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Four Principles of Goal-
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A = architecture class
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T = task/objective
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4.

L = learning rule
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1 Best proxies thus far for ventral stream:
A = architecture class A = ConvNets of reasonable depth
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— , L = evolutionary architecture search +
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Four Principles of Goal-Driven Modeling

1.

Best proxies thus far for ventral stream:

A = architecture class = circuit neuro-

anatomy
< solving
2.

T = task/objective = ecological niche

< situated in
3.

D = dataset = environment

< updating according to
4.

L = learning rule = natural selection
+ synaptic plasticity

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search +
filter learning through gradient descent



“*bad = obviously deeply wrong as model of the brain

Big Problems in Each Area or behavior

1 xbad PROBLEM

A = architecture class
e.g. CNINs

2.
T = task/objective

e.g. Object Categorization

3.

D = datagset

e.g. ImageNet

4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.
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: : * = obviously deeply wron model of the brain
Big Problems in Each Area ¢~ errewyeeny e s moddorne e
' PROBLEM
1. Xbad
A = architecture class RECURRENCE and FEEDBACK!!?
e.g. CNINs
2. Xbad
T = task/objective TOO MUCH LABELLED DATA REQUIRED!I?

e.g. Object Categorization

3. xbad REAL NOISY VIDEO DATASTREAMS vs
D = dataset STEREOTYPED CLEAN STILL IMAGES

e.g. ImageNet

4. Xbad

L = learning rule BACKPROP AND ITS DISCONTENTS

e.g. Arch. Srch. + Grad. Desc.



From Last Time ...

*vY ol = we've really nailed it
*vok-ish = harder to reject out of hand
*bad = obviously deeply wrong

1. Xbad

A = architecture class
ConvRNNs

o vok

T = task/objective

e.g. Object Categorization

3. *vok=-ish

D = datagset

e.g. ImageNet

4. Xbad

L = learning rule

e.g. Arch. Srch. + Grad. Desc.

SOLUTION

RECURRENCE and FEEDBACK

SELF-SUPERVISION WORKS GREAT!

CAN HANDLE REAL VIDEOSTREAMS
1O *SOME* EXTENT
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Gilbert & Li (2013



“Real” neural networks are full of feedback

| ocal recurrence

To higher areas
—

From lower areas

Douglas & Martin (2010)

Long-range connections

Gilbert & Li (2013)



Of course we soft-pedaled them earlier .. ..
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Neural data has dynamics
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Neural data has dynamics

Hierarchical structure can be seen in the dynamics

Internal Consistency of Recorded V4 and IT Neurons
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Limitations of Feedforward Structures
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Neural data has dynamics

IT trajectories fit with feedforward models
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Biological views on function

Top-down influences on visual processing

Charles D. Gilbert' and Wu Li?
'The Rockefeller University, 1230 York Avenue, New York, NY 10065

“State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
100875, China

“Vision is an active process, where higher order cognitive influences affect the operations
performed by cortical neurons.”
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Top-down influences on visual processing

Charles D. Gilbert' and Wu Li?
'The Rockefeller University, 1230 York Avenue, New York, NY 10065

“State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
100875, China

“Vision is an active process, where higher order cognitive influences affect the operations
performed by cortical neurons.”

“Top-down influences include various forms of attention, including spatial, object
oriented and feature oriented attention.”

“Top-down influences .... [also include] perceptual task, object expectation, scene

segmentation, efference copy, working memory, and the encoding and recall of
learned information.”



Biological views on function

Task-dependent changes in neural tuning and information content inV |

T1:"Which green line is closer to the red?!”
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Task-dependent changes in neural tuning and information content inV |

T1:"Which green line is closer to the red?”

