

CS375 / Psych 249: Large-Scale Neural Network Models for Neuroscience

Lecture 7: Recurrence and Feedback in the Visual System

2025.02.01

Daniel Yamins

Departments of Computer Science and of Psychology
Stanford Neuroscience and Artificial Intelligence Laboratory
Wu Tsai Neurosciences Institute
Stanford University

Four Principles of Goal-Driven Modeling

1.

A = *architecture class*

2.

T = *task/objective*

3.

D = *dataset*

4.

L = *learning rule*

Four Principles of Goal-Driven Modeling

1.

A = *architecture class*

2.

T = *task/objective*

3.

D = *dataset*

4.

L = *learning rule*

Best proxies thus far for ventral stream:

A = *ConvNets of reasonable depth*

T = *multi-way object categorization*

D = *ImageNet images*

L = *evolutionary architecture search + filter learning through gradient descent*

Four Principles of Goal-Driven Modeling

1.

A = architecture class **= circuit neuro-anatomy**

2.

T = task/objective **= ecological niche**

3.

D = dataset **= environment**

4.

L = learning rule **= natural selection + synaptic plasticity**

Best proxies thus far for ventral stream:

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search + filter learning through gradient descent

Four Principles of Goal-Driven Modeling

1.

A = architecture class **= circuit neuro-anatomy**

solving

2.

T = task/objective **= ecological niche**

situated in

3.

D = dataset **= environment**

updating according to

4.

L = learning rule **= natural selection + synaptic plasticity**

Best proxies thus far for ventral stream:

A = ConvNets of reasonable depth

T = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search + filter learning through gradient descent

Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. ~~X~~**bad**

A = architecture class

e.g. **CNNs**

2.

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

PROBLEM

Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. **Xbad**

A = architecture class

e.g. **CNNs**

2.

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

PROBLEM

RECURRENT and FEEDBACK!!?

Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. **Xbad**

A = architecture class

e.g. **CNNs**

2. **Xbad**

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. **Xbad**

A = architecture class

e.g. **CNNs**

2. **Xbad**

T = task/objective

e.g. **Object Categorization**

3. **Xbad**

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

REAL NOISY VIDEO DATASTREAMS vs STEREOTYPED CLEAN STILL IMAGES

Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. **Xbad**

A = architecture class

e.g. **CNNs**

2. **Xbad**

T = task/objective

e.g. **Object Categorization**

3. **Xbad**

D = dataset

e.g. **ImageNet**

4. **Xbad**

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

REAL NOISY VIDEO DATASTREAMS vs STEREOTYPED CLEAN STILL IMAGES

BACKPROP AND ITS DISCONTENTS

From Last Time . . .

***✓ok** = we've really nailed it

***✓ok-ish** = harder to reject out of hand

***bad** = obviously deeply wrong

1. **✗bad**

A = architecture class

ConvRNNs

2. **✓ok**

T = task/objective

e.g. **Object Categorization**

3. ***✓ok-ish**

D = dataset

e.g. **ImageNet**

4. **✗bad**

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

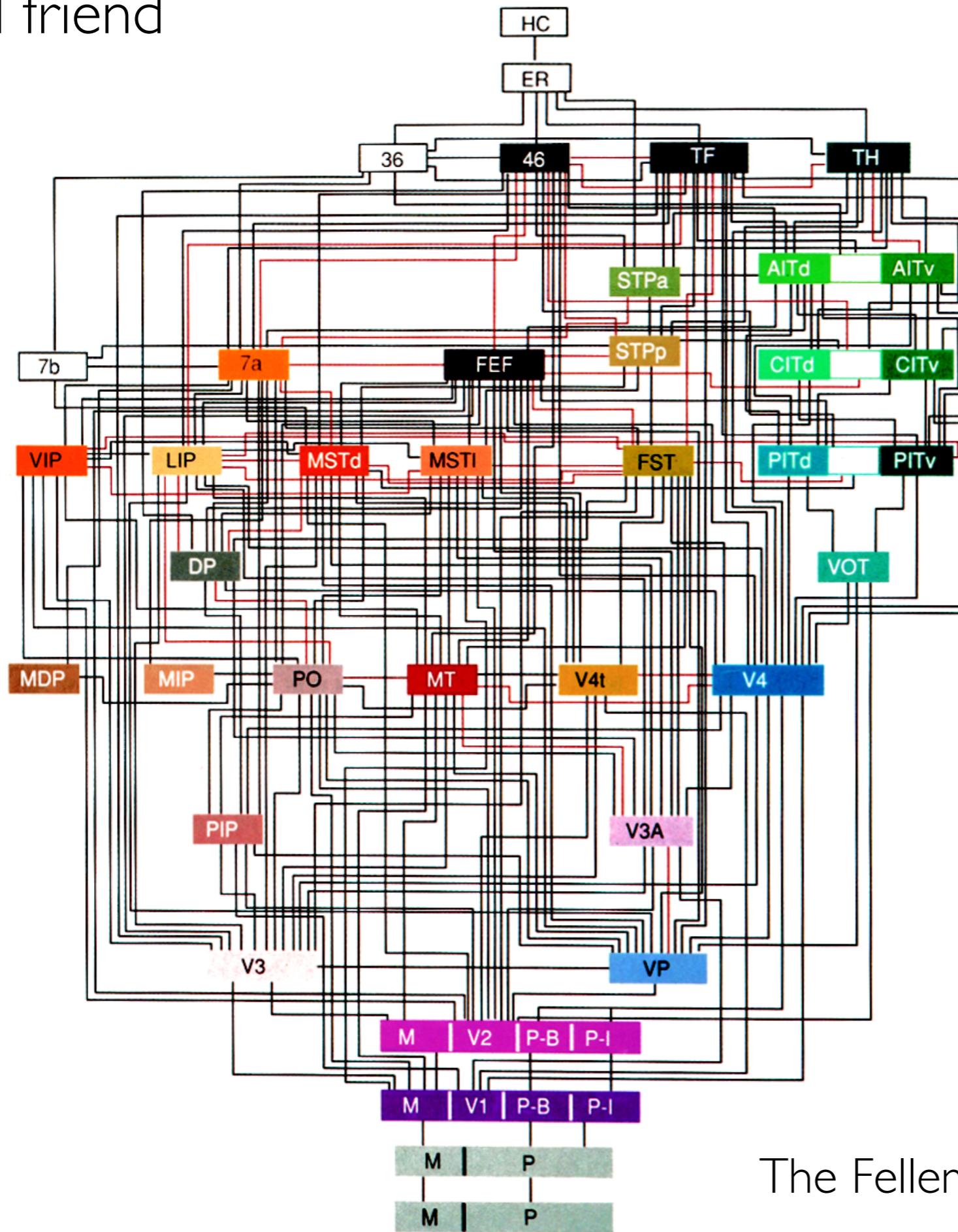
SOLUTION

RECURRENCE and FEEDBACK

SELF-SUPERVISION WORKS GREAT!

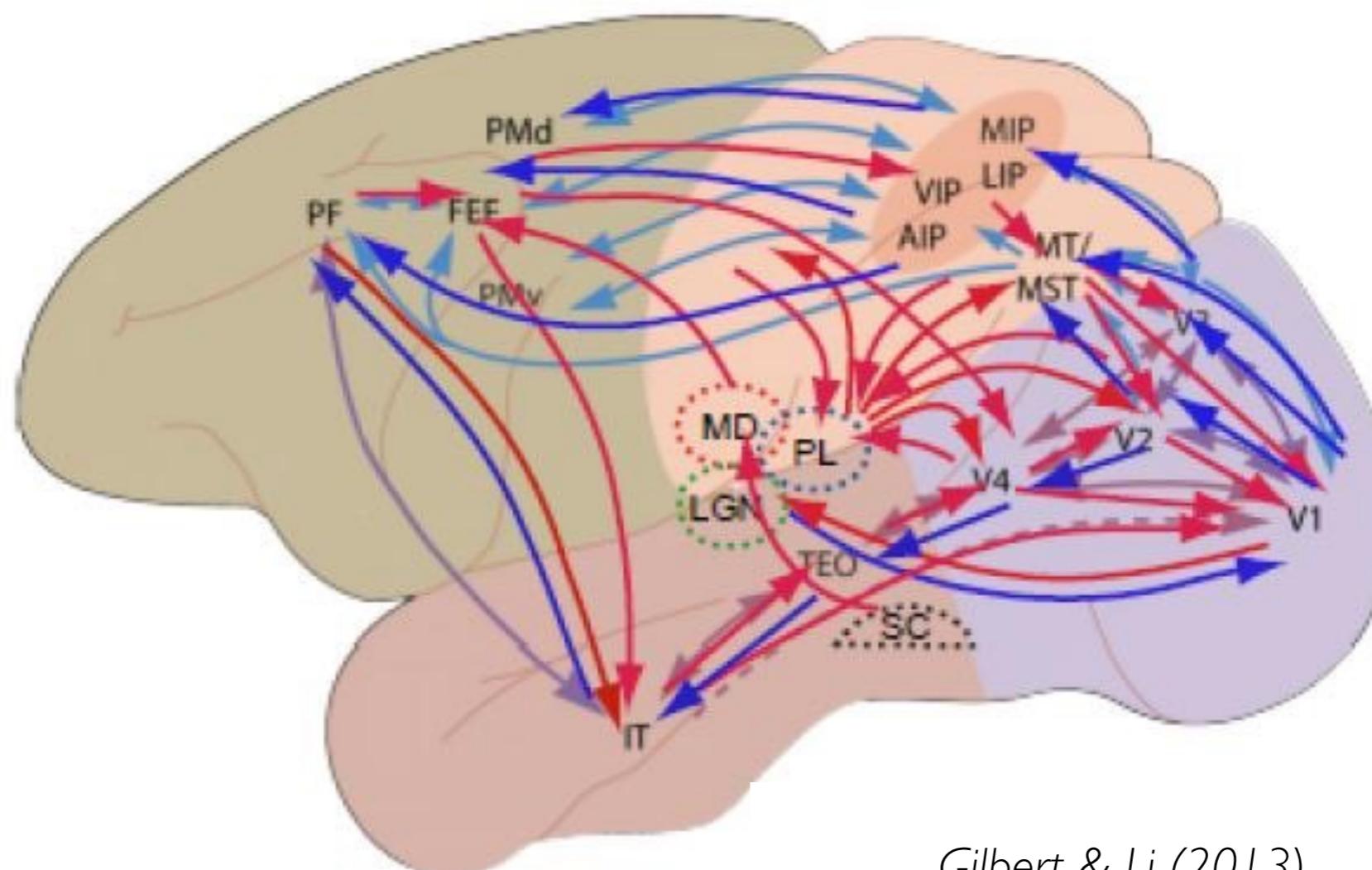
**CAN HANDLE REAL VIDEOSTREAMS
TO *SOME* EXTENT**

Our old friend



The Felleman-vanEssen Diagram

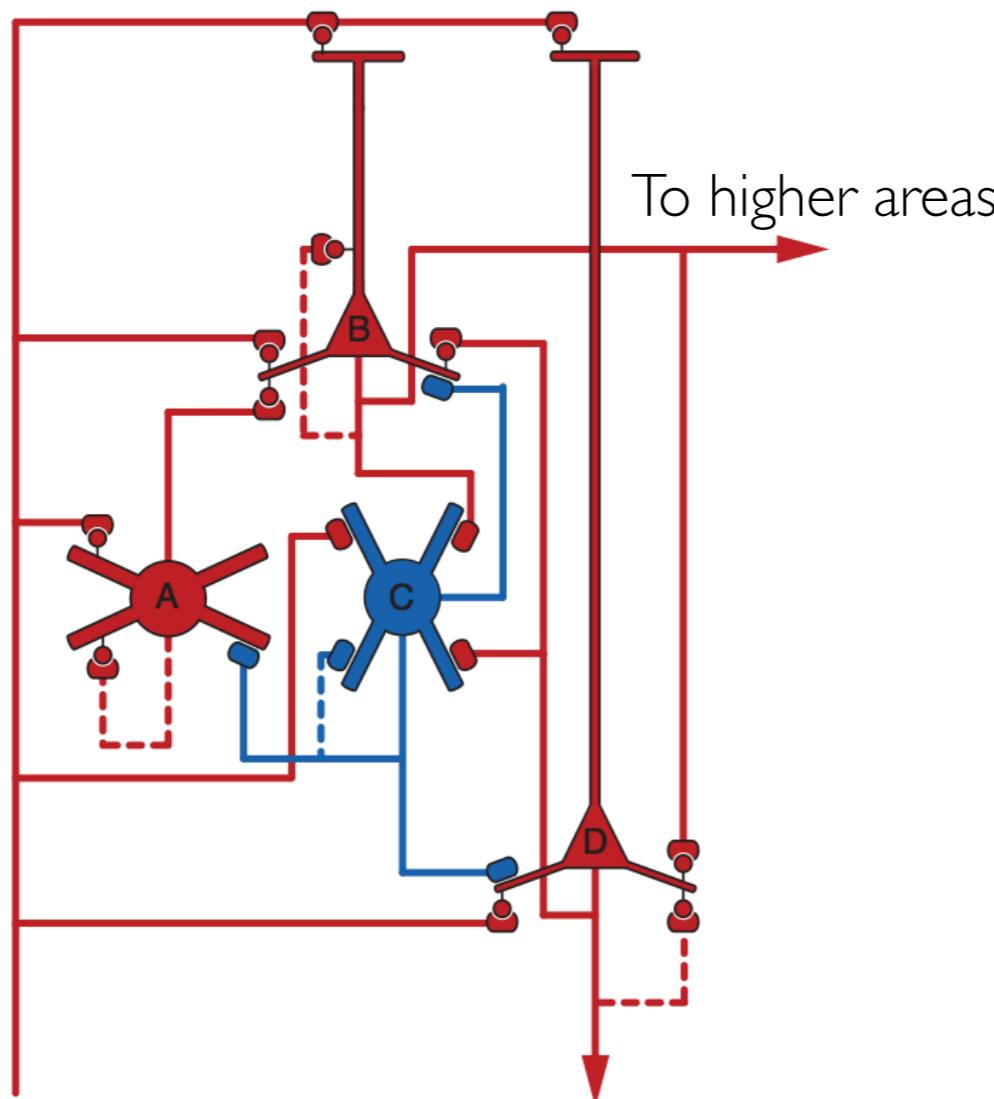
Feedbacks everywhere



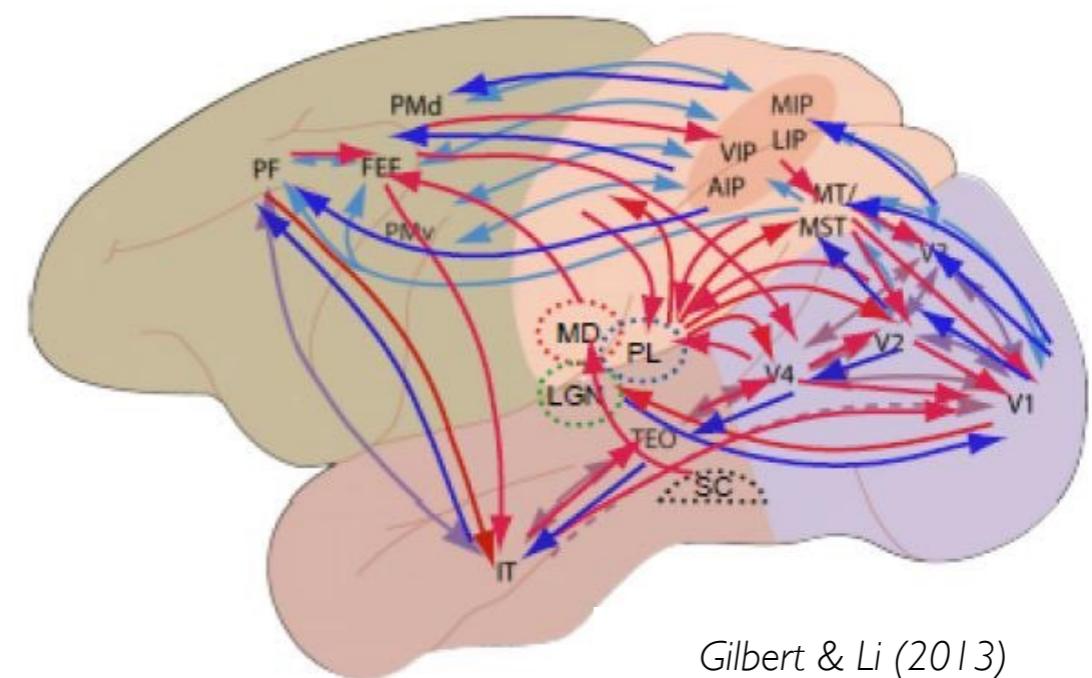
Gilbert & Li (2013)

“Real” neural networks are full of feedback

Local recurrence



Long-range connections

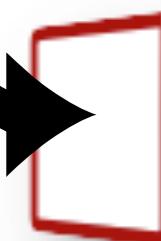


Gilbert & Li (2013)

From lower areas

Douglas & Martin (2010)

