017

48



Auto-Encoding like methods:
Contrastive Predictive Coding

Gar - Output

64 px |

pl—
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Jenc - output
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Zt+ 3l lee -
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 / input image

/)
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/

-7 Predictions

van den Oord et al. 2018
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Downstream Task Performance

0.34

)

~

Categorization

)

Pretrained DCNN

***@ .-

Vertical position
0.66 -

Hong et al. 2016

Three-dimensional
object scale

0.61 -
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Categorization Accuracy
(% correct)
AN
o

(@)
o

AutoEncoder, PredNet, and CPC show
relatively poor downstream performance
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0.76}

Noise-Corrected
Predictivity
=
S

O
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AutoEncoder is only good for V1

CPC is good for V1, not bad in V4 and IT

V1
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Best Pearson correlations across all layers are reported
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Self-supervised tasks show
slightly better downstream performance

Categorization
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Noise-Corrected
Predictivity

Self-supervised tasks show
better V4 and IT neural predictivity

V1 V4 - IT
0.84} s _
S
‘ | - O Z
© ST
0.77} oeof S O
T O OL
| s =
- <3E |
D
| @)
0.70r ‘ 0.40}

Best Pearson correlations across all layers are reported
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none of the algorithms show good

Still

task performance and IT predictivity.
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Contrastive learning tasks

High-level idea of these methods: make the representations
non-trivially robust to data augmentations

56



Wu et al. 2018

Contrastive learning tasks: Instance Recognition

Raw Input

Augmented Input
L~ e S ey LT . |

%
1%
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Wu et al. 2018

Contrastive learning tasks: Instance Recognition

Raw Input

Augmented Input
o R T LT . |

UK Embedding

| | - (128D)
¥ — DCNN ;—»0

-
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Wu et al. 2018

Contrastive learning tasks: Instance Recognition

Robust Recognition to Data Augmentations

t-1 -2

Raw Input

Augmented Input
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Wu et al. 2018

Contrastive learning tasks: Instance Recognition

Embedding _o( 5 HUNNING
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Avoid Collapsing through Spreading across the Space
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Raw Input

Augmented Input
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Constrastive Embedding Models

Chengxu Zhuang

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

Zhuang et al. Local Label Propagation for Large-Scale Semi-Supervised Learning. https.//arxiv.org/abs/1905.1 [ 58|

Zhuang et al. Unsupervised Learning from Video with Deep Neural Embeddings. (CVPR 2020)
https://arxiv.org/abs/1905.1 1954

Zhuang et al. Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS, 2021)


http://github.com/neuroailab/tnn
https://arxiv.org/abs/1905.11581
https://arxiv.org/abs/1905.11954

Local Aggregation

Raw Input

Augmented Input
TN .qg!u.l:!-_ ot M L

s ' Embedding

q - (128D)
. §— DCNN ; —»
. 0 -

Zhuang et al. 2019a
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Local Aggregation

Embedding Space
Raw Input  Augmented Input

Embedding Dy.namlc
- o neighbor
3 | T~ (128D) identification

| -

Close neighbor

Background
neighbor

neighbor

Dynamic neighbor identification in the embedding space for each image.

/huang et al. 2019a
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Local Aggregation

Raw Input Augmented Input

.y Close
} Neighbors

~4@® Backgroud
@ Neighbors

= Other
. » Neighbors

€ (not used in loss)

Locally aggregate the close neighbors and the current image.

/huang et al. 2019a
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Constrastive Embedding Models

Family of new methods from unsupervised learning called
deep contrastive embeddings.

-
Chengxu
Zhuang

Before training. ..
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° ]
hClose Neighbors ~

0oo® .. ¢
Background

Neighbors

Progressively modify network synapses to minimize: ‘neural code” space

P(C M B) eg. Increase probability of
being clustered together,
P(B)

L(C,B) = —log

f close In neural code

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)



Constrastive Embedding Models

Family of new methods from unsupervised learning called
deep contrastive embeddings.
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Chengxu
/huang
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“neural code” space

Progressively modify network synapses to minimize:

P(CNB)

eg. Increase probability of

L(C, B) = — log P(B) being clustered together,

f close In neural code

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)



New Unsupervised Method: Local Aggregation

VWe have achieved substantial boost above previous state-of-the-art

using a method we call Local Aggregation.