T2:"“Which black line is closer to the red?”
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Task-dependent changes in neural tuning and information content inV |
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Task-dependent changes in neural tuning and information content inV |
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Task-dependent changes in neural tuning and information content inV |
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Biological views on function

Task-dependent changes in neural tuning and information content in IT

Comparison of Primate Prefrontal and Premotor Cortex
Neuronal Activity during Visual Categorization

Jason A. Cromer, Jefferson E. Roy, Timothy J. Buschman,
and Earl K. Miller

Animals Category Set Cars Category Set

Isien suodg
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Cromer & Miller 2010
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Task-dependent changes in neural tuning and information content in IT
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Biological views on function

Adaptive shape processing in primary visual cortex

Z b a1
Justin N. J. McManusd, Wu Li , and Charles D. Gilbertd’

Author Affiliations =

Contributed by Charles D. Gilbert, April 18, 2011 (sent for review March 4, 2011)
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Adaptive shape processing in primary visual cortex T

; b 1
Justin N. J. McManusd, Wu Li , and Charles D. Gilberta"

Author Affiliations =

B ()

Contributed by Charles D. Gilbert, April 18, 2011 (sent for review March 4, 2011)
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an entirely different mode of selectivity, for circular shapes. The difference between the mean tuning surfaces
under the line and circle/wave tasks was statistically significant (monkey A, total number of surfaces, n = 53, P
=4 x 10'5; monkey B, n =63, P = 0.007; and monkey C, n =62, P = 0.003).

McManus ... Gilbert 201 |
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Adaptive shape processing in primary visual cortex T
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" This process suggests that expectation of an object creates a set of filters that are selective for the
object’'s components and thus, a role of top-down processes in object recognition. The idea

is further supported by the transfer of perceptual learning between objects with shared
components.”

McManus ... Gilbert 201 |
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Monkey d
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Alexnet/ImageNet d’

Kar et. al. (2017)
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Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability

Motor Command

Efference Copy
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(Estimated Sensory Feedback)

Motor System

Forward Model
Sensory Discrepancy
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Efference copy = copy of motor instructions, for (e.g.) stability

Efference Copy

A

Forward Model

Corollary Discharge
(Estimated Sensory Feedback)

Motor Command =t

Motor System

Sensory Discrepancy

efference Intended motor
copy State comma

Somatosensory
network
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Efference copy = copy of motor instructions, for (e.g.) stability

Corollary Discharge

(Estimated Sensory Feedback)
r > Forward Model N
Efference Copy Sensory Discrepancy
Sensory Feedback
Motor Command =t Motor System Sensory System — (Re-afference)
efference Intended motor
copy State command

&

Efference copies are created with our own
movement but not those of other people. This is
why other people can tickle us (no efference
copies of the movements that touch us) but we
cannot tickle ourselves (efference copies tell us
that we are stimulating ourselves).
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Efference copy = copy of motor instructions, for (e.g.) stability
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Efference copy = copy of motor instructions, for (e.g.) stability
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Superior Colliculus (SC) — "issues motor commands”
Medial Dorsal (MD) of thalamus — “routing”

Frontal Eye Field (FEF) — moves the eyes Summer & Wurtz 2006
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Efference copy = copy of motor instructions, for (e.g.) stability
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Efference copy = copy of motor instructions, for (e.g.) stability
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Top-down signal from prefrontal
cortex in executive control
of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakaharat,
Isao Hasegawa*{ & Yasushi Miyashita*{:

Prefrontal cortex (PFC) ~ “executive control”, long-range planning,
decision making, task switching

short-term memory
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Top-down signal from prefrontal
cortex in executive control
of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakaharat,
Isao Hasegawa*{ & Yasushi Miyashita*{:

Prefrontal cortex (PFC) ~ “executive control”, long-range planning,
decision making, task switching

short-term memory

Mixture of memory, task (“‘executive control), and prediction

"Feedback projections from prefrontal cortex to the posterior association cortex appear to serve the
executive control of voluntary recall.”
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ooooooooooooooooooooo.oooooooooooooooooooooooooooooooooooooooooooo M|X‘tur’e Of memor% _taS|< (Hexecu_tlve CO[’TU"OV’)’ and
Top-down signal from prefrontal brediction

cortex in executive control
. "Feedback projections from prefrontal cortex to the posterior
Of memory retrleval association cortex appear to serve the executive control of

i ) i . voluntary recall.”
Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakaharaf,
Isao Hasegawa*t & Yasushi Miyashita*{i

“Split-brain paradigm’ — transection of posterior corpus callosum — [T neurons in one hemisphere are activated by direct
bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.