Of course we soft-pedaled them earlier



pixel

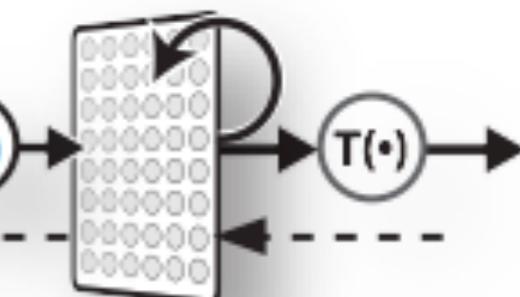
RGC

LGN

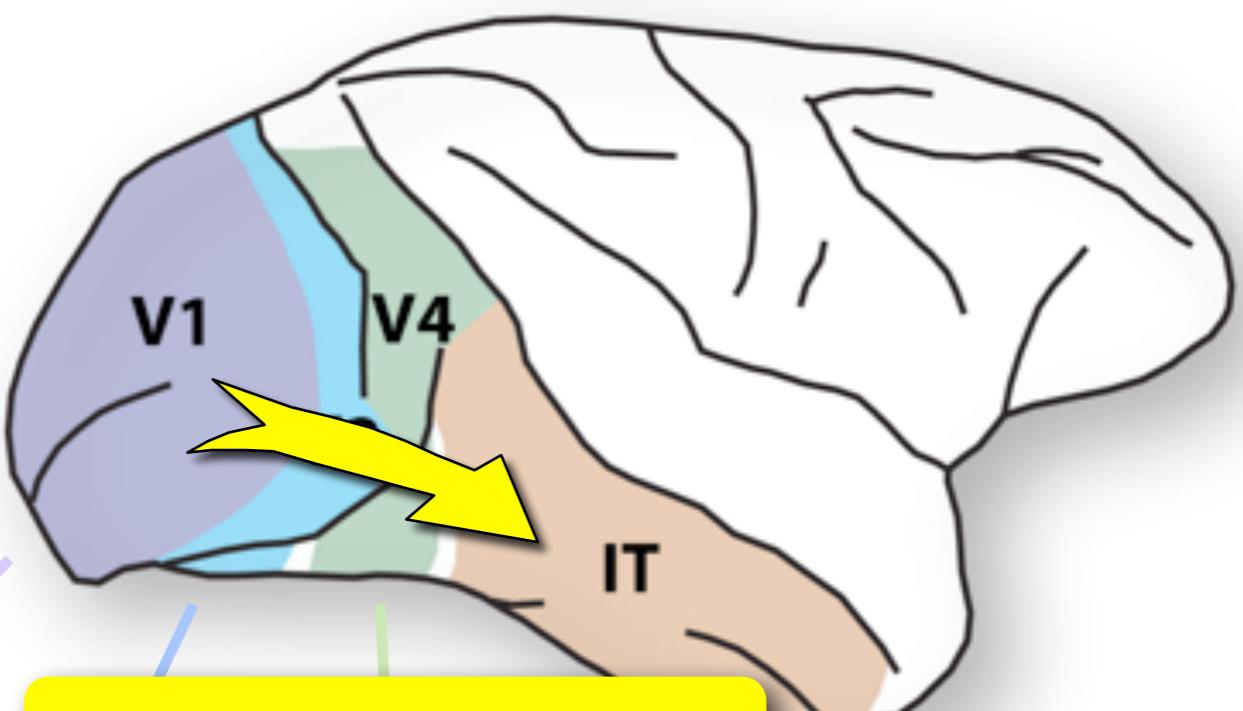
V1

V2

V4

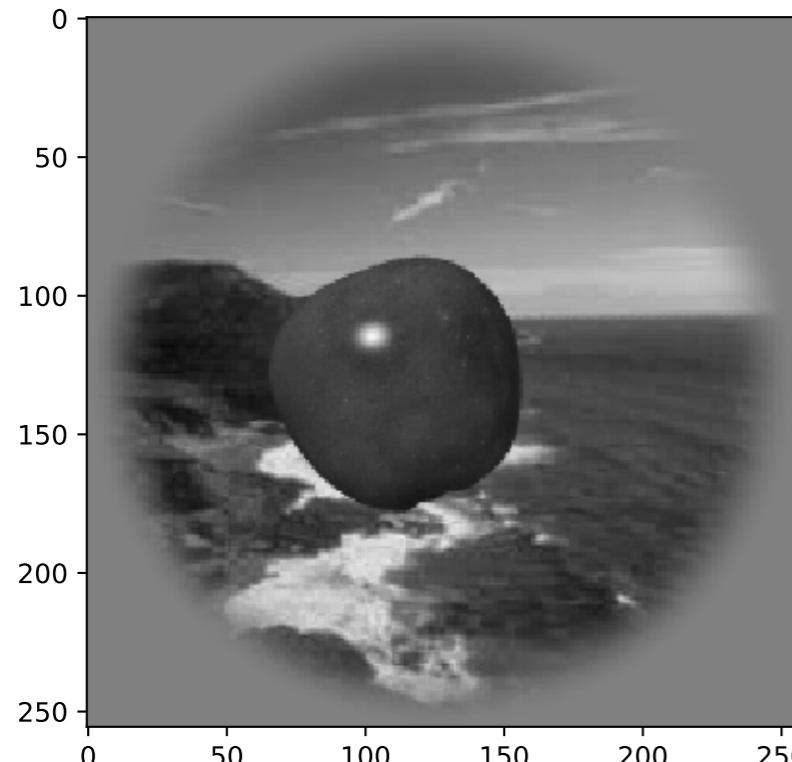
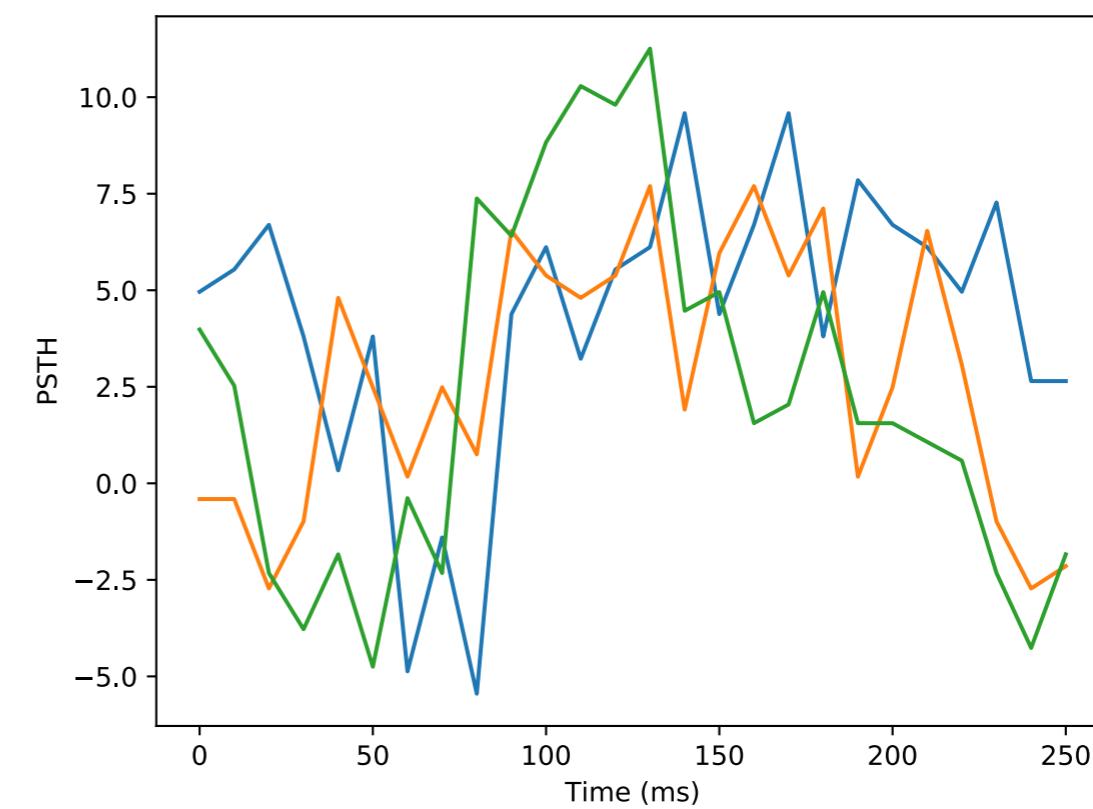
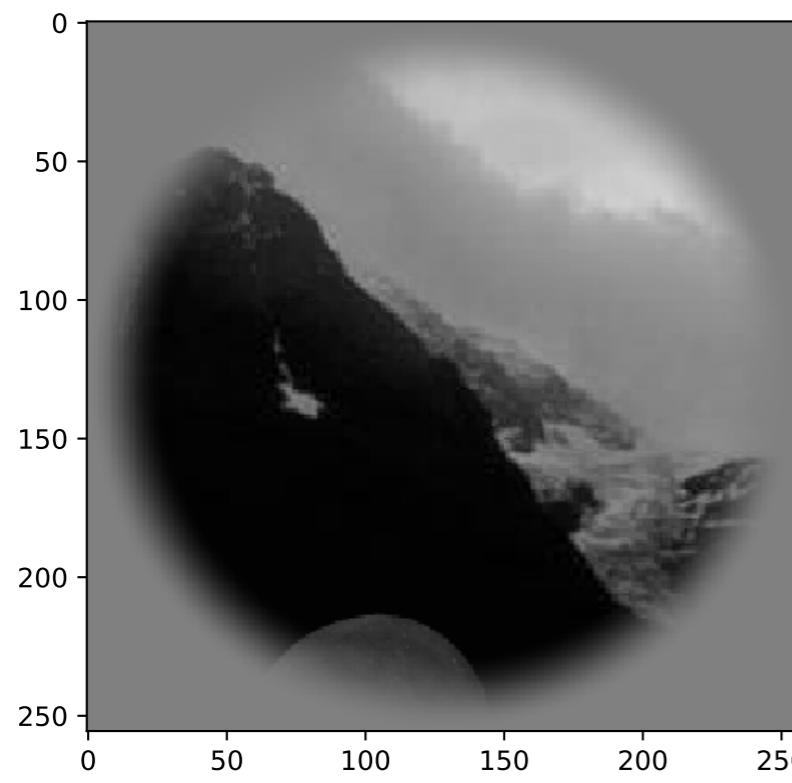
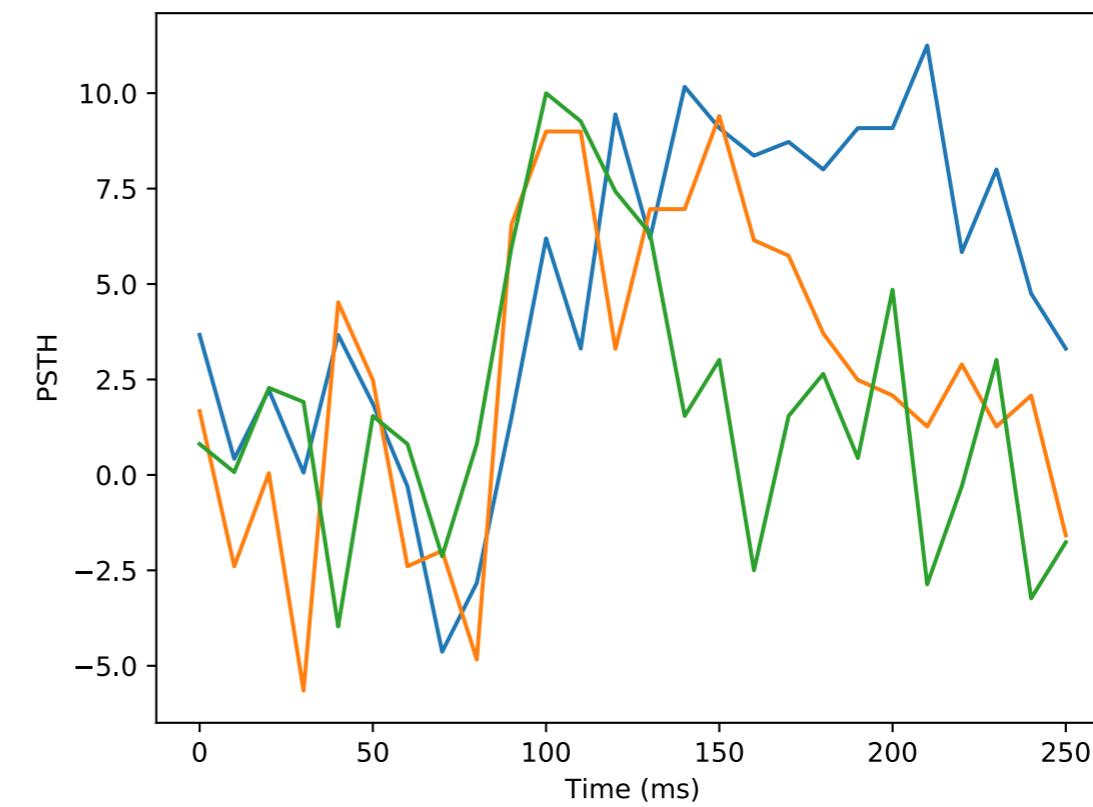


IT



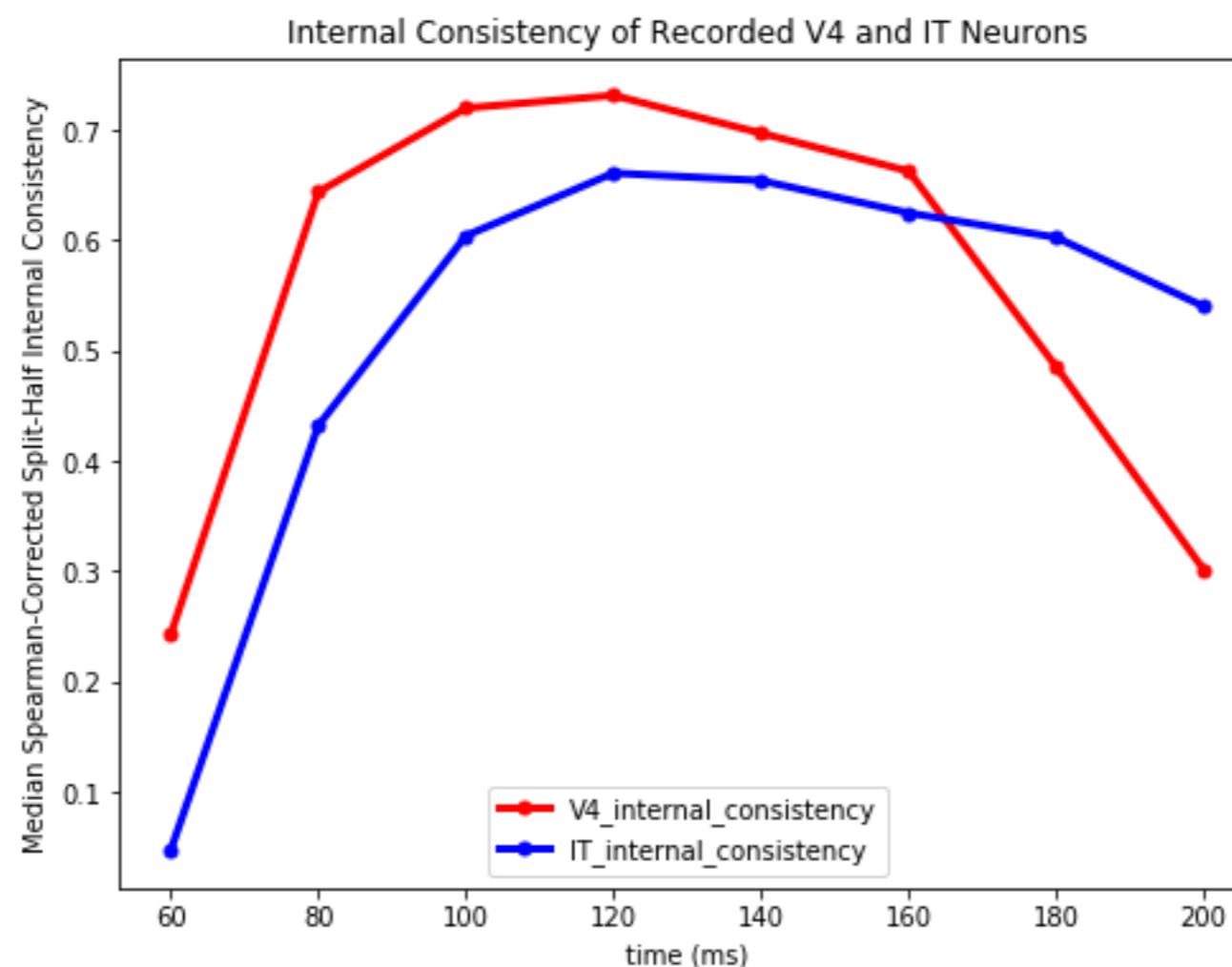
Ventral visual stream

Neural data has dynamics

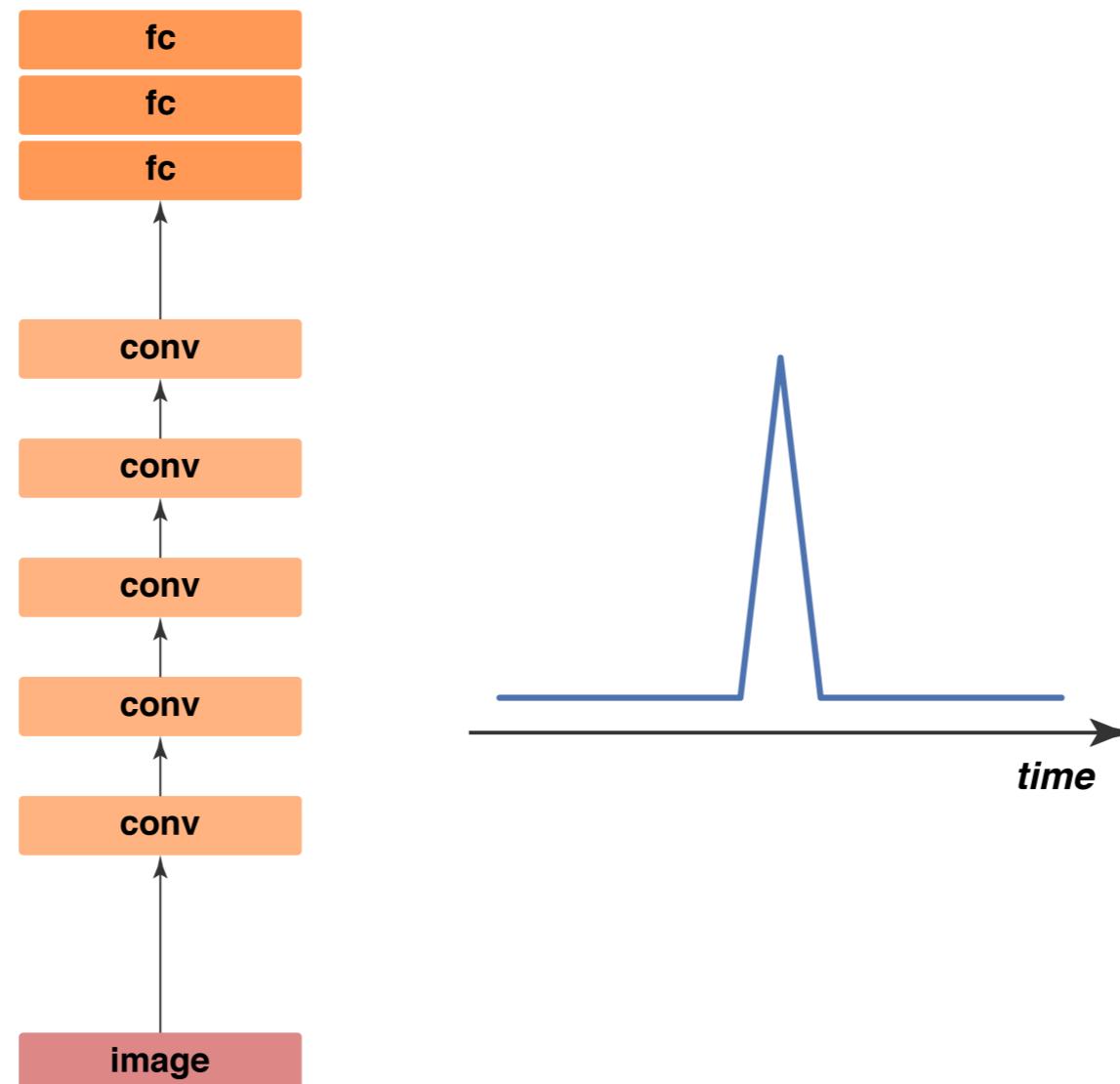


Neural data has dynamics

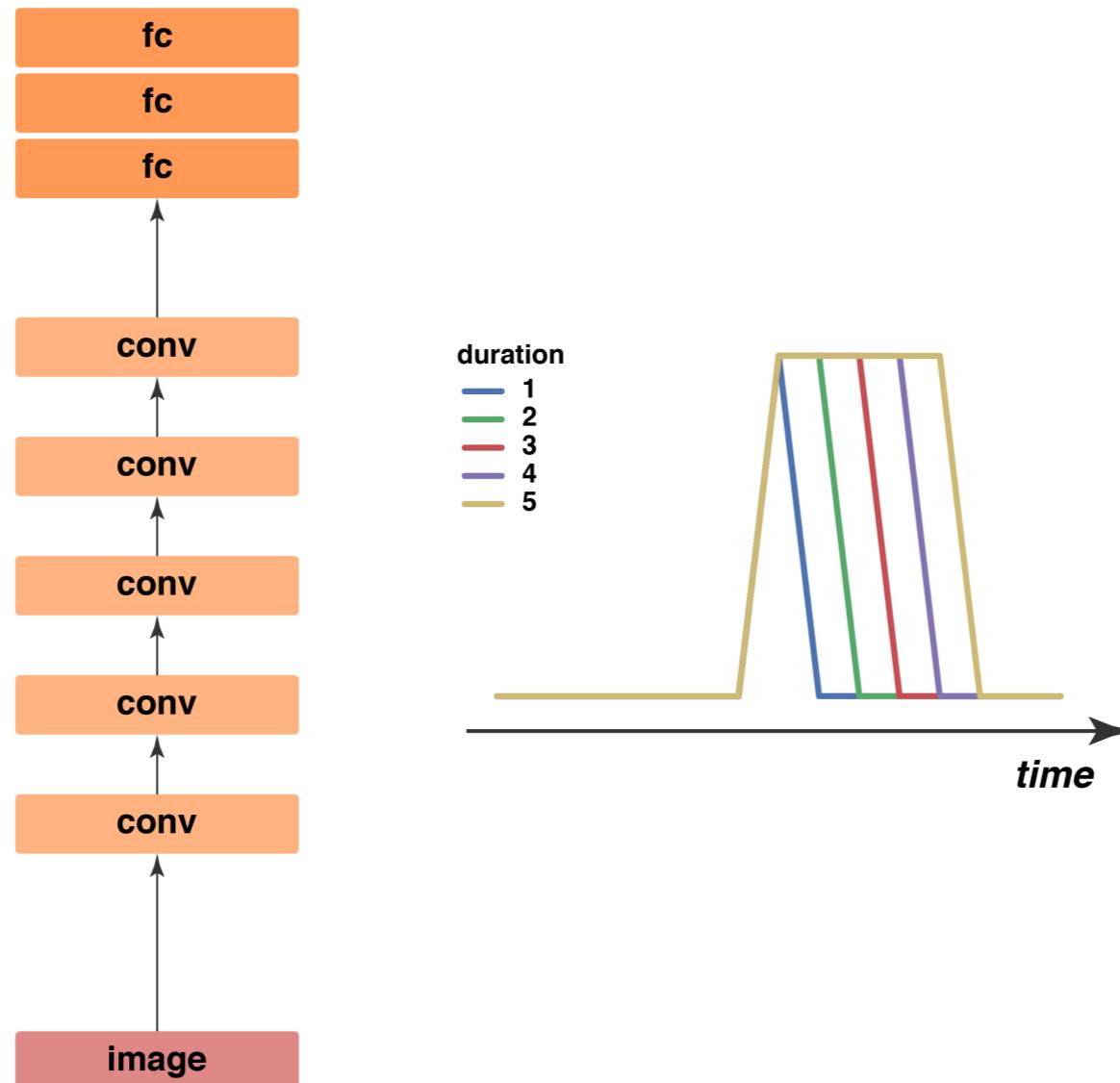
Hierarchical structure can be seen in the dynamics