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 2019)

Embedding Space

SOtA unsupervised results on ImageNet by a large margin
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New Unsupervised Method: Local Aggregation

Performance increases not just on object categorization but also many
other visual tasks ... suggesting general Improvement in representation. Zhuang

Object Categorization

(o}
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Accuracy
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N
o

Missing-Data Tasks

Deep Contrastive Embeddings

Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 20/9)



New Unsupervised Method: Local Aggregation

Performance increases not just on object categorization but also many
other visual tasks ... suggesting general Improvement in representation. Zhuang
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Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 20/9)



New Unsupervised Method: Local Aggregation

Performance increases not just on object categorization but also many
other visual tasks ... suggesting general Improvement in representation. Zhuang
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Zhuang et al. Local Aggregation for Unsupervised Learning of Visual Embeddings. (ICCV 20/9)



Comparison to Neural Data

How well does it match neural data?
Chéngxu
Zhuang

it Pretrained DCNN Test Per-Site Neural Predictions
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— |l — |l
U] U}

Test Input

Neural Recordings from V1, V4, and IT

100ms
Visual
Presentation

V| data from Cadena et al. Deep convolutional models improve predictions of macaque VI responses to natural images PLoS Comp. Bio,, (2019)

V4 & IT data from Majaj et al. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance J. Neurosci. (2015)



https://journals.plos.org/ploscompbiol/article?rev=2&id=10.1371/journal.pcbi.1006897
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Quantitatively accurate unsupervised model
of a higher brain area.

Zhuang C,Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo |}, & Yamins D (2021).
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)
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The Supervision Problem

2. cg Object Categorization Xbad
T = task/objective

Actually they do get SOME labels ....



New Semi-supervised Method: Local Label Propagation

Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.1 [ 58|
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https://arxiv.org/abs/1905.11581

New Semi-supervised Method: Local Label Propagation

Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.1 [ 58|
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https://arxiv.org/abs/1905.11581

New Semi-supervised Method: Local Label Propagation

Local Label Propagation for Large-Scale Semi-Supervised Learning. https://arxiv.org/abs/1905.1 [ 58|
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https://arxiv.org/abs/1905.11581

Rajalingham, et al. Large-scale, high-resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks.
Journal of Neuroscience 38.33 (2018): 7255-72609.
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Rajalingham, et al. Large-scale, high-resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks.
Journal of Neuroscience 38.33 (2018): 7255-72609.
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Rajalingham, et al. Large-scale, high-resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks.
Journal of Neuroscience 38.33 (2018): 7255-72609.
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) Pretrained DCNN Test Per-Site Neural Predictions

***»

Neural Recordings from V1, V4, and IT

Test Input
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Quantitatively accurate unsupervised model
of a higher brain area.

Zhuang C,Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo |}, & Yamins D (2021).
Unsupervised Neural Network Models of the Ventral Visual Stream. (PNAS)



Take-aways:

Contrastive unsupervised approaches finally have largely
made up the “supervision gap’ In performance & neural fits.



This 1s more like what real visual experience looks like:
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Contrastive Embeddings in the Wild

SAYCam Dataset: a

| Three infants aged 6-32 months ‘.
Mike Frank
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Contrastive Embeddings in the Wild

SAYCam Dataset:

*.

Three infants aged 6-32 months
Mike Frank

Head-mounted camera
Mono video and audio channels

~2 hours per week




Contrastive Embeddings in the Wild

SAYCam Dataset:

*.

Three infants aged 6-32 months
Mike Frank

Head-mounted camera
Mono video and audio channels

~2 hours per week

Q: How would you use this dataset to learn a representation?