@ Bottom-up condition b  Top-down condition
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ooooooooooooooooooooo.oooooooooooooooooooooooooooooooooooooooooooo M|X‘tur’e Of memor% _taS|< (Hexecu_tlve CO[’TU"OV’)’ and
Top-down signal from prefrontal brediction

cortex in executive control
. "Feedback projections from prefrontal cortex to the posterior
Of memory retrleval association cortex appear to serve the executive control of

i ) i . voluntary recall.”
Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakaharaf,
Isao Hasegawa*t & Yasushi Miyashita*{i

“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct

bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.
@ Bottom-up condition b  Top-down condition

Ipsilateral presentation *still* activated IT neurons, but later CHOICE wrong correct CHOICE

than contralateral.
4

Neuron's pattern of responses across stimuli similar
regardless of ipsi/contra presentation (r = ~0.8)
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Top-down signal from prefrontal
cortex in executive control
of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakaharaf,
Isao Hasegawa*t & Yasushi Miyashita*{i

Mixture of memory, task (“‘executive control’), and
prediction

"Feedback projections from prefrontal cortex to the posterior
association cortex appear to serve the executive control of
voluntary recall.”

“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct
bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.

Ipsilateral presentation *still* activated IT neurons, but later
than contralateral.

Neuron's pattern of responses across stimuli similar
regardless of ipsi/contra presentation (r = ~0.8)

No such transfer in *full* split.

Pair associated test indicates prospective information
from PFC sent to IT.

@ Bottom-up condition b  Top-down condition
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Attention Neu ron

Volume 61, Issue 2, 29 January 2009, Pages 168-185

Review
The Normalization Model of Attention

John H. Reynolds ' & =, David J. Heeger 2
Show more

https://doi.org/10.1016/j.neuron.2009.01.002 Get rights and content

Under an Elsevier user license open archive
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Neuron ﬁ
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Volume 61, Issue 2, 29 January 2009, Pages 168-185 ﬁ E (w 9
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John H. Reynolds 12 &, David J. Heeger 2

Show more

https://doi.org/10.1016/j.neuron.2009.01.002 Get rights and content
Under an Elsevier user license ot Attention Field . .
RF center E — feedfO I’WaFd Iﬂput
‘© — '
g S = suppression
C [
.0 _
s X = position
C - ] ]
£ theta = orientation
Stimulus Stimulus Drive Population Response
© ©
o o
£ 5
o | — ¢ _ . @ _ @_, -
o pool over o
space and
RF center orlentatlon RF center
©
a
C
O
& —
c
Qo
@)
RF center

Suppressive Drive

The Normalization Model of Attention COIIVS(:E,Q) [E(CC, 9)] + O



Biological views on function

Neuron ﬁ
Volume 61, Issue 2, 29 January 2009, Pages 168-185 A (ZC ] 9) E (Qj 3 9)

R(x,0) = ReLur
Tﬁe Normalization Modgl of Attention ( 7 ) [COHVS(CB,H) [A(Qj, H)E($7 9)] —I_ g

Show more

https://doi.org/10.1016/j.neuron.2009.01.002 Get rights and content

E = feedforward input

Under an Elsevier user license - Attention Field )
RF center = suppression
] X = position
S theta = orientation
g A = attention field

Stimulus Stimulus Drive Population Response
3 o
(o} (o}
£ 5
o | — & S @ S @_, 5
| | I € c
@ -9 -9
o pool over o
space and
RF center orlentatlon RF center
o
o
c
0
= —
=
Q0
@)
RF center

Suppressive Drive

—> implemented as *equilibrium* of simple recurrent circuit (Heeger 1993)



Biological views on function

Top-down influence in early visual processing

A Bayesian perspective
P(E|S;, H)P(S; | H)

P(S;, | E.H) =
Tai Sing Lee S 1= scene
Center for the Neural Basis of Cognition E = evidence
Department of Computer Science H = pI"iOI" information

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
Department of Neuroscience

University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.