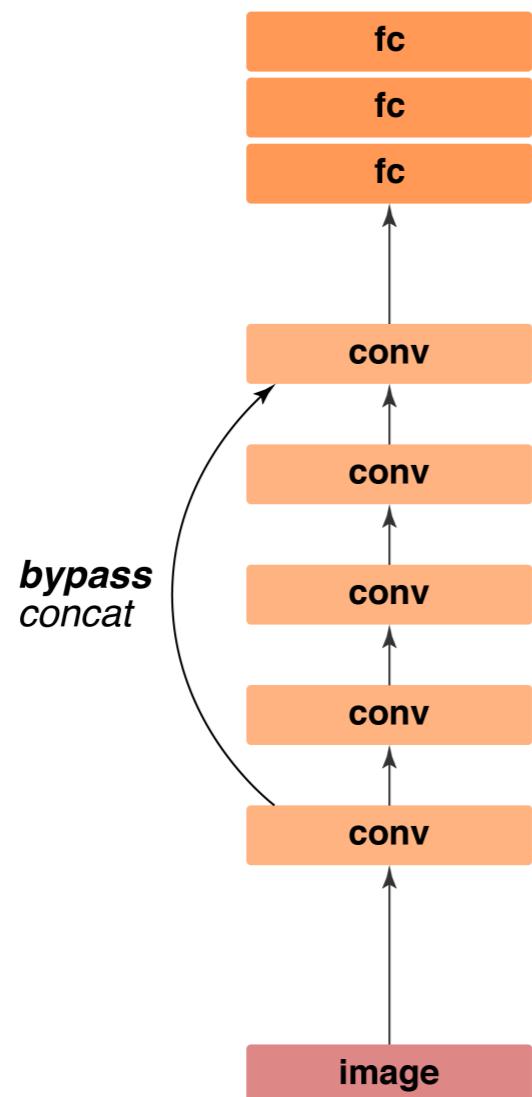
Limitations of Feedforward Structures



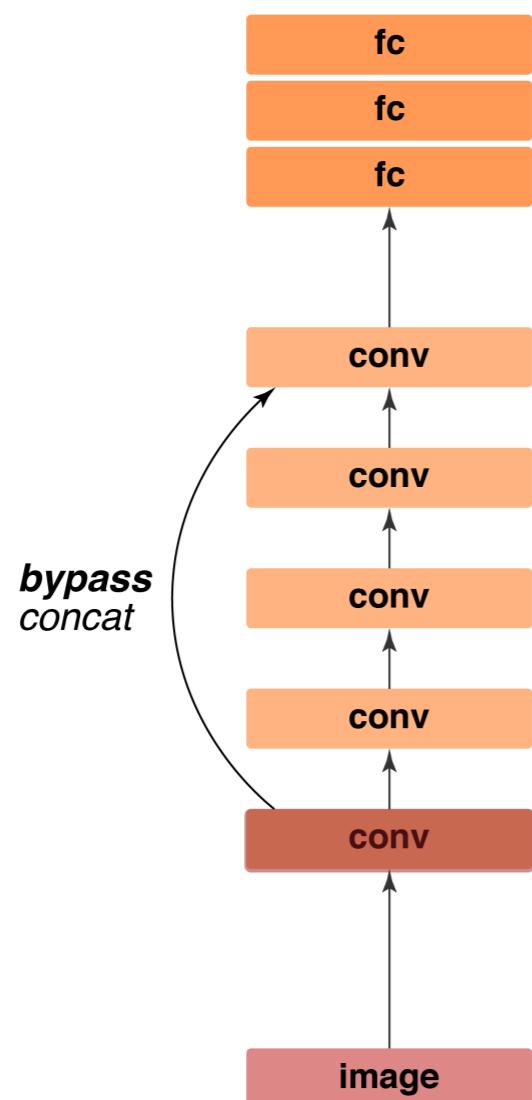
Limitations of Feedforward Structures



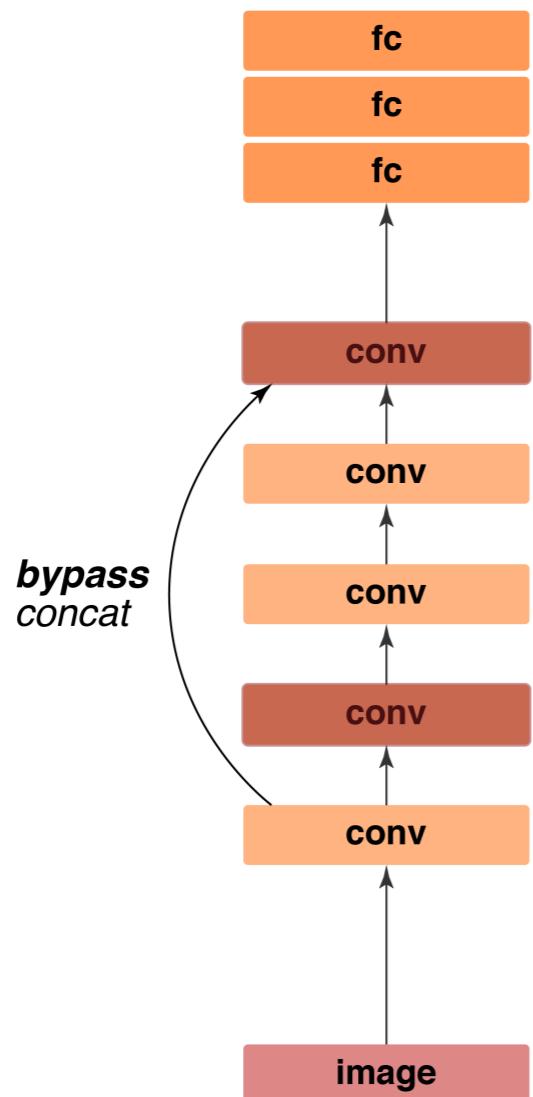
Limitations of Feedforward Structures



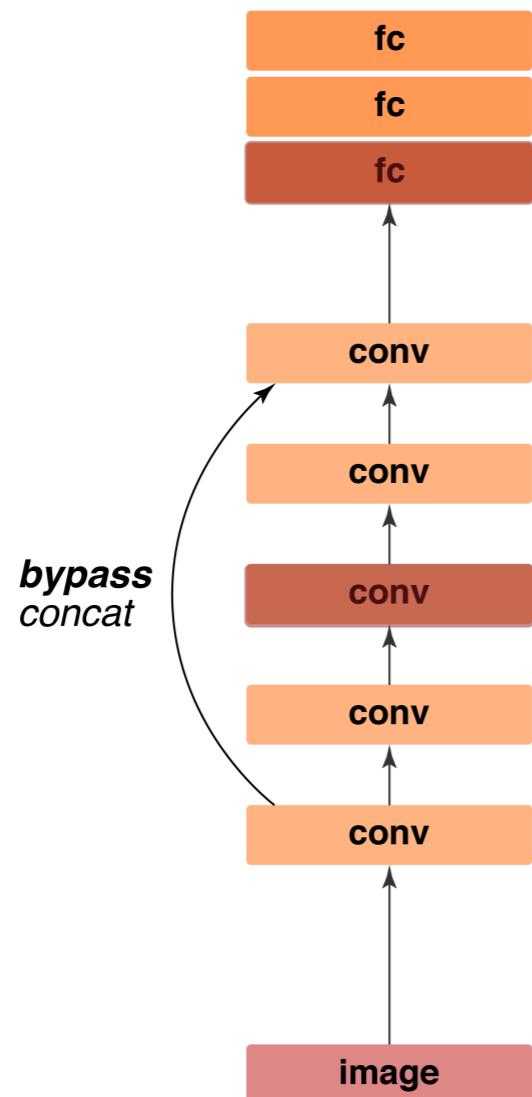
Limitations of Feedforward Structures



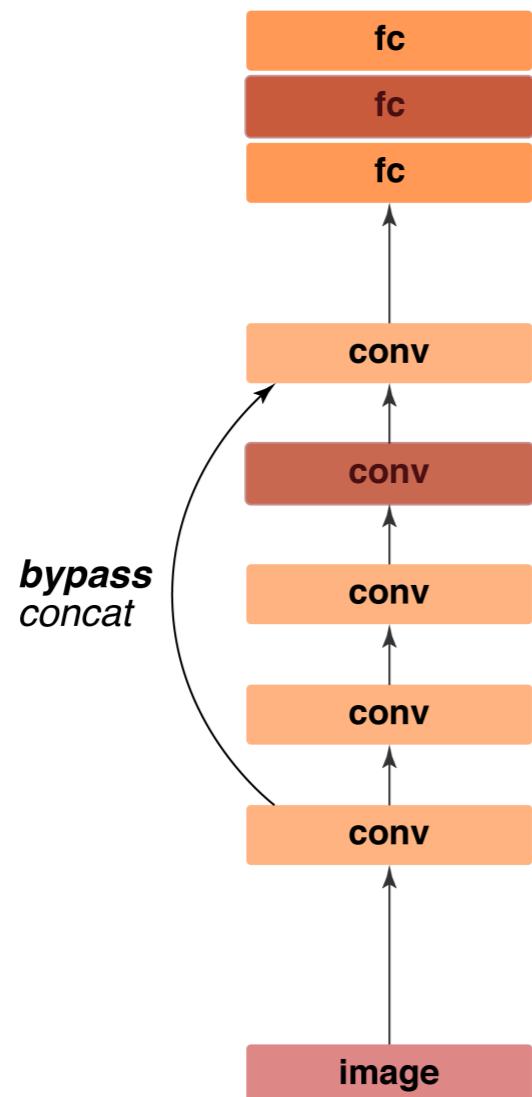
Limitations of Feedforward Structures



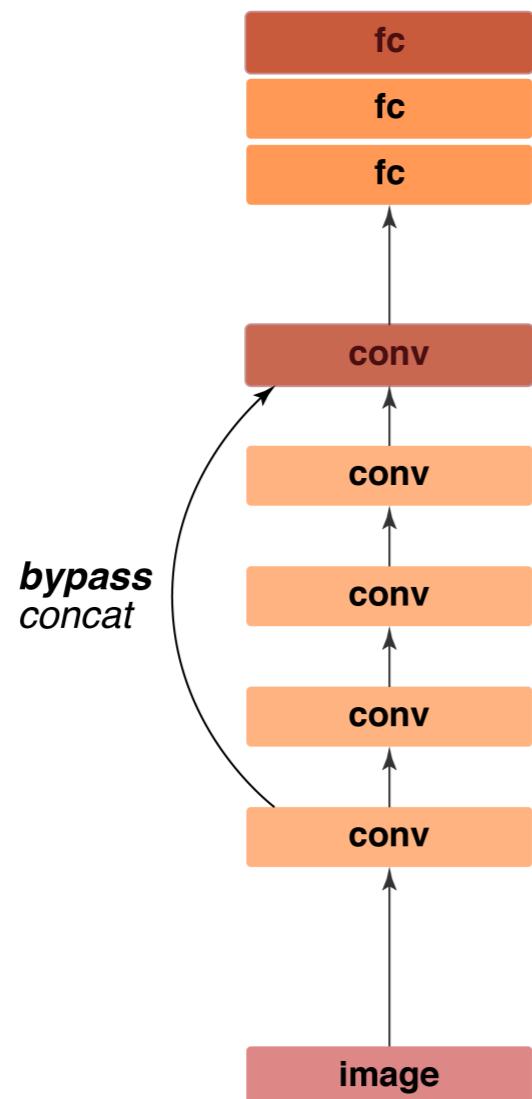
Limitations of Feedforward Structures



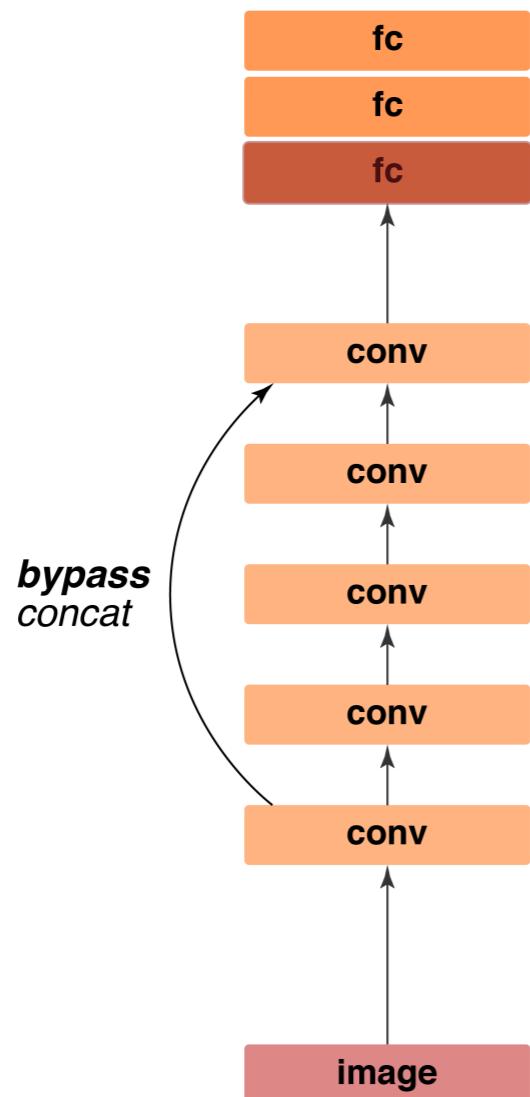
Limitations of Feedforward Structures



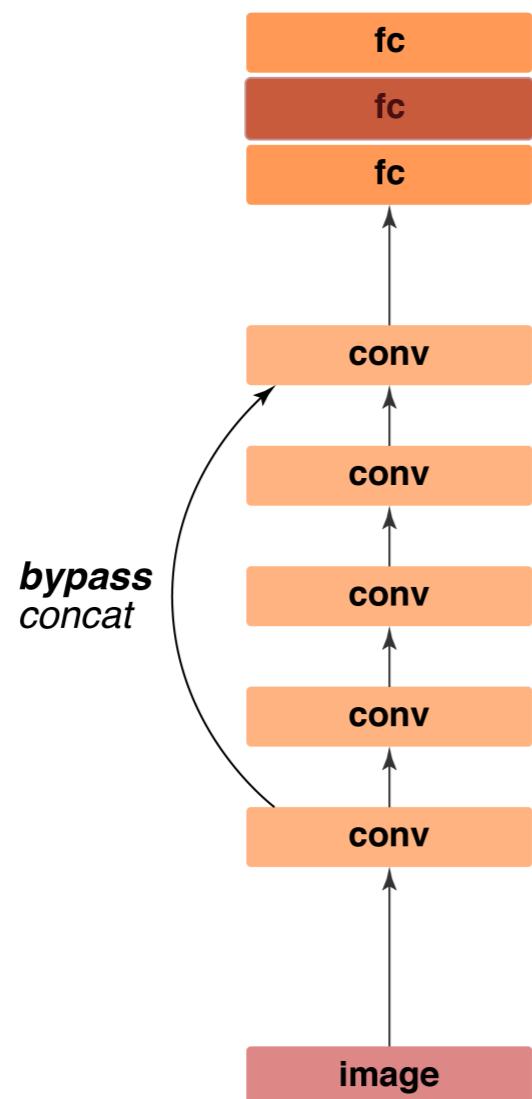
Limitations of Feedforward Structures



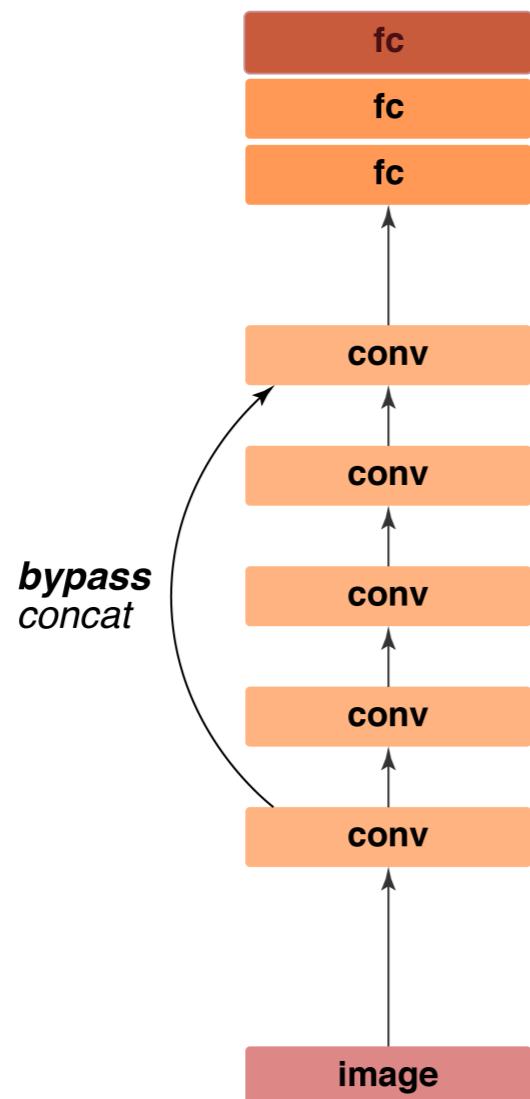
Limitations of Feedforward Structures



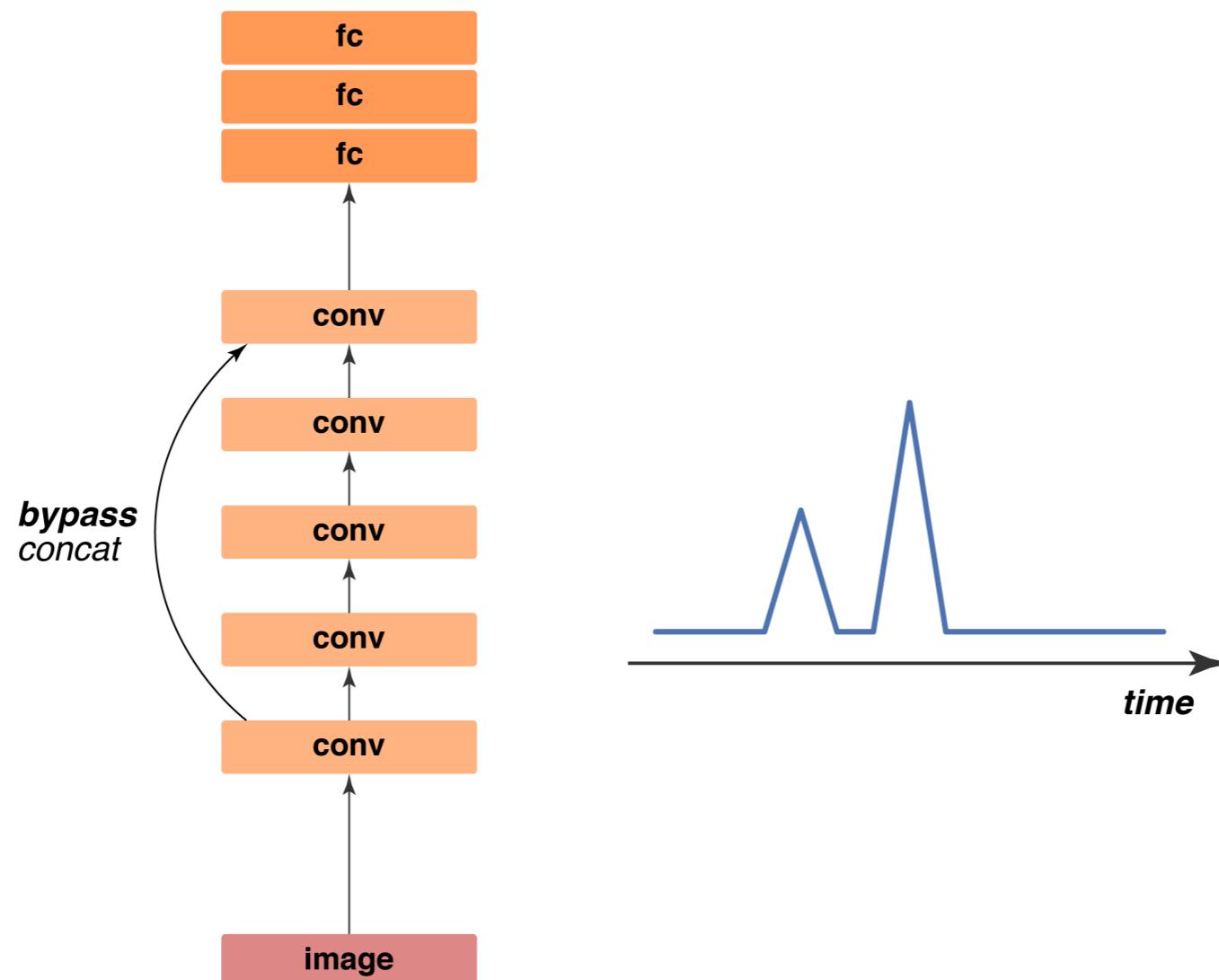
Limitations of Feedforward Structures



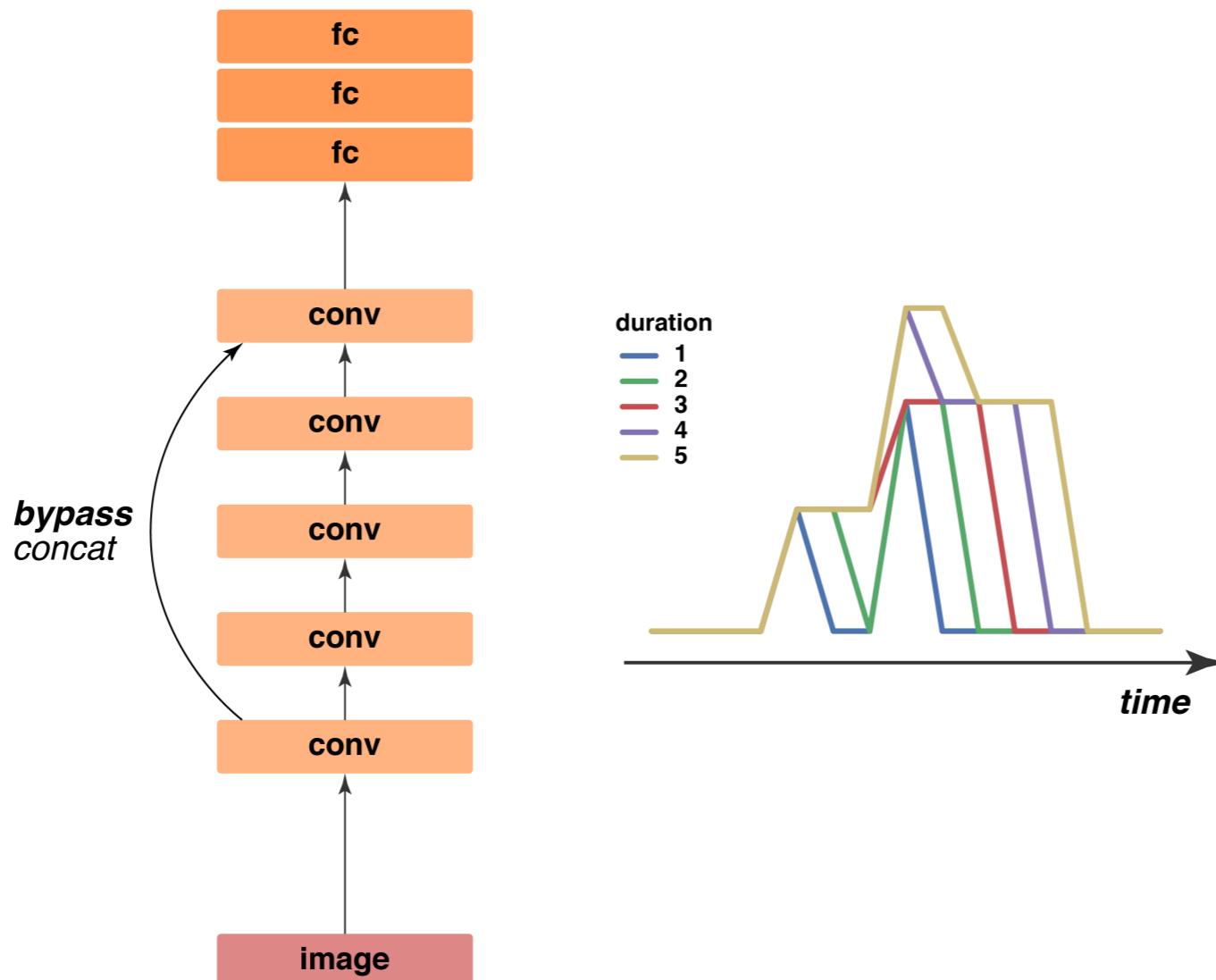
Limitations of Feedforward Structures



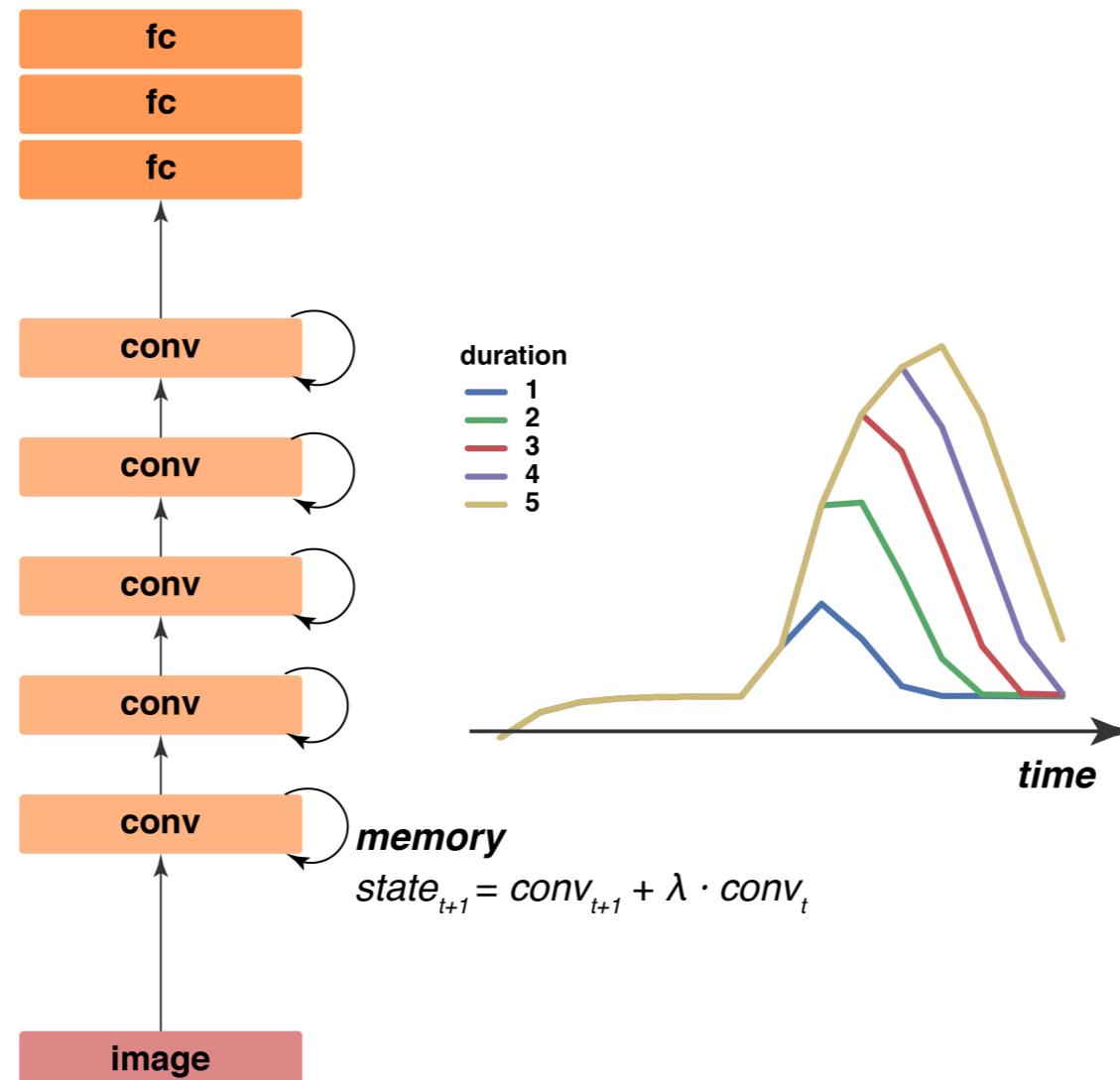
Limitations of Feedforward Structures



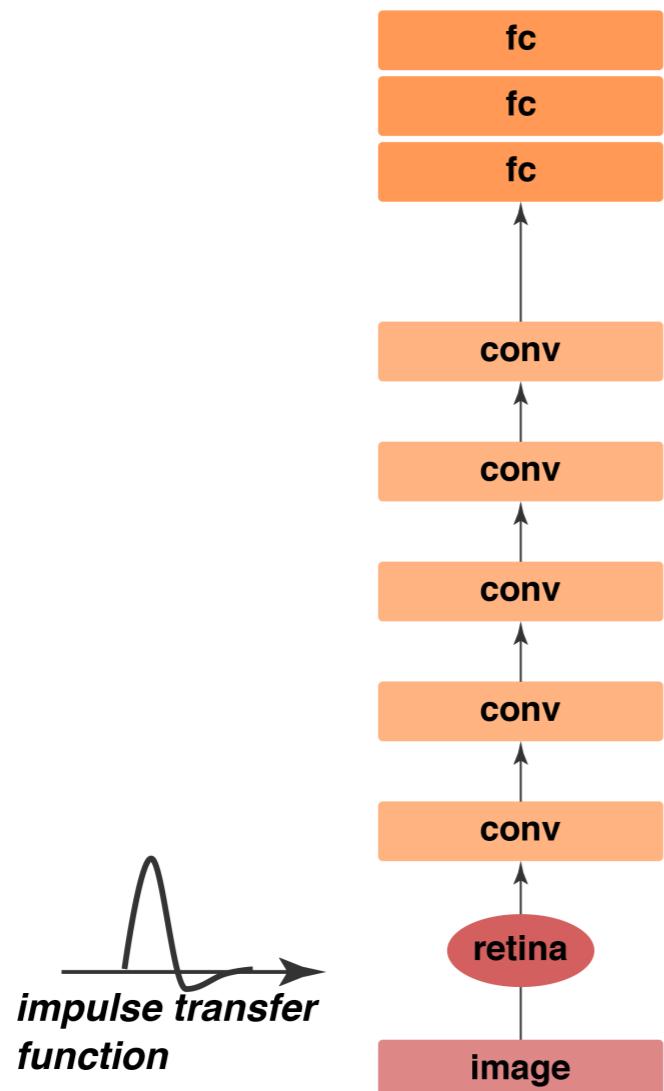
Limitations of Feedforward Structures



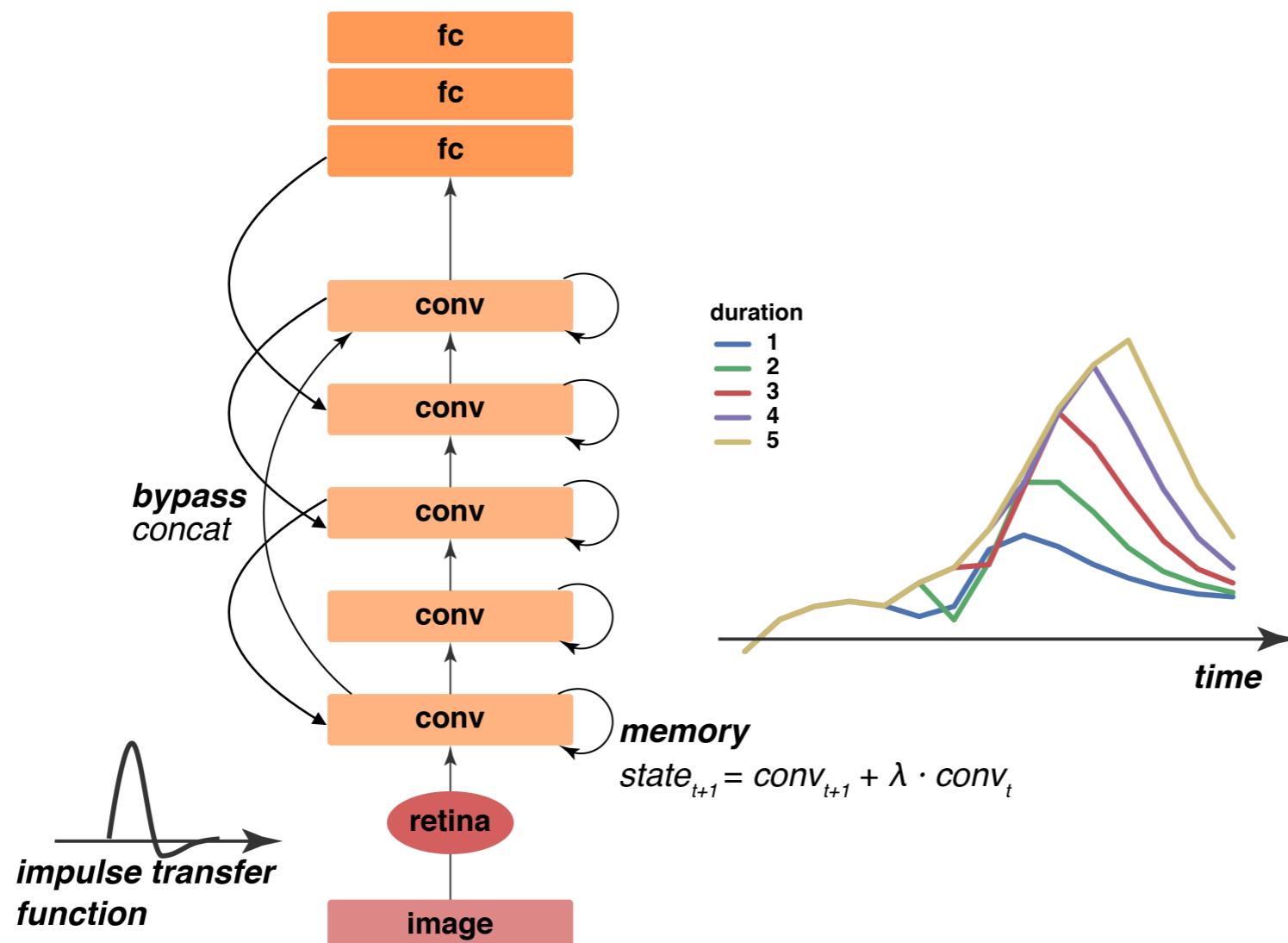
Limitations of Feedforward Structures



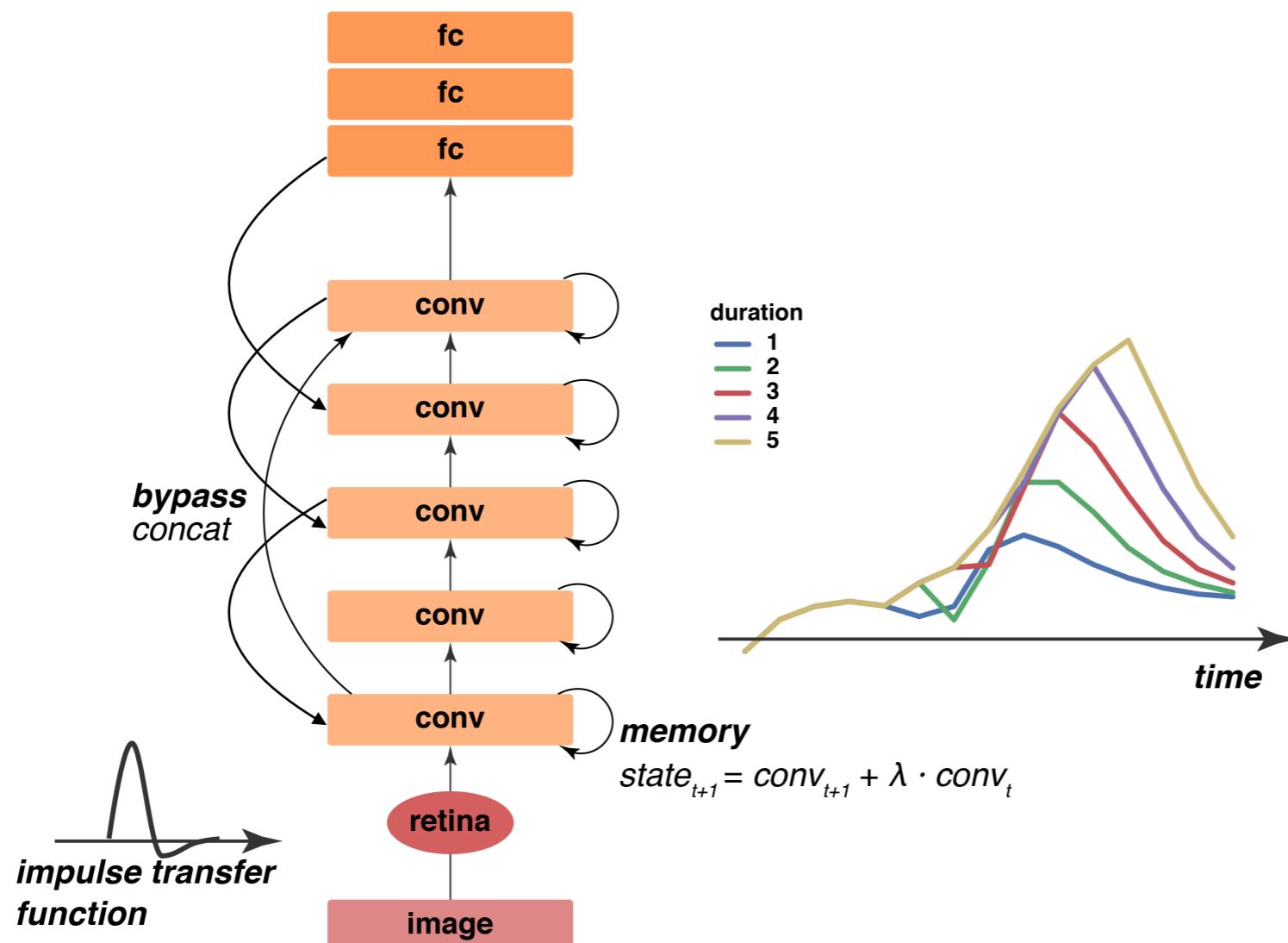