Learning from real datastreams

SAY-Cam examples

8-month

| 16-month

9-month

Subject B | Subject B | Subject A | Subject A

20-month



Learning from real datastreams

SAY-Cam examples
Os 4s 8s 12s

. | . Hr . T | e |

_eammg from real kids data is a harder problem than learning

from ImageNet because:

|, online vs buffered/randomized
many fewer distinct examples
but from wider variety of viewpoints

Subject 0
9-mont

Subject B
20-month



Learning from real datastreams

SAYCam Dataset:

*.

Three infants aged 6-32 months

Mike Frank

Head-mounted camera
Mono video and audio channels

~2 hours per week

Q: How would you use this dataset to learn a representation?

A: Extend deep embedding approach to videos!



Learning from real datastreams

Unsupervised Learning from Video with Deep Neural Embeddings.

(CVPR 2020) https://arxiv.org/abs/1905.1 1954 €
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Learning from real datastreams

Video learning from SAY-Cam with deep contrastive embeddings predicts

neurons substantially than stronger alternatives ( )
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Zhuang C,Yan S, Nayebi A, Schrimpf M, Frank M, DiCarlo |}, & Yamins D (2021).
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But, still some gap between training on ImageNet and training on SAY-Cam
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Big Problems in Each Area

*vY ol = we've really nailed it
*vok-ish = harder to reject out of hand
*bad = obviously deeply wrong

1. *vYok-ish
A = architecture class
e.g. CNINs

2. *vok-ish

T = task/objective

e.g. Object Categorization

3. *vok=-ish

D = datagset

e.g. ImageNet

4. Xbad

L = learning rule

e.g. Arch. Srch. + Grad. Desc.

PROBLEM

NO TOPOGRAPHICAL STRUCTURE

TOO MUCH LABELLED DATA REQUIRED!?

REAL NOISY VIDEO DATASTREAMS vs

STEREOTYPED CLEAN STILL IMAGES

BACKPROP AND ITS DISCONTENTS



But still quite imperfect...
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But still quite imperfect...

Qo
)

Untrained
—PredNet-SY

Categorization Accuracy
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Problem: Current algorithms trained on
existing developmentally-appropriate datasets

don't learn very strong representations.
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Chen et al. 2020

Since then, many more algorithms have been

proposed.

A Simple Framework for Contrastive Learning of Visual Representations

1

Ting Chen' Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

Abstract % Supervised #SimCLR (4x)
This paper presents SimCLR: a simple framework g ® *SimCLR (2x)
for contrastive learning of visual representations. § oCPCv2-L
We simplify recently proposed contrastive self- 3 "OF ksimCLR oCMC JMoCo (4x)
supervised learning algorithms without requiring 2 oPIRL-c2x AMDIM
specialized architectures or a memory bank. In " 65 CPCY2 1p|RL_(,J,n;;!V'OCO (2x)
order to understand what enables the contrastive © ‘p":;L o
prediction tasks to learn useful representations, g so} §MoCo °BigBiGAN
we systematically study the major components of S LA
our framework. We show that (1) composition of © .
data augmentations plays a critical rolcli)n defining £ 55 eInstDisc *riotation

106



Chen et al. 2020

SimCLR
Training Input i Embedding
- ST | ! N = |
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-7 'Multi-Layer-Perceptron
Current
Batch
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Chen et al. 2020

SimCLR
o View 1
Training Input  gwae -
TS K : T~ X Embedding
- , —b:D’C’N’N’ ,=—»(MLP=—» [ J W
& Closer
| e - ‘
& | ~ v = .
\ N F ! #:DCNN:#@# . Furtherl ’
y - - ’Multi-Layer-Perceptron

Current
Batch

Other images from Memory
(negative samples)
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X. Chen et al. 2020

MoCo v2 (Momentum Contrast)

iIning Input -ETCOder
Ty : TS A Embedding
~ , #:D?’N’qu MLP|=—» [ " W
£ 5 - Temporal
' l Average Closer
| =Rl i TN
re il - S o v
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-k ‘«. |_ _ - -
Momentum Previous
Encoder Batches
Slower-updated Variant? Earlier but More Memory
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Grill et al. 2020

BYOL (Bootstrap Your Own Latent)

.. Encoder
Tramlng Input - Predictor
R iy / —> \DCNN | —>[MLP|—> G —>{MLP}—> &
& - ! - - -
g5 - Temporal
: lAverage Closer
e —>:DCNN =ML P | ——————————p i
- 2 edd L - - Embedding
Momentum
Encoder

Slower-updated Variant?