Biological views on function

Top-down influence in early visual processing

A Bayesian perspective

Tai Sing Lee

Center for the Neural Basis of Cognition

Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Department of Neuroscience

University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

Bayesian interaction of two brain areas
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What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio
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. Feature attention
B Feed forward
B saliency

Fig. 2. Left: Proposed Bayesian model. Right: A model illustrating the interaction JO | th |Ocat| On/ featu re map >< ~ | (\/4)

between the parietal and ventral streams mediated by feedforward and feedback
connections. The main additions to the original feedforward model {Serre, Kouh,
et al, 2005) (see also Supplementary Online Information) are (i) the cortical

feedback within the ventral stream (providing feature-based attention); (ii) the .
cortical feedback from areas of the parietal cortex onto areas of the ventral stream feedfo rward N p Ut \/ | / \/2
(providing spatial attention); and (iii) feedforward connections to the parietal

cortex that serves as a ‘saliency map' encoding the visual relevance of image
locations (Koch & Ullman, 1985).
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Fig. 2. Left: Proposed Bayesian model. Right: A model illustrating the interaction m— Atlended
between the parietal and ventral streams mediated by feedforward and feedback 03
connections. The main additions to the original feedforward model {Serre, Kouh, e Unattended
et al, 2005) (see also Supplementary Online Information) are (i) the cortical

feedback within the ventral stream (providing feature-based attention); (ii) the s e
cortical feedback from areas of the parietal cortex onto areas of the ventral stream
(providing spatial attention); and (iii) feedforward connections to the parietal =
cortex that serves as a 'saliency map' encoding the visual relevance of image
locations (Koch & Ullman, 1985).
Fig. 4. Effect of spatial attention on tuning response. The tuning curve shows a

multiplicative modulation under attention. The inset shows the replotted data from
McAdams and Maunsell (1999)
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Simple (unrestricted) RNNs
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Unlike feedforward networks, recurrent networks can store
state.
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Simple (unrestricted) RNNs
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Long-Short Term Memory (LSTMs)
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Long-Short Term Memory (LSTMs)
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Long-Short Term Memory (LSTMs)
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Long-Short Term Memory (LSTMs)
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Long-Short Term Memory (LSTMs)
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Gated Recurrent Unit (GRU)  combines forget and input gate:
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Recurrent convolutional neural networks suppress occluders and enhance targets
in occluded object recognition
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Get random crops Overiay the debris
for the debris on the digit

Generate the digit

Figure 1: The process for generating stimul for digit debris. First the
target digit is generated. Random crops of all possible targets are
taken to create a mask of debris, which is applied to the target as an

occluder.
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All RNNs executed by unrolling in time
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Results

Recurrent networks significantly out-performed feedforward
networks across varying levels of occlusion. The difference
in performance between feedforward and recurrent networks
increased as the occlusion increased (Figure 2).
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Figure 1: The process for generating stimuli for digit debris. First the
target digit is generated. Random crops of all possible targets are
taken to create a mask of debris, which is applied to the target as an
occluder. X

-
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Figure 2: Classification error of the networks across increasing lev-
els of debris (left). Pairwise differences across architectures for dif-
ferent levels of debris are indicated in matrix form (right).
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Bridging the Gaps Between Residual Learning,
Recurrent Neural Networks and Visual Cortex

by

Qianli Liao and Tomaso Poggio
Center for Brains, Minds and Machines, McGovern Institute, MIT
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(A) ResNet with shared weights (B) ResNet 1in recurrent form
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Bridging the Gaps Between Residual Learning,
Recurrent Neural Networks and Visual Cortex

Pre-net Post-net

(B) Full model
C y
| Pool ('
Loss @/O’ !
Loss
K+l
K+l
Input ,Conv
(C) Simulating our model in time by unrolling (D) An example ResNet: for comparison