Limitations of Feedforward Structures



Limitations of Feedforward Structures

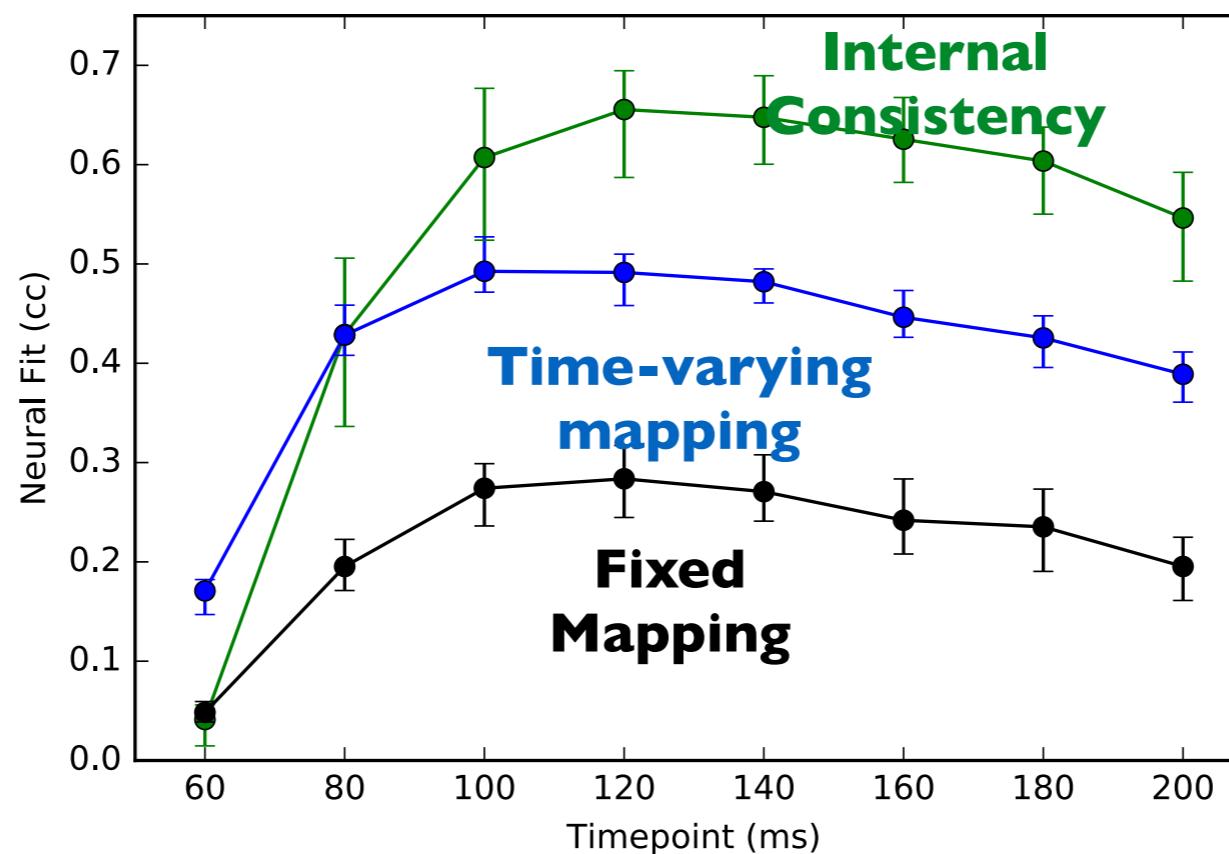


Limitations of Feedforward Structures



Neural data has dynamics

IT trajectories fit with feedforward models



Biological views on function

Top-down influences on visual processing

Charles D. Gilbert¹ and Wu Li²

¹The Rockefeller University, 1230 York Avenue, New York, NY 10065

²State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

“Vision is an active process, where higher order cognitive influences affect the operations performed by cortical neurons.”

Biological views on function

Top-down influences on visual processing

Charles D. Gilbert¹ and Wu Li²

¹The Rockefeller University, 1230 York Avenue, New York, NY 10065

²State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

“Vision is an active process, where higher order cognitive influences affect the operations performed by cortical neurons.”

“Top-down influences include various forms of attention, including spatial, object oriented and feature oriented attention.”

Biological views on function

Top-down influences on visual processing

Charles D. Gilbert¹ and Wu Li²

¹The Rockefeller University, 1230 York Avenue, New York, NY 10065