Get rid of “memory” component (negative samples) due to
implementation/hardware concerns
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Caron et al. 2020

SwAV (Swapping Assignments between Views)

Tralnlng Input

, Ed

—> DCNN —>

Embedding
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MLP|— G —— (Codes)
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Masked Autoencoders (MAEs)

[Submitted on 11 Nov 2021 (v1), last revised 19 Dec 2021 (this version, v3)]

Masked Autoencoders Are Scalable Vision Learners
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, Ross Girshick

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is
simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we
develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without
mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens.
Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory
task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more)
and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge
model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream
tasks outperforms supervised pre-training and shows promising scaling behavior.
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Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
T As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

It L R s, .EE

, . .
Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2).
Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.
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Remove Memory
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Problem: Current algorithms trained on
existing developmentally-appropriate datasets
don't learn very strong representations.

_earning from real kids' data Is a harder problem than learning

from ImageNet because:

|, online vs buffered/randomized
2. many fewer distinct examples
3. but from wider variety of viewpoints
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Problem: Current algorithms trained on
existing developmentally-appropriate datasets
don't learn very strong representations.

Iwo Main Hypotheses:

he algorithms are insufficient

VS.

The data are insufficient

Until very recently, not enough data to know.



Our strategy: Get more data!

BabyCam++

40 Bay Area families

6 months - 3 years

Recording ~5 hours/week
Custom high resolution
babycam video+accelerometer
Unprecedented resource for
studying development

SAYCam (~0.1 child-years)
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Our strategy: Get more data!

BabyCam++

40 Bay Area families

6 months - 3 years

Recording ~5 hours/week
Custom high resolution
babycam video+accelerometer
Unprecedented resource for
studying development

SAYCam (~0.1 child-years) BabyCam++ (~10 child-years)

1 child-year
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Figure 1. Schematic illustration of the BabyView camera’s orientation (left) and field of view
(right; dotted line), highlighting that this camera angle captures both the objects that children
are mteracting with as well as the social information in the child’s view. See Figures 3 and 5 for

example images.



BabyView Camera Design Overview

&5

a. Assembled BabyView b. Go-Pro Hero c. Soft, flexible d. 3D printed camera
Bones Camera SafeheadBaby Helmet attachment and battery mount

Figure 2. Overview of the BabyView Camera design process, showing (a) the assembled device,

(b) the original camera, (¢) babysafe helmet, and (d) and 3D printed mounting equipment.



Figure 5. Example images and off-the-shelf Mask-R CNN segmentations (confidence > .3) on
frames from the BabyView camera. These higher-resolution egocentric images provide better

data for segmentation than previous cameras, yet are still quite challenging for state-of-the-art

models.
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Figure 2. Overview of the BabyView Camera design process, showing (a) the assembled device,

(b) the original camera, (c) babysafe helmet, and (d) and 3D printed mounting equipment.

Figure 1. Schematic illustration of the BabyView camera’s orientation (left) and field of view
(right; dotted line), highlighting that this camera angle captures both the objects that children

are interacting with as well as the social information in the child’s view. See Figures 3 and 5 for

example images.
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BabyView v1.0 data to be released Sep. 2024
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|.You need other *kinds* of data:

a. other modalities
— audio-visual! (but blind/deaf people learn fine?)
— language! (but monkeys learn vision fine?)

b. embodiment e.g. action streams/joint policy learning

(not clear evidence for this)

2.You need other kinds of algorithm:s.