Figure 2: Modeling the ventral stream of visual cortex using a multi-state fully recurrent neural network
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Bridging the Gaps Between Residual Learning,
Recurrent Neural Networks and Visual Cortex

Traking Error on CIFAR-10

by

Qianli Liao and Tomaso Poggio
Center for Brains, Minds and Machines, McGovern Institute, MIT
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Feedback Networks

Amir R. Zamir'®* Te-Lin Wu!* Lin Sun’? William B. Shen! Bertram E. Shi?
Jitendra Malik® Silvio Savarese'
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http://feedbacknet.stanford.edu/
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Figure 2. Nlustration of our core feedback model and skip connec-
tions (shown in red) when unrolled in time. ‘ConvLLSTM' and ‘L' boxes
represent convolutional operations and iteration losses, respectively.
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Figure 2. Nlustration of our core feedback model and skip connec-
tions (shown in red) when unrolled in time. ‘ConvLLSTM' and ‘L' boxes
represent convolutional operations and iteration losses, respectively.
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= HUIC]
4 ~ Ly, where L, = —logm.

t=1

Early Prediction

70 , 63.23 6748 ?::6;
k —"“’ 9: . ‘—
60 "’—‘ / ’A"r d
. ) |
— 574
3" 40.59.7 .~
40 /71 .- ’
S Soasa@T g
4] Hig7 37.08
3 . ’
<0 oo FB Net curnculum trained
- vl FB Net
E-20 | =®=FF (ResNet w/ dux loss)
—_ i LF (ResNet wio nux loss)

S FF (VGG W) 2ax loss)

Model Physical | Virtual | Topl | Top5S
Depth | Depth | (%) | (%)

Feedback Net 12 48 71.12 | 91.51

8 32 69.57 | 91.01

4 16 67.83 | 90.12

48 - 70.04 | 90.96

32 - 69.36 | 91.07

Feedforward 12 - 66.35 | 90.02

(ResNet[19]) 8 - 64.23 | 8BB.95

128* - 70.92 | 91.28

110# - 72.06 | 92.12

64* - 71.01 | 91.48

48* - 70.56 | 91.60

32% - 69.58 | 91.55

Feedforward 48 - 55.08 | 82.1

(VGG[48]) 32 - 63.56 | 88.41

12 - 64.65 | 89.26

8 - 63.91 | 88.90
Highway [53] 19 - 67.76 -
ResNet v2[20] 1001 - 77.29 -
Stochastic Depth [24] 110 - 75.02 -
SwapOut [49] 32 fat - 77.28 -
RCNN [37] 4 fat 16 68.25 -

Table 6. Endpoint performance comparison on CIFAR-100. Baselines
denoted with * are the architecture used in the original ResNet paper.

10 | o FF (VGG wio aux 20s9) /
L7 g3 | '
a ‘ = i >
s 12 16 20 24 a8 32
Physical/Virtual Depth

Figure 5. Evaluation of early predictions. Comparison of accuracy of
feedback (FB) model and feedforward (FF) basehines (ResNet & VGG,
with or without auxiliary loss layers)
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Feedback Networks

Amir R. Zamir'®* Te-Lin Wu!* Lin Sun’? William B. Shen' Bertram E. Shi®
Jitendra Malik® Silvio Savarese!