²State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

“Vision is an active process, where higher order cognitive influences affect the operations performed by cortical neurons.”

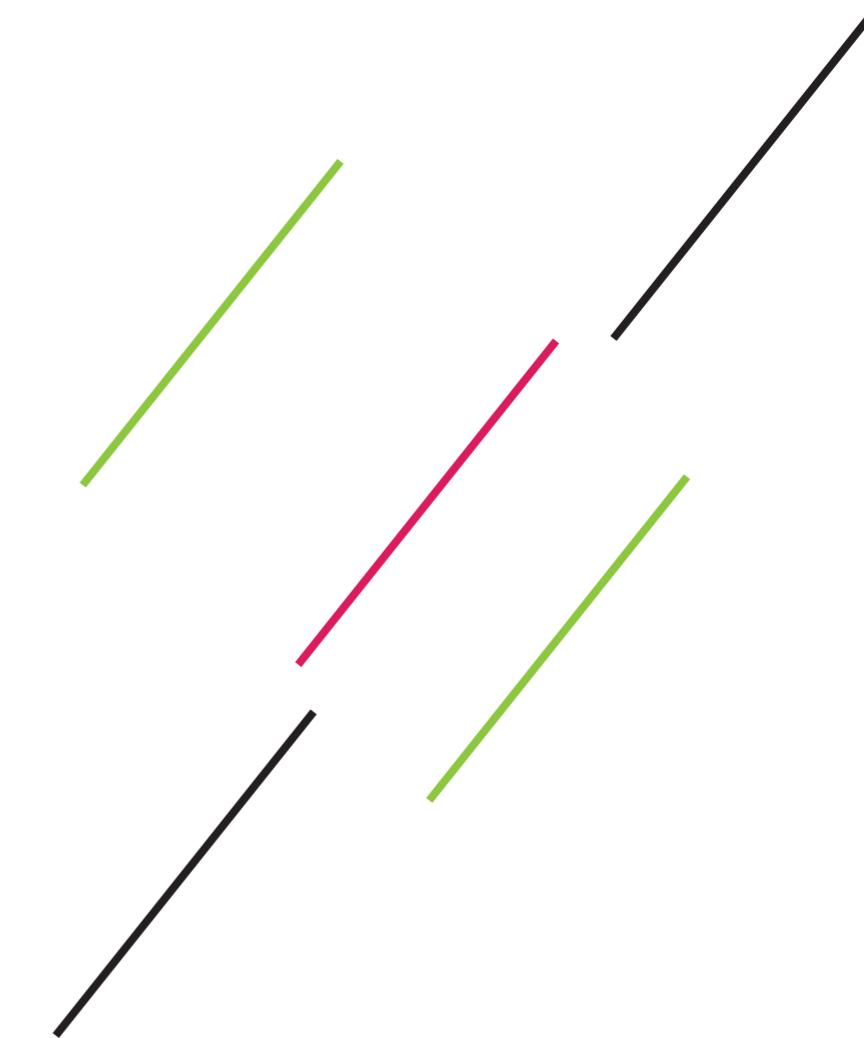
“Top-down influences include various forms of attention, including spatial, object oriented and feature oriented attention.”

“Top-down influences [also include] perceptual task, object expectation, scene segmentation, efference copy, working memory, and the encoding and recall of learned information.”

Biological views on function

Task-dependent changes in neural tuning and information content in V1

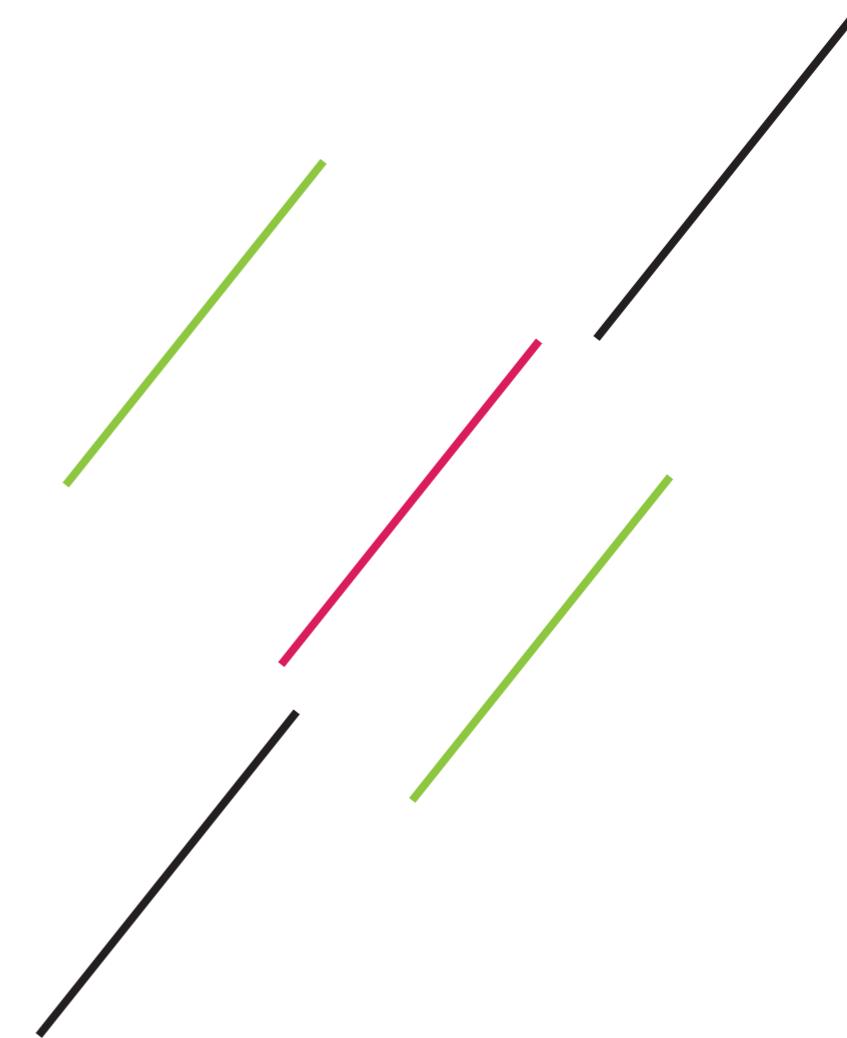
TI: "Which green line is closer to the red?"



Biological views on function

Task-dependent changes in neural tuning and information content in V1

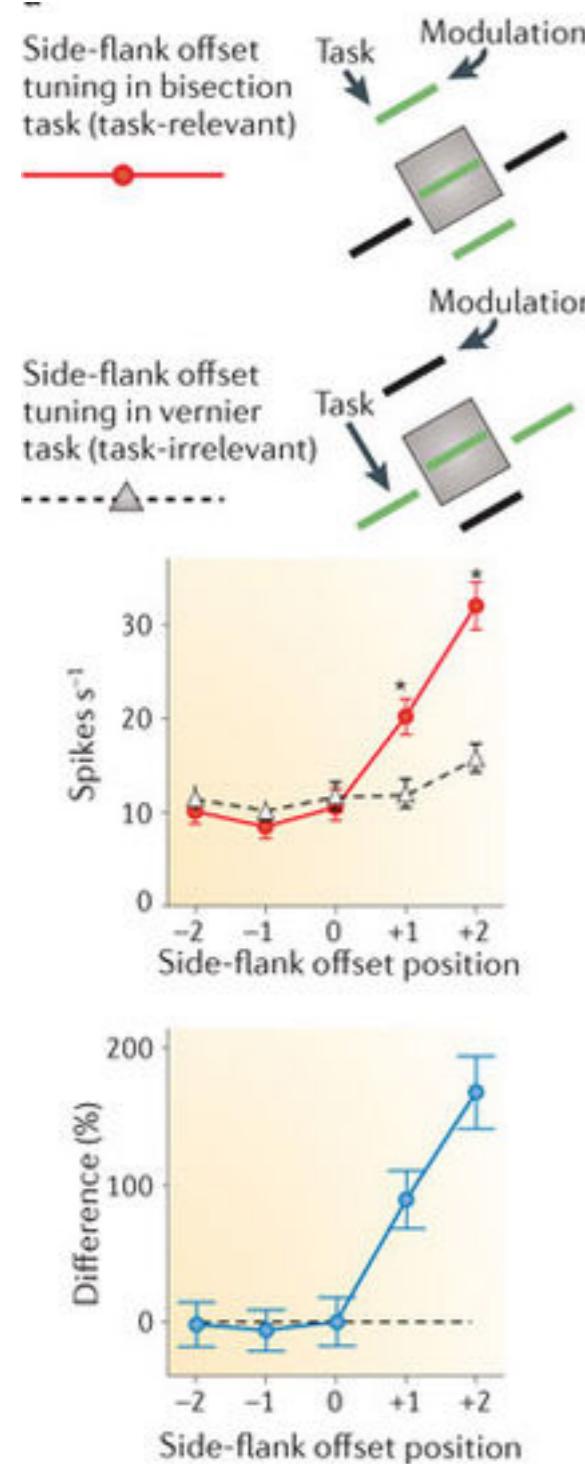
T1: "Which green line is closer to the red?"



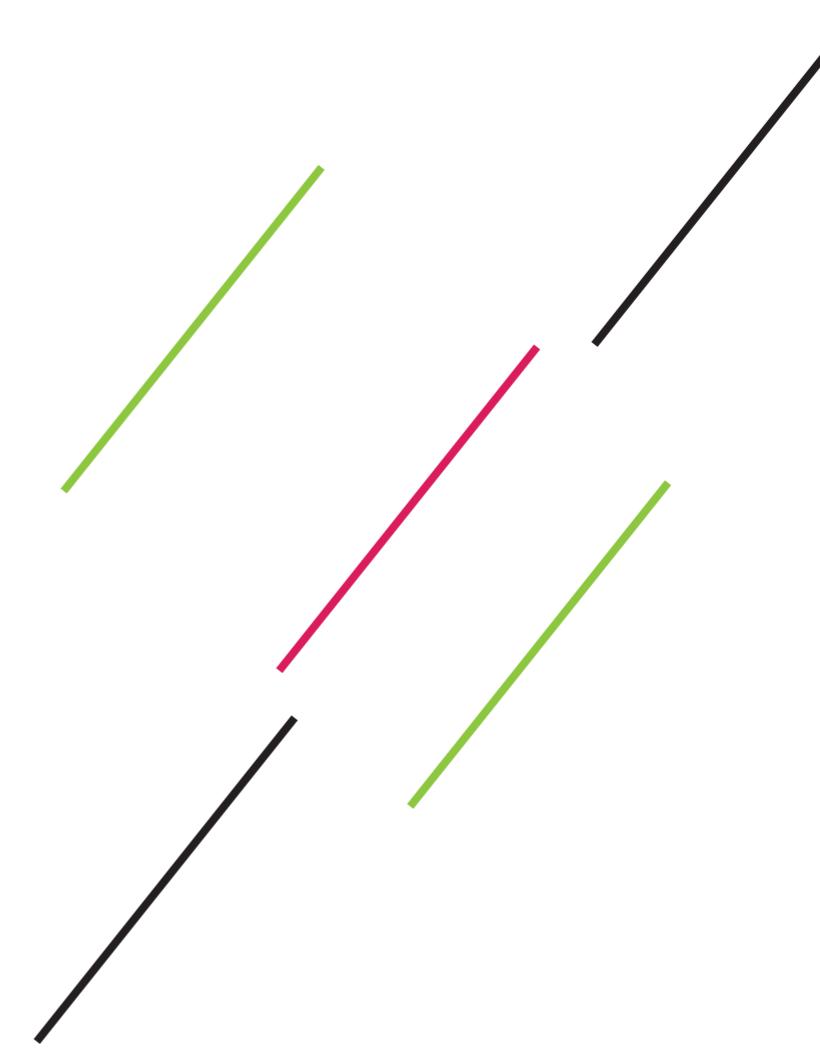
T2: "Which black line is closer to the red?"

Biological views on function

Task-dependent changes in neural tuning and information content in V1



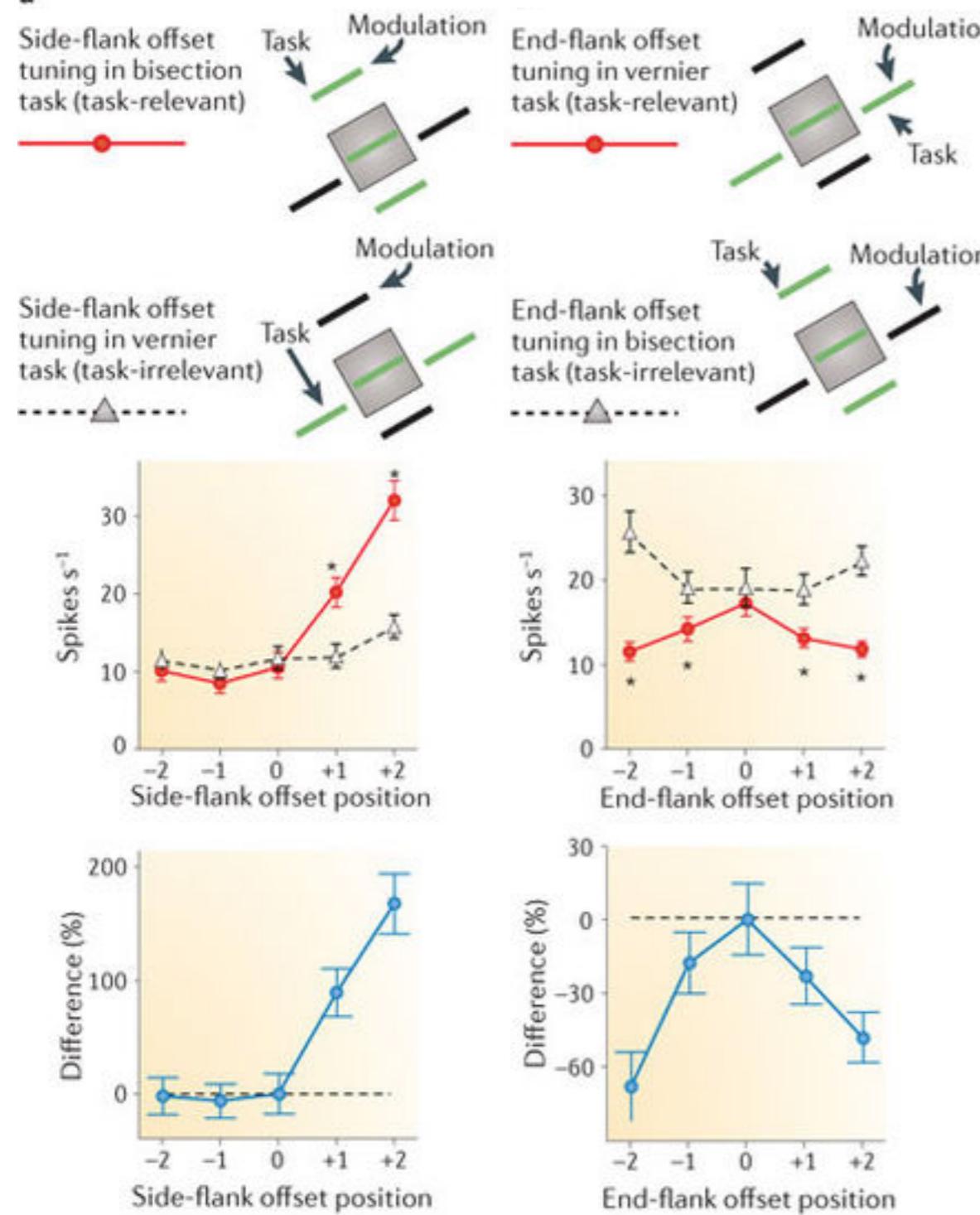
T1: "Which green line is closer to the red?"