! Stanford University  HKUST * University of California, Berkeley
http://feedbacknet.stanford.edu/
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Model Physical | Virtual | Topl | TopS L= 'y'L where L, = —lo g e
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Depth | Depth | (%) | (%) ; ’ >, efll
Feedback Net 12 48 71.12 | 91.51
8 32 69.57 | 91.01
4 16 67.83 | 90.12
48 - 70.04 | 90.96 Query Feedback Feedforward (ResNet)
32 - 69.36 | 91.07 VD=32 VD=24 VD=16 VD=8 | D=32 D=24 D=16
Feedforward 12 - 66.35 | 90.02 , ‘
ety | 8 | - |42 | 8895 e
Rabbit | Rabbit Rabbit Rabbit Hamster
128* - 7092 | 91.28
o= | - | 7206 | 92.12 Fl T T
64* - 71.01 | 91.48 Rocket | Rocket Rocket  Rocket
48* - 70.56 | 91.60 _
pe | - | 6958 | o1ss o .~
Feedforward a8 [ 55.08 | 821 Snske | Suake Saake Lizard | Chair|
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12 - 64.65 | 89.26 Chimp | Chimp Chimp
8 - 63.91 | 88.90 E e e IR
Highway [53] 19 — (6176 | - = “ “ ]
ResNet v2[20] 1001 - 77.29 -
Stochastic Depth [24] | 110 | - | 7502 | - s »n »
SwapQOut [49] 32 fat - 77.28 - Shrew | Mouse Mouse Mouse
RCNN [37] 4 fat 16 68.25 -
Table 6. Endpoint performance comparison on CIFAR-100. Baselines (‘ -7 >, .
denoted with * are the architecture used in the original ResNet paper. Fox




s> Formulate Model Architecture Class b

Fpws—
comprehensive gcazation
model class
(CNNs)

> Choose challenging,

ethologically-valid tasks
(categorization)

> [mplement generic
learning rules

(gradient descent)

> Map to brain data.
(temporal averages in ventral stream)



S Formulate Model Architecture Class

comprehensive g;cazation

model class \

(ConvRNNSs) /\/

tworks

> Choose challenging, |—

ethologically-valid tasks
(??)

> |mplement generic
learning rules

(gradient descent)

> Map to brain data.
(ventral stream dynamics)



Temporal Neural Networks (TNN) Library

http://github.com/neuroailab/tnn
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Fitting Recurrent

Dynamics Directly

Convolutional RNNs (convRNNs) with local and long=range feedback:

conv1 conv2

) ' [D Feedforward weights
—P[ —» optimized for

categorization task

\
conv3 conv4 convs

\N \
Unit 1

Unit 2

Recurrent weights optimized to match neural dynamics inV4 and IT



Fitting Recurrent

Dynamics Directly

Convolutional RNNs (convRNNs) with local and long=range feedback:

conv1 conv2

A T Feedforward weights
—P[ —» optimized for
sy categorization task

conv3 conv4 convs

\N \
Unit 1

Unit 2

Recurrent weights optimized to match neural dynamics inV4 and IT

Loss: L2 averaged over 10ms timebins up to 250ms



Fitting Recurrent Dynamics

Directly
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* Local recurrent circuits substantially improves predictions of [T dynamics
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Fitting Recurrent Dynamics Directly
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* Local recurrent circuits substantially improves predictions of [T dynamics

* Long-range feedback improves V4 predictions nearly to00% of noise celiling.
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Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)
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Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)

—

fit internal recurrences w/
Wl W one set of neurons

conv1 conv2

test on another with just
inear regression fit



Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)

—
3 — — fit internal recurrences w/
conv
Wl W one set of neurons
conv1 conv2
R MWMMMM%WWMMMM
Unit 2
\ Variance Explained on IT Neurons
ot Bl training neurons
Unit 2 © 0.81 held-out neurons
' c
D 0.6
' : O U.0 7
test on another with just 3
inear regression fit G 0.4
©
3 0.2-

100ms 200ms



Fitting Recurrent

1.

A = architecture class

CNNs -> RNNs

Dynamics Directly

“task”

2.

L = loss function D = dataset

e.g. Object
Categorization

Learning Rule

dat

argmin|L(p, )]
acA architecture
search

where p* is result of

backprop

Do ZTNE) - (VL)) eer

e.g. Gradient Descent via Backprop



Fitting Recurrent

Dynamics Directly

Convolutional RNNs with local and long=-range feedback:

conv1 conv2

~) W
Unit 1 \

Feedforward weights
—» optimized for
categorization task

\
conv3 conv4 convs

Unit 2 M I ’ ,%I ”,M |

Recurrent weights optimized to match neural dynamics inV4 and IT

Not a nhormative theory — no task.



Task-Driven Models?

“task”
2, !
L = loss function D = dataset
e.g. Object
Categorization

What task(s) explain recurrences??




Task-Driven Models?

“task”
2. !
L = loss function D = dataset
e.g. Object
Categorization

What task(s) explain recurrences??

Hard Images Time-accuracy tradeoff Temporal Goal
(e.g. heavy occlusion) (be correct but fast) (e.g. motion-based)



Task-Driven Models?

3. Learning Rule

argmin|L(p, )]

a€A qrehitecture search

where p* is result of

backprop

W0 TN - (V' L)) aep

dat

(possibility: actually, recurrence not used on-line)
(e.g. ‘just” implementing learning)



Task-Driven Models!?
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Task-Driven Models!?

Performance on recognition task on neural images is improved (&2

.but performance on Imagenet dramatically worsens. (*°) (")

0.9-
>~
S
5 feedforward on neural
O
< 0.5 -
5 feedforward on imagenet
b=
C
o)
o recurrent on imagene
o 0.1

80 100 120 140 160 180 200
Time from image onset (ms)

= subtle “overfitting”’ to image-type or animal idiosyncracies

A ImageNet 2011 Fall Release

Ilwmlinam--m
E2g-ieawEON
e gm0 ekl
nnmnB—nnln
dlumead il B
A N Rk ) R
EFiem] ieaslE
Enlﬂ.ﬂﬂﬂ-nﬂﬂ

of
R
v
4

233}
e
uy
=
]
W

|~

Eomes B A [ =5 Y R
sl e | =uEgE
AzEEGaE oo - 3
EEmERcEN I Ee T mE




Improving ImageNet Performance with ConvRNNSs
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Improving ImageNet Performance with ConvRNNs

You can get better at performance with more layers / parameters,
but that's net how we think the brain does it.v
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Improving ImageNet Performance with ConvRNNs

You can get better at performance with more layers / parameters,
but that's noet how we think the brain does It.

0.751 Commonly-used recurrent cells (e.g. LSTMs):
not especially effective
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Improving ImageNet Performance with ConvRNNSs

With better recurrent cells, substantial performance improvements on ImageNet
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With better recurrent cells, substantial performance improvements on ImageNet

Two useful principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“performance preserving’)



Improving ImageNet Performance with ConvRNNSs

With better recurrent cells, substantial performance improvements on ImageNet

Two useful principles:

(1) gating = multiplication by input-dependent tensor w/ values in [0, |]

(2) bypassing = when recurrent cell is In O state, input is unchanged
(“performance preserving’)

SimpleRNN has (2) but not (1)

Standard Long Short-Term Memory (LSTM) has (1) but not (2)



Improving ImageNet Performance with ConvRNNSs
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Improving ImageNet Performance with ConvRNNSs

“Reciprocal Gated” Unit ()
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Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs

ConvRNNs, with correct local recurrence & long-range feedback
can effectively convert “space” into “time”
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Improving ImageNet Performance with ConvRNNs

ConvRNNs, with correct local recurrence & long-range feedback
can effectively convert “space” into “time”
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ConvRNNs as Models of Neural Dynamics

1 , : Optimized Recurrence

///4 5

Not LSTMs!
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ConvRNNs as Models of Neural Dynamics

1 , : Optimized Recurrence

///4 5

Not LSTMs!
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\} \ \ | Nayebi et. al. Task-Driven Convolutional Recurrent Models of the Visual System.

(NeurlIPS 2018)

|) iImproved ImageNet performance

¥" 2) predictions of neural dynamics in visual system!?




Challenge Images Easy Images

Kar et. al. (2017)
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[T population dynamics revea
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[T population dynamics reveal that each image Is
solved at a (slightly) different time
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ConvRNNs as Models of Neural Dynamics

ConvRNNs
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ConvRNNs as Models of Neural Dynamics
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ConvRNNs as Models of Neural Dynamics

Model Physical Size
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Nayebi et. al. (in prep)



ConvRNNs as Models of Neural Dynamics

Model Physical Size
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ConvRNNs as Models of Neural Dynamics
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Accepted as a workshop contribution at ICLR 2015

ATTENTION FOR FINE-GRAINED CATEGORIZATION

Pierre Sermanet, Andrea Frome, Esteban Real
Google, Inc.
{sermanet, afrome, exeal, }@gcogle.com
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Figure 2: Diagram of the model. The grayed-out boxes denote resolutions not in use; in our exper-
iments the context is always a low-resolution patch, while each glimpse can be any combination of
the low-, medium-, and high-resolution patches.