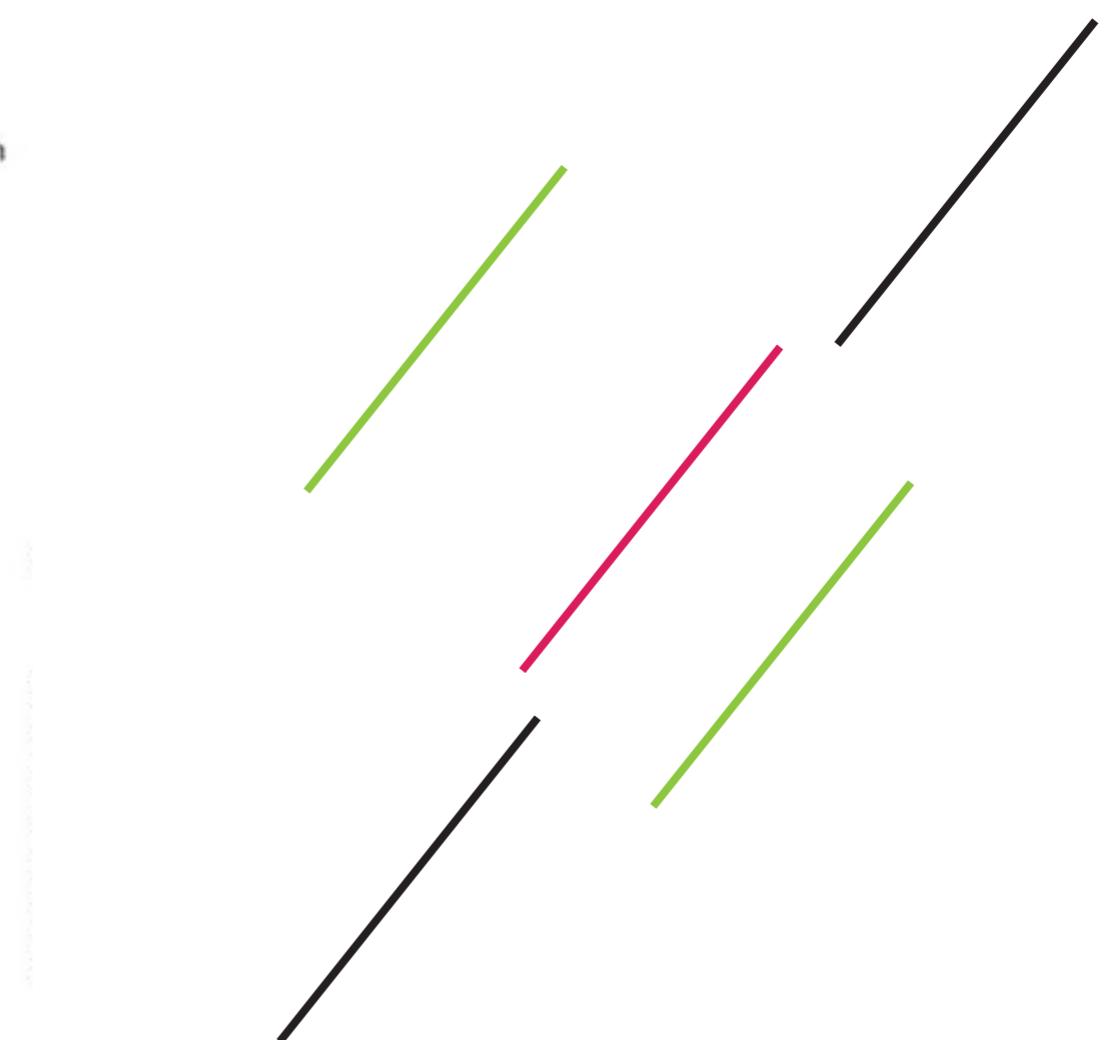
T2: "Which black line is closer to the red?"

Biological views on function

Task-dependent changes in neural tuning and information content in V1



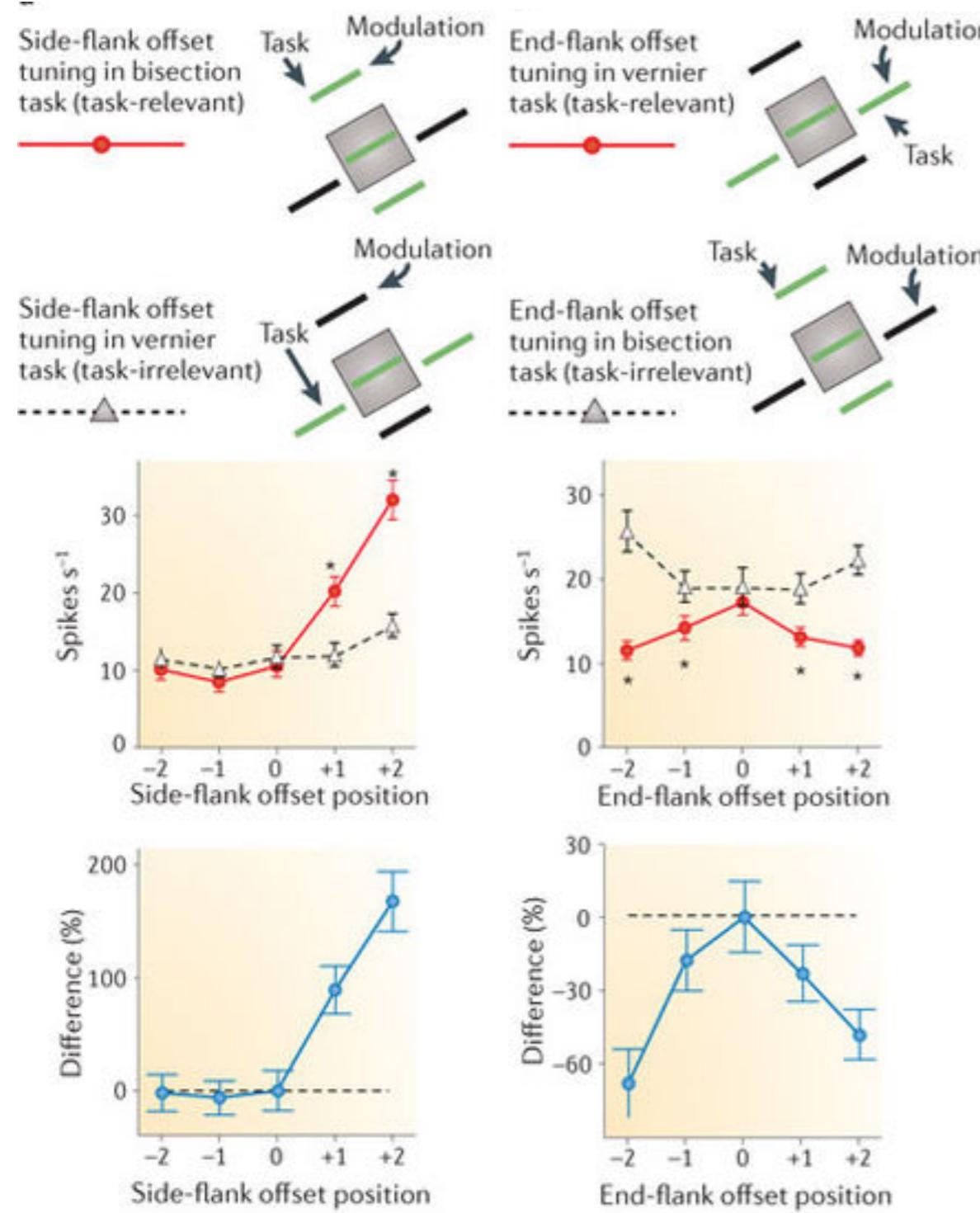
T1: "Which green line is closer to the red?"



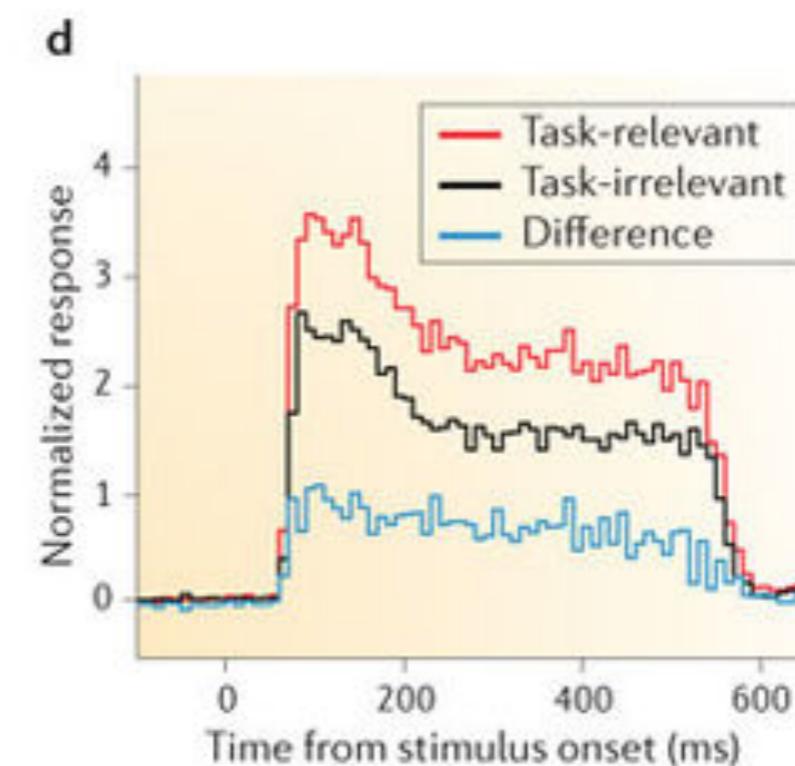
T2: "Which black line is closer to the red?"

Biological views on function

Task-dependent changes in neural tuning and information content in V1



T1: "Which green line is closer to the red?"



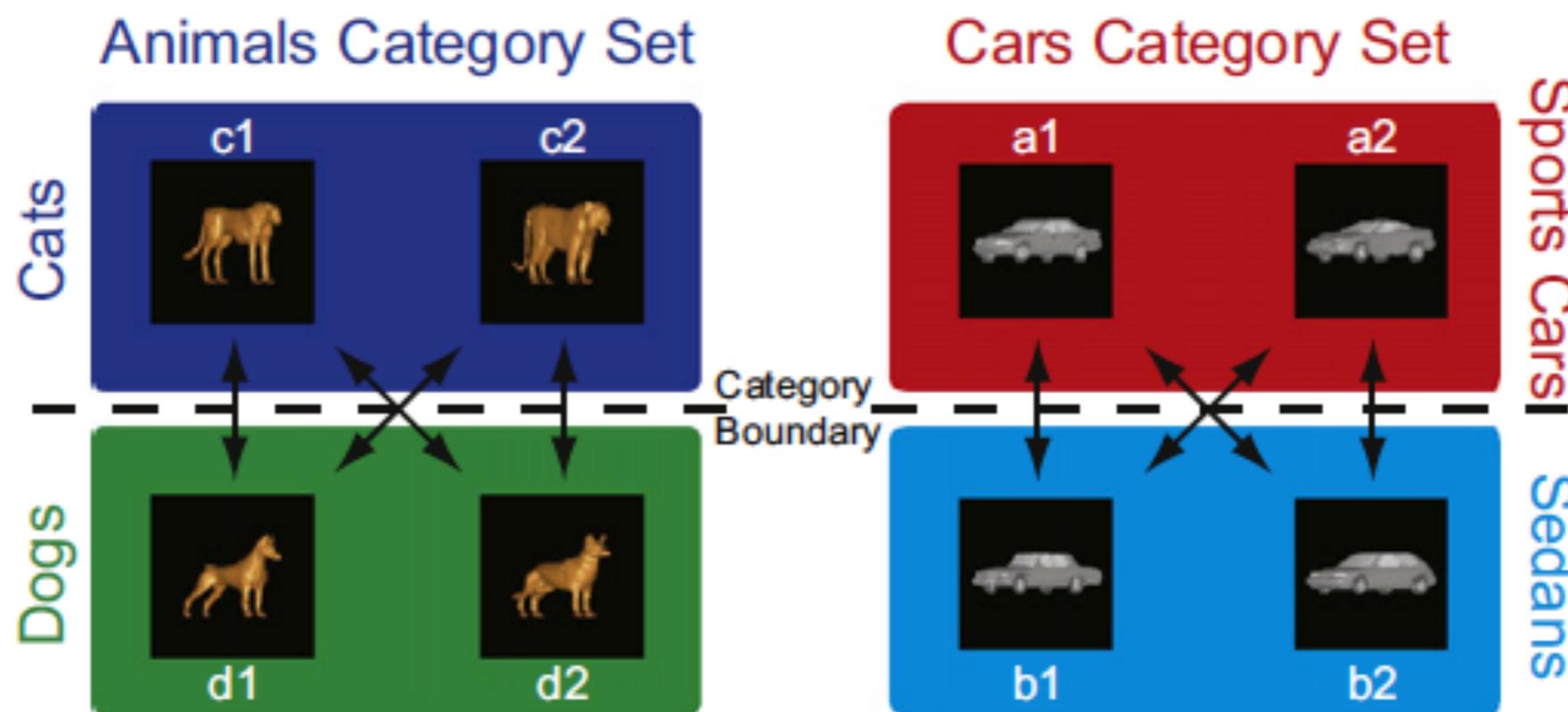
T2: "Which black line is closer to the red?"

Biological views on function

Task-dependent changes in neural tuning and information content in IT

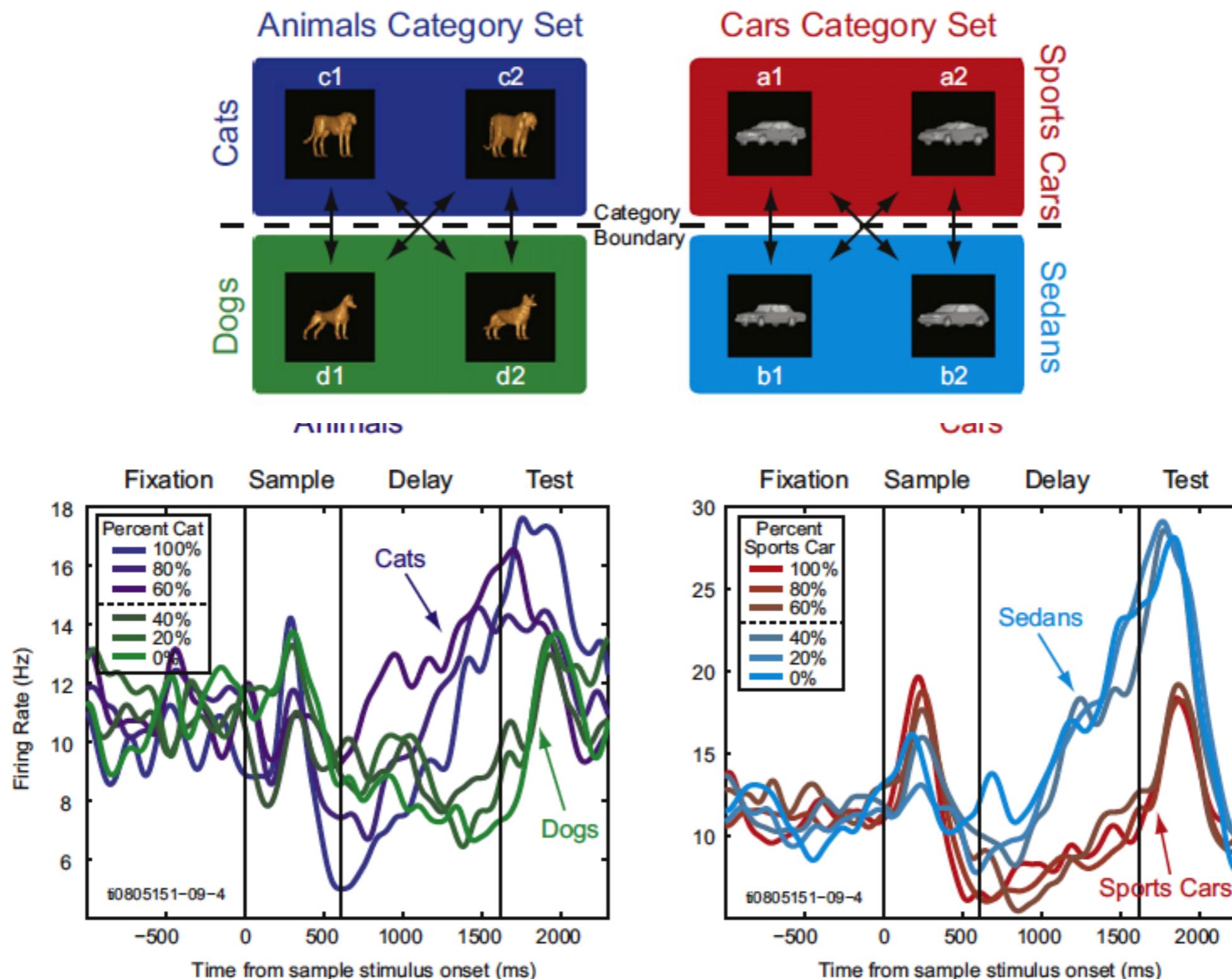
Comparison of Primate Prefrontal and Premotor Cortex Neuronal Activity during Visual Categorization

Jason A. Cromer, Jefferson E. Roy, Timothy J. Buschman,
and Earl K. Miller



Biological views on function

Task-dependent changes in neural tuning and information content in IT



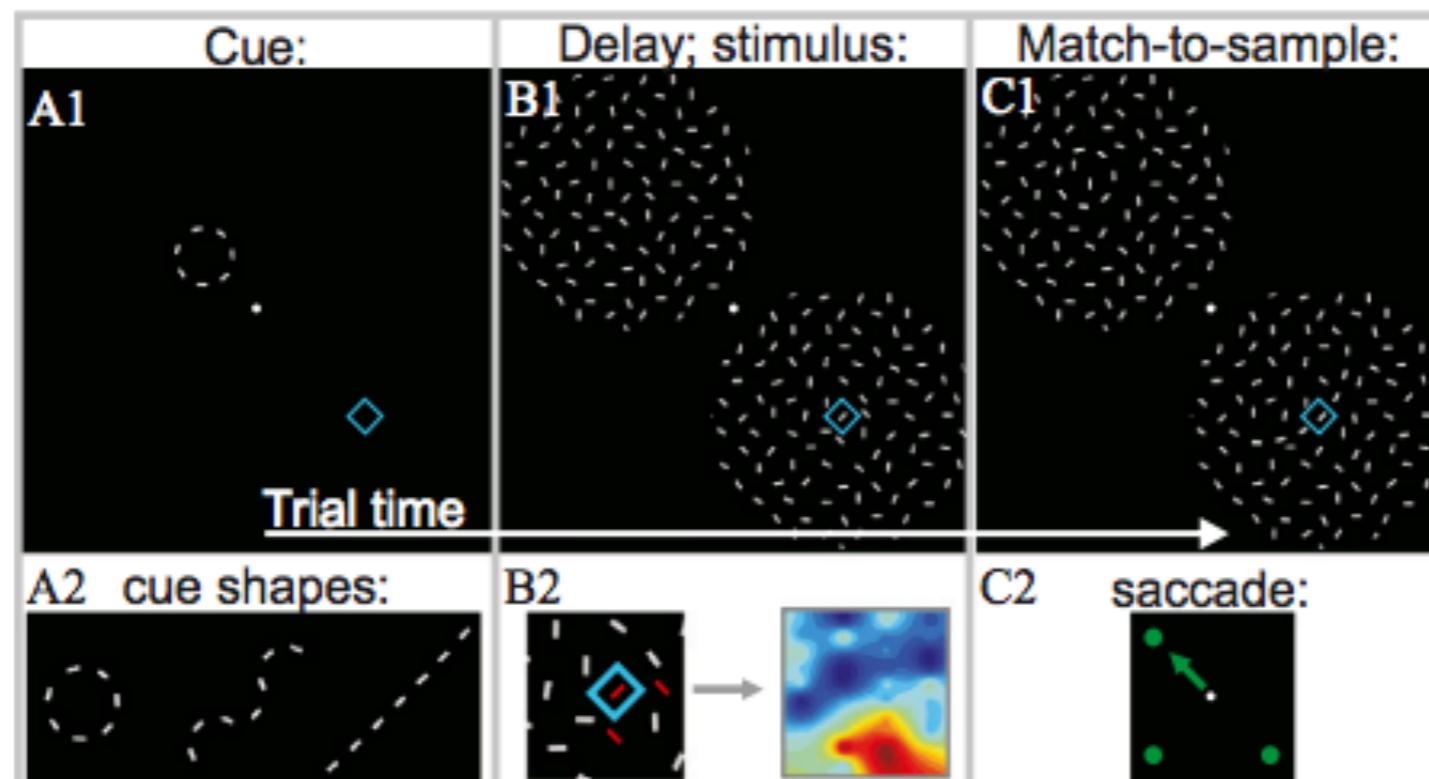
Biological views on function

Adaptive shape processing in primary visual cortex

Justin N. J. McManus^a, Wu Li^b, and Charles D. Gilbert^{a,1}

Author Affiliations

Contributed by Charles D. Gilbert, April 18, 2011 (sent for review March 4, 2011)



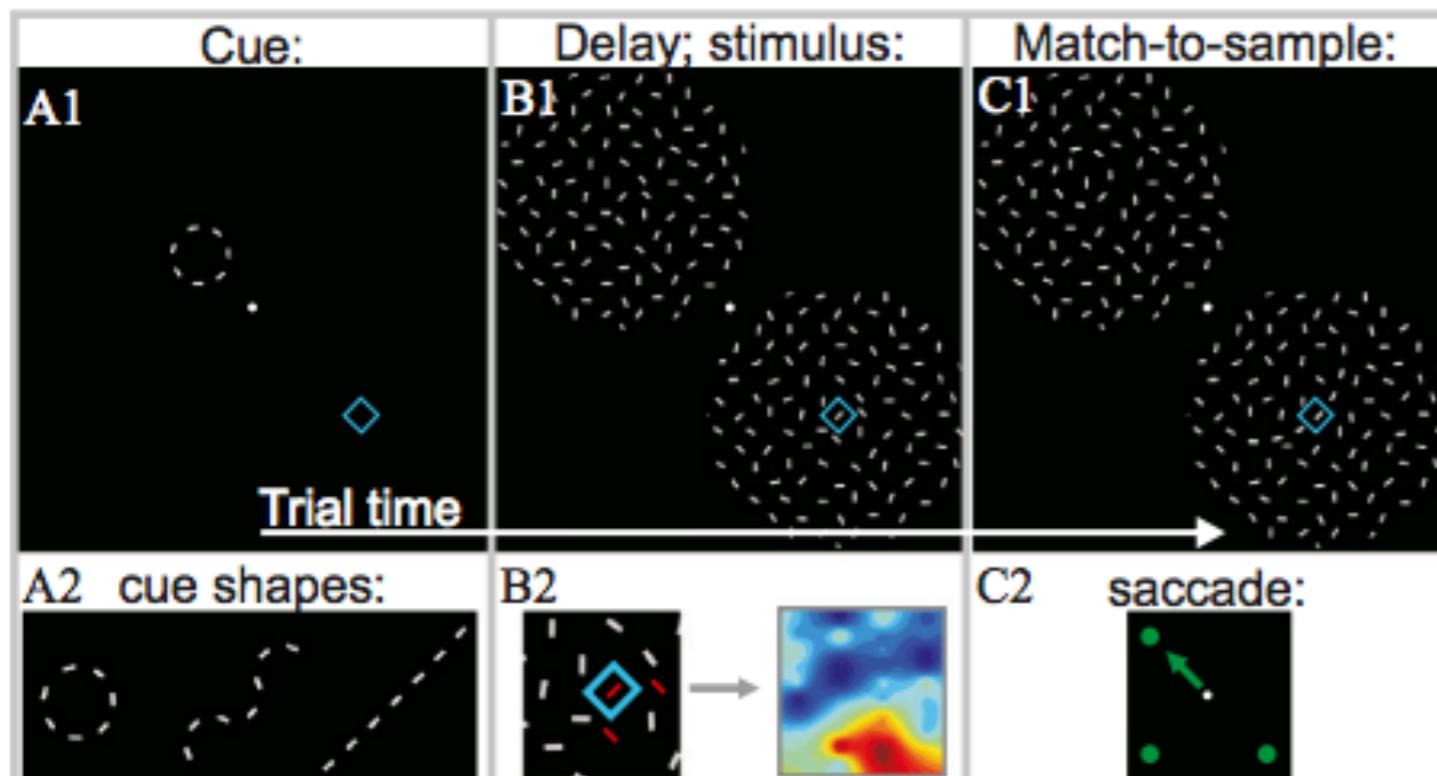
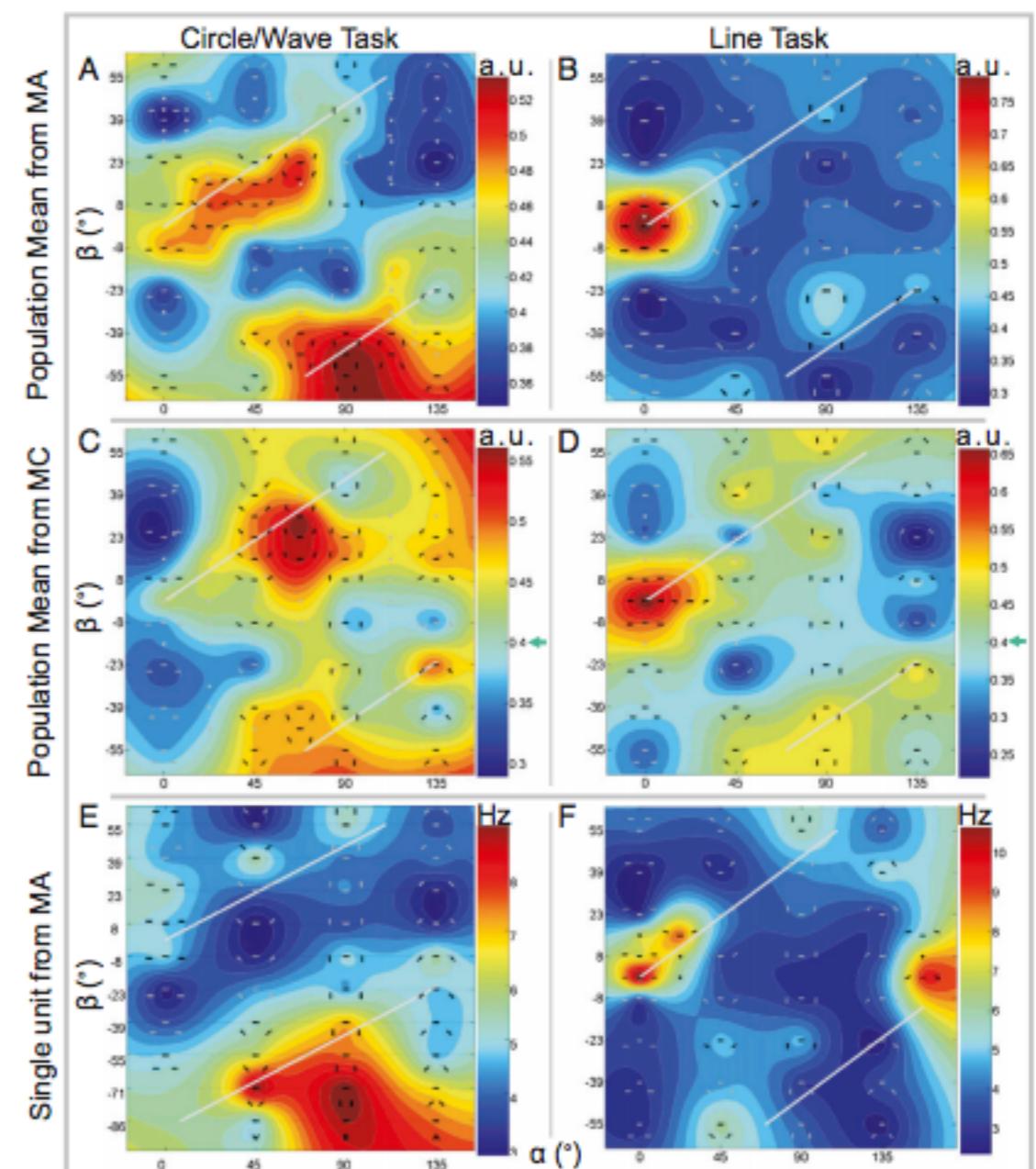
Biological views on function

Adaptive shape processing in primary visual cortex

Justin N. J. McManus^a, Wu Li^b, and Charles D. Gilbert^{a,1}

Author Affiliations

Contributed by Charles D. Gilbert, April 18, 2011 (sent for review March 4, 2011)



an entirely different mode of selectivity, for circular shapes. The difference between the mean tuning surfaces under the line and circle/wave tasks was statistically significant (monkey A, total number of surfaces, $n = 53$, $P = 4 \times 10^{-5}$; monkey B, $n = 63$, $P = 0.007$; and monkey C, $n = 62$, $P = 0.003$).

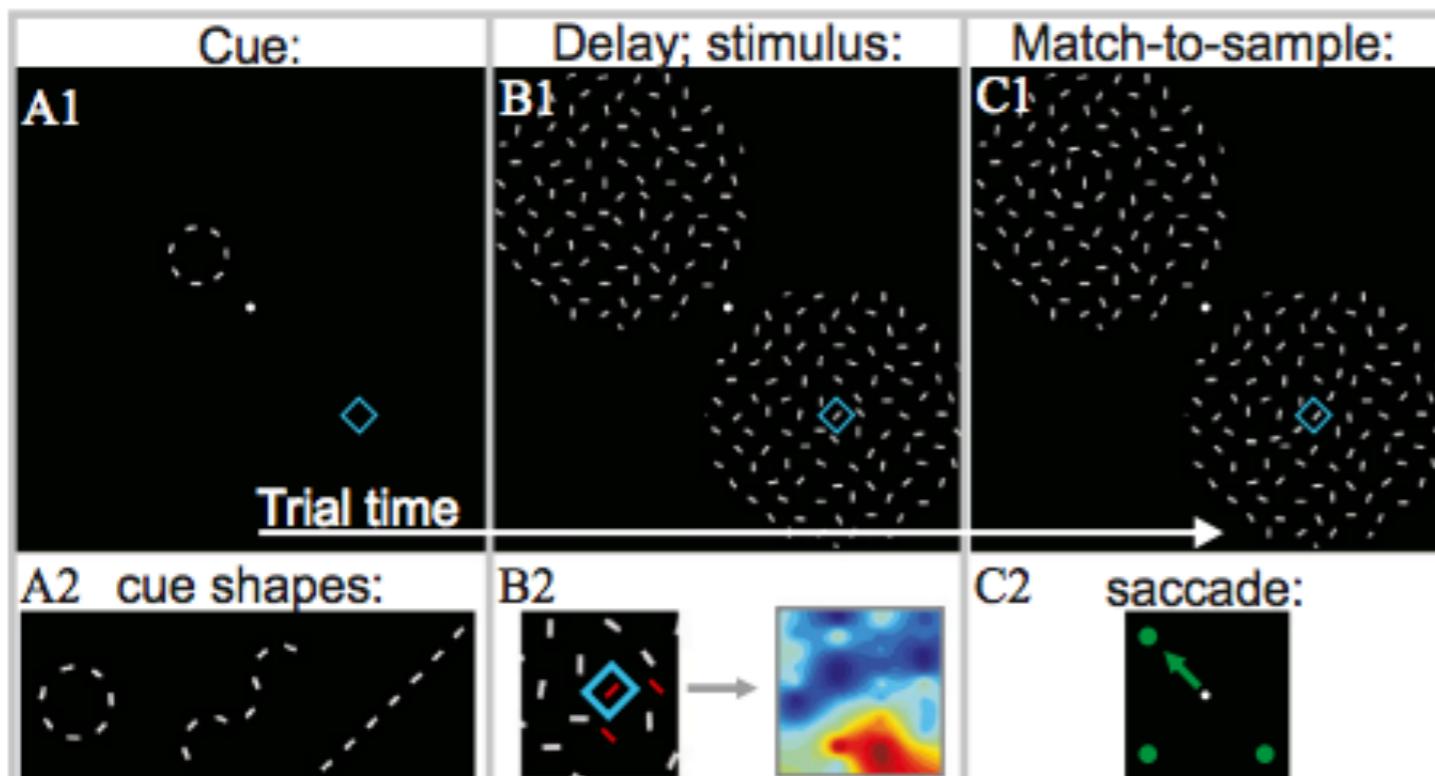
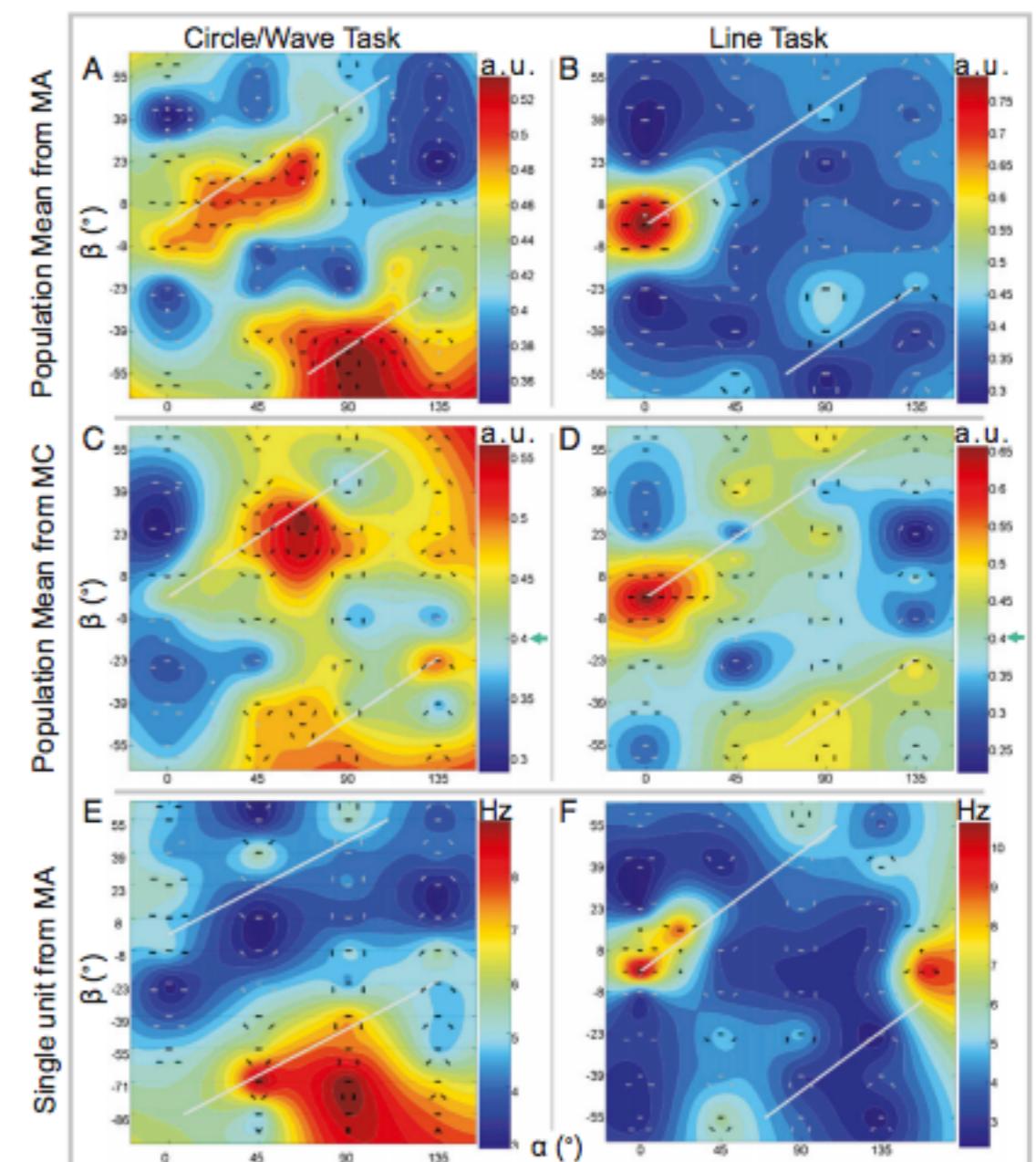
Biological views on function

Adaptive shape processing in primary visual cortex

Justin N. J. McManus^a, Wu Li^b, and Charles D. Gilbert^{a,1}

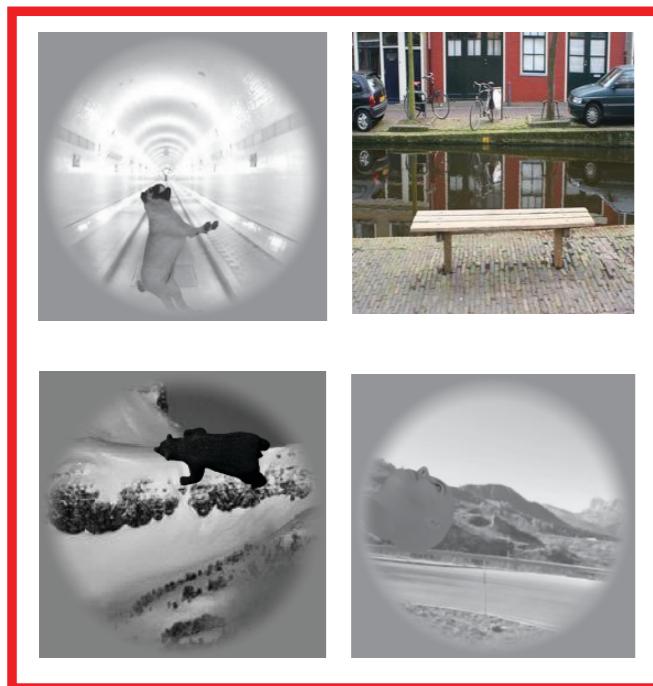
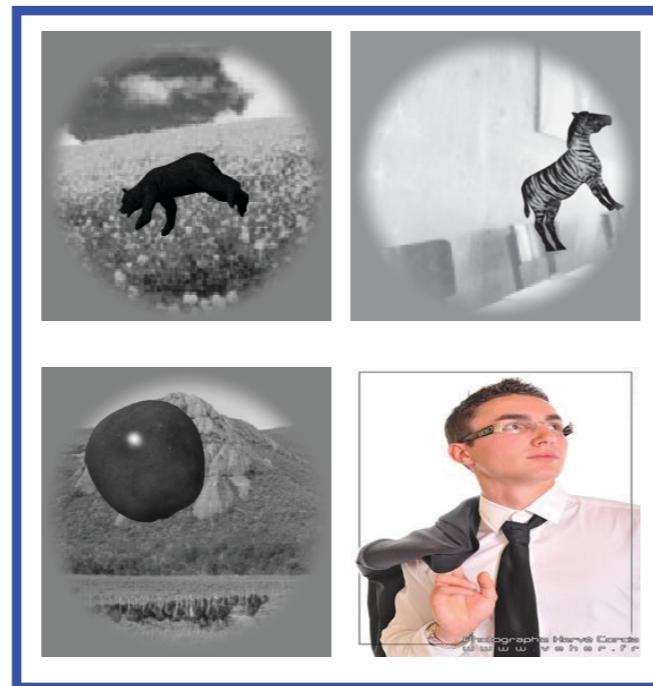
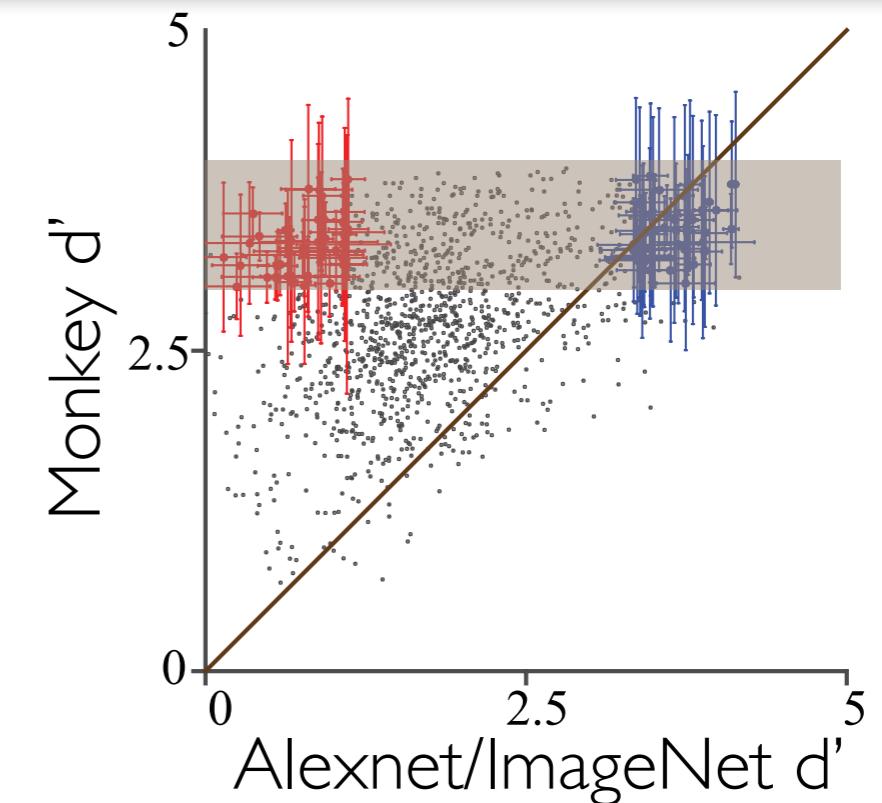
Author Affiliations