Models

Table 1: Results on Stanford Dogs for (a) our RNN model and (b) our GoogLeNet baselines and
previous state-of-the-art results, measured by mean accuracy percentage (mA) as described in Chai
et al. (2013). The GoogLeNet baseline models were pre-trained on the de-duped ILSVRC 2012
training set and fine-tuned with the Stanford Dogs training set. Results marked with a star indicate
use of tight ground truth bounding boxes around the dogs in training and testing.

Accepted as a workshop contribution at ICLR 2015

ATTENTION FOR FINE-GRAINED CATEGORIZATION

Pierre Sermanet, Andrea Frome, Esteban Real

Google, Inc.

{sermanet, afrome, exeal, }@gcogle.com

# glimpses 1 2 3

high res only 435 483 496

mediumresonly  70.1 723 728

low res only 703 70.1 707

high+mediumres 70.7 72.6 72.7

3-resolution 763 765 76.8
(a)

Yang et al. (2012)*
Chai et al. (2013)*
Gavves et al. (2013)*
GoogLeNet 96x96
GoogLeNet 224 x224

(b)

38.0
45.6
50.1
58.8
75.5

Figure 3: Visualizations of 2-resolution (a) and 3-resolution (b) glimpses on an image from our
validation set, with learned fixation points. For each the glimpse images are in order, from top to
bottom, and the box diagram corresponds to the second glimpse. The composite image is created
from all three glimpses. The context image is not shown but is always the same resolution and size
as the low-resolution glimpse patches shown in (b).



Task-Driven Models?

“task”
2. !
L = loss function D = dataset
e.g. Object
Categorization

What task(s) explain recurrences??

Hard Images Time-accuracy tradeoff Temporal Goal
(e.g. heavy occlusion) (be correct but fast) (e.g. motion-based)



Task-Driven Models?

“task”
2, !
L = loss function D = dataset
e.g. Object
Categorization

T
PD
}

What task(s) explain recurrences??

Hard Images Time-accuracy tradeoff Temporal Goal
(e.g. heavy occlusion) (be correct but fast) (e.g. motion-based)

very different possibility: actually, recurrence not used on-line,
instead: “just” implementing learning



Biological learning

Implementing Learning

Direct Feedback Alignment Provides Learning in Deep Neural Networks
Arild Nekland a
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: . * = obviously deeply wron model of the brain
Big Problems in Each Area ¢ 7 eriemy ey froe s mede efine bre
I SOLUTION
1. Xbad
A = architecture class RECURRENCE and FEEDBACK
ConvRNNs
2.

T = task/objective

e.g. Object Categorization

3.
D = dataset
e.g. ImageNet
4.

L = learning rule

e.g. Arch. Srch. + Grad. Desc.
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o SOLUTION
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A = architecture class
ConvRNNs
2.

T = task/objective

e.g. Object Categorization

3.
D = dataset
e.g. ImageNet
4.

L = learning rule
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Big Problems in Each Area

*vY ol = we've really nailed it
*vok-ish = harder to reject out of hand
*bad = obviously deeply wrong

1. *vYok-ish
A = architecture class
ConvRNNs

o vok

T = task/objective

e.g. Object Categorization

3. *vok=-ish

D = datagset

e.g. ImageNet

4. Xbad

L = learning rule

e.g. Arch. Srch. + Grad. Desc.

SOLUTION

RECURRENCE and FEEDBACK

SELF-SUPERVISION WORKS GREAT!

CAN HANDLE REAL VIDEOSTREAMS
1O *SOME* EXTENT