Contributed by Charles D. Gilbert, April 18, 2011 (sent for review March 4, 2011)



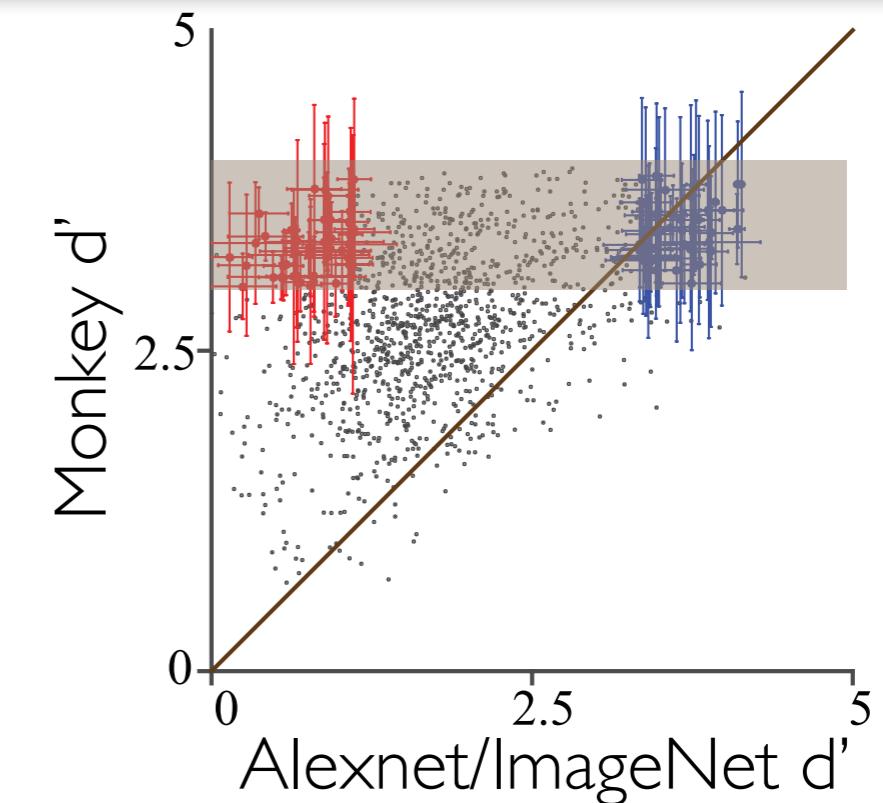
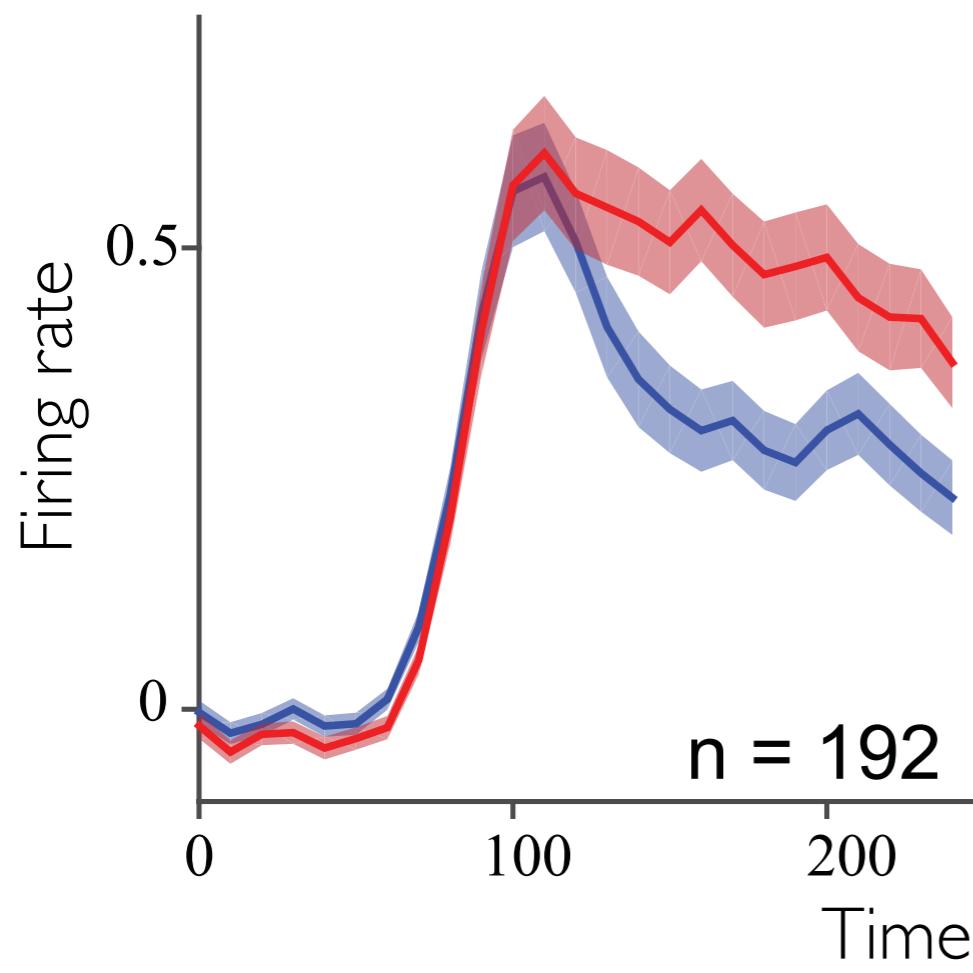
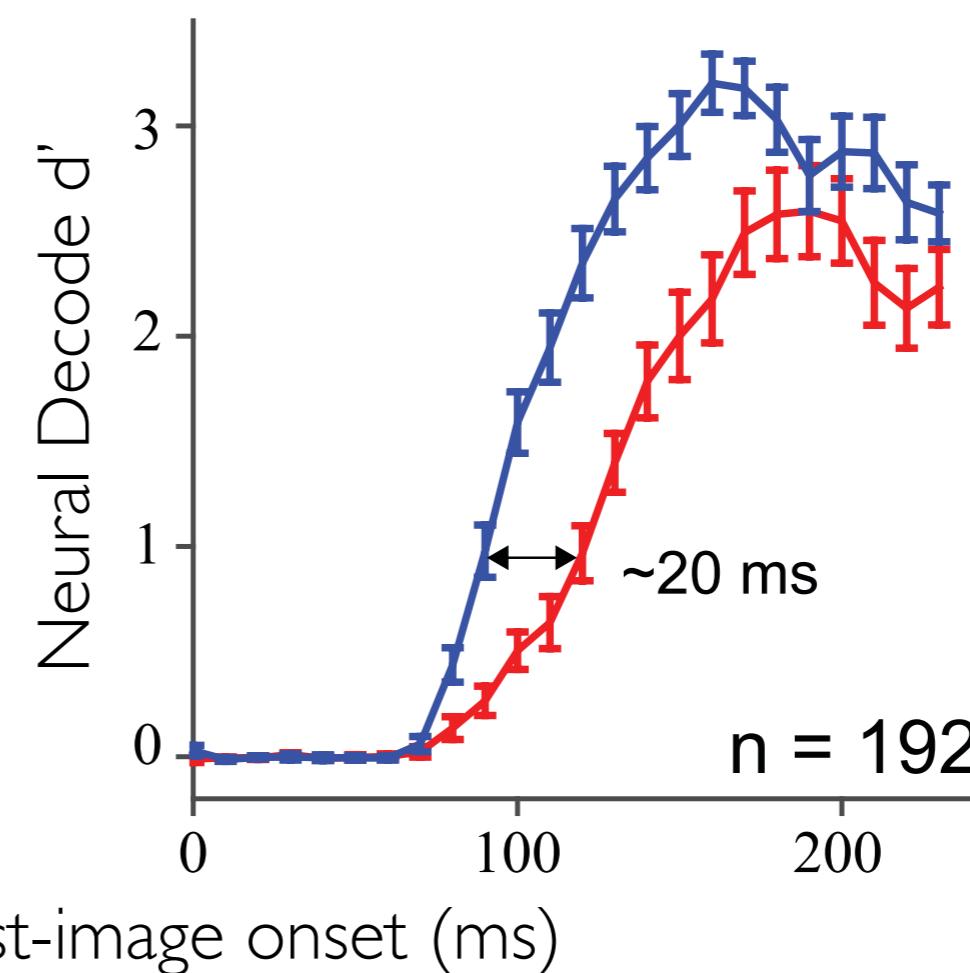
“This process suggests that expectation of an object creates a set of filters that are selective for the object’s components and thus, a role of top-down processes in object recognition. The idea is further supported by the transfer of perceptual learning between objects with shared components.”

Biological views on function



Kar et. al. (2017)

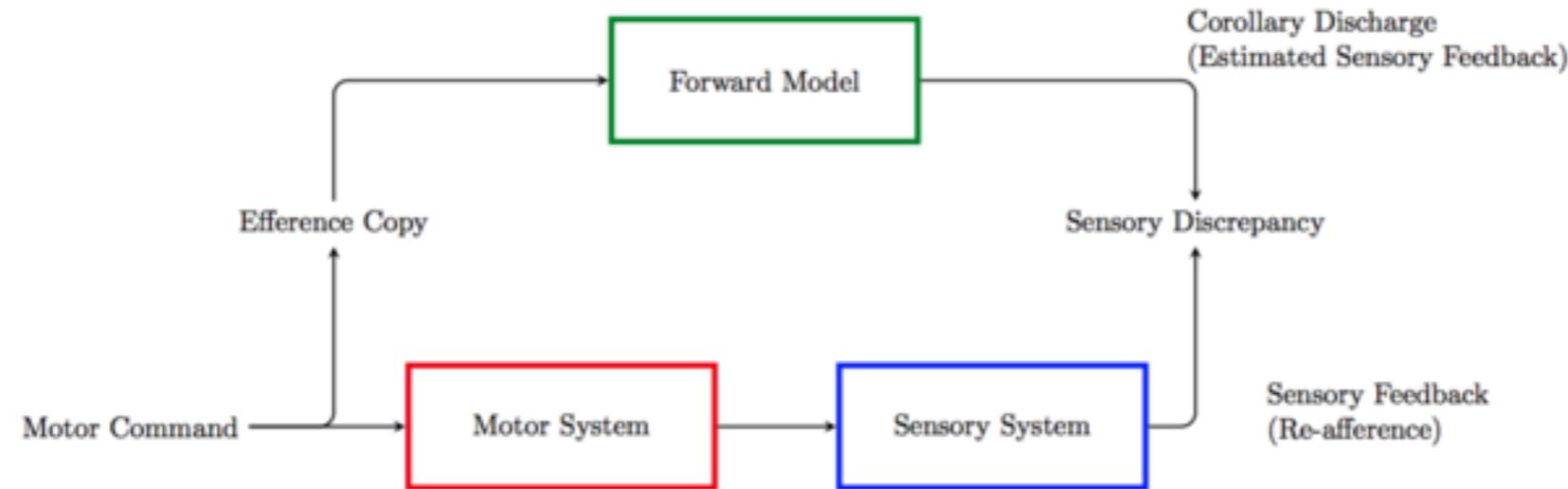
Biological views on function



Kar et. al. (2017)

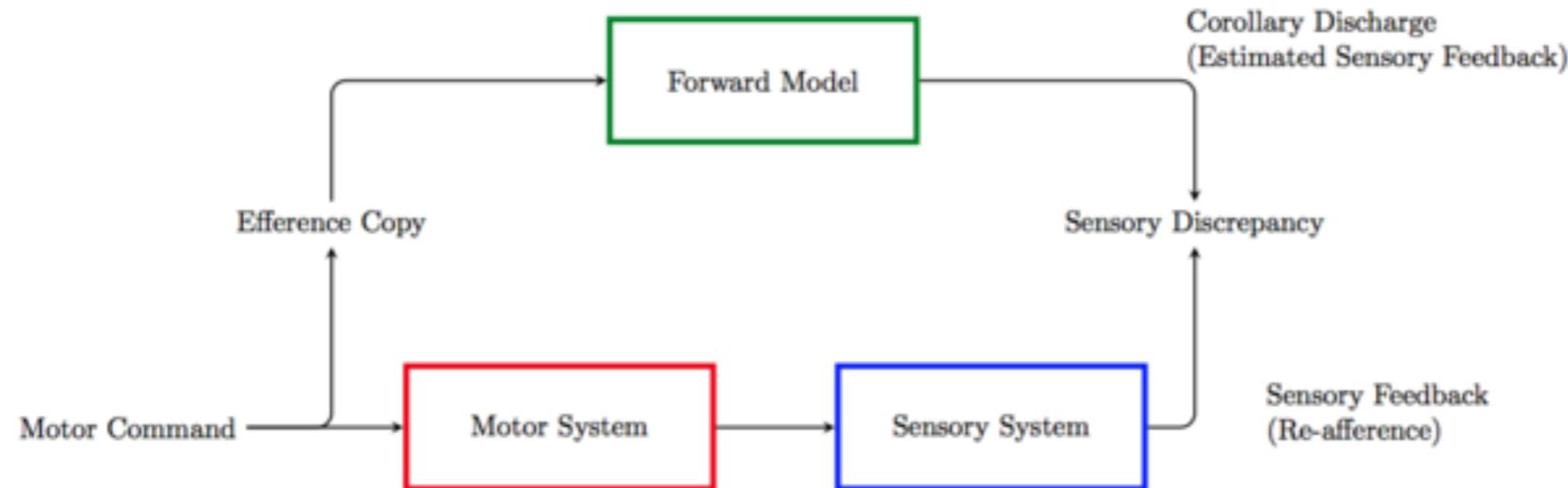
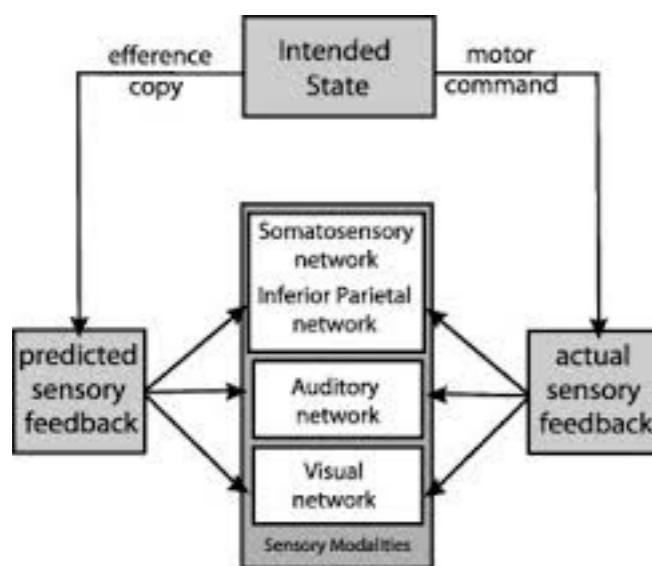
Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability



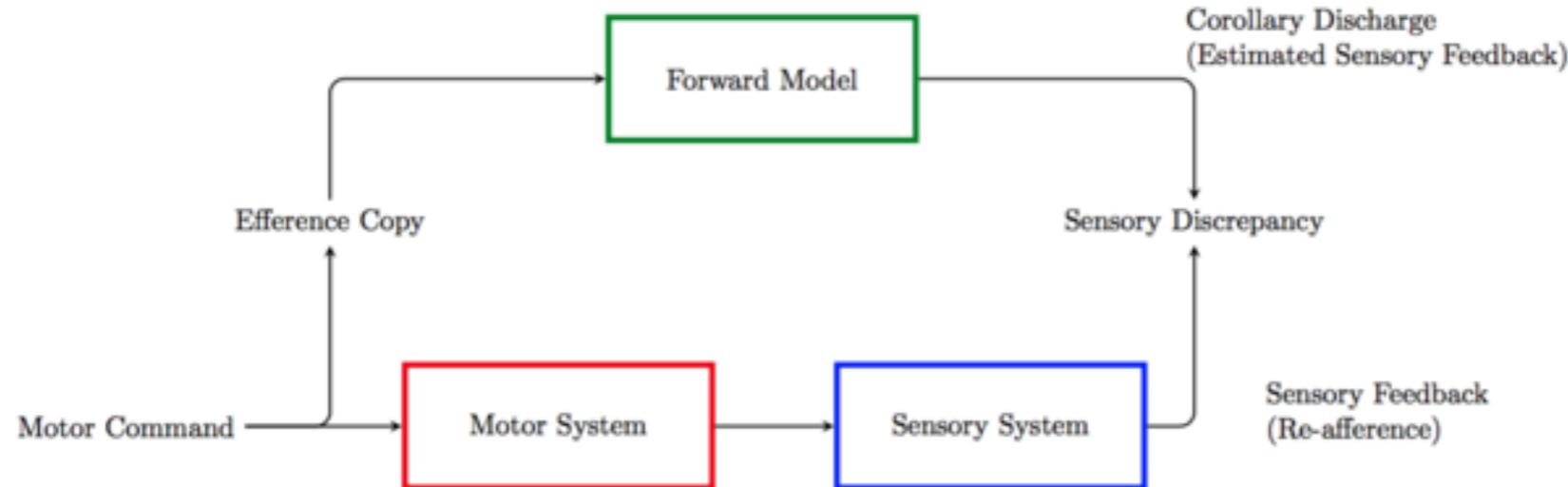
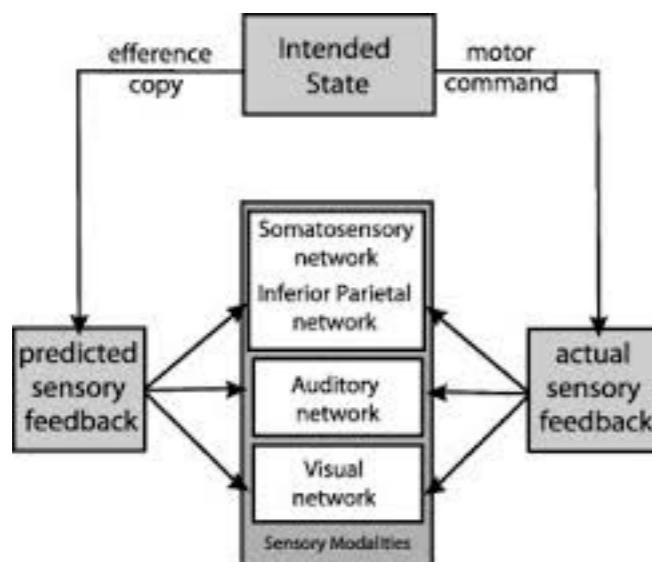
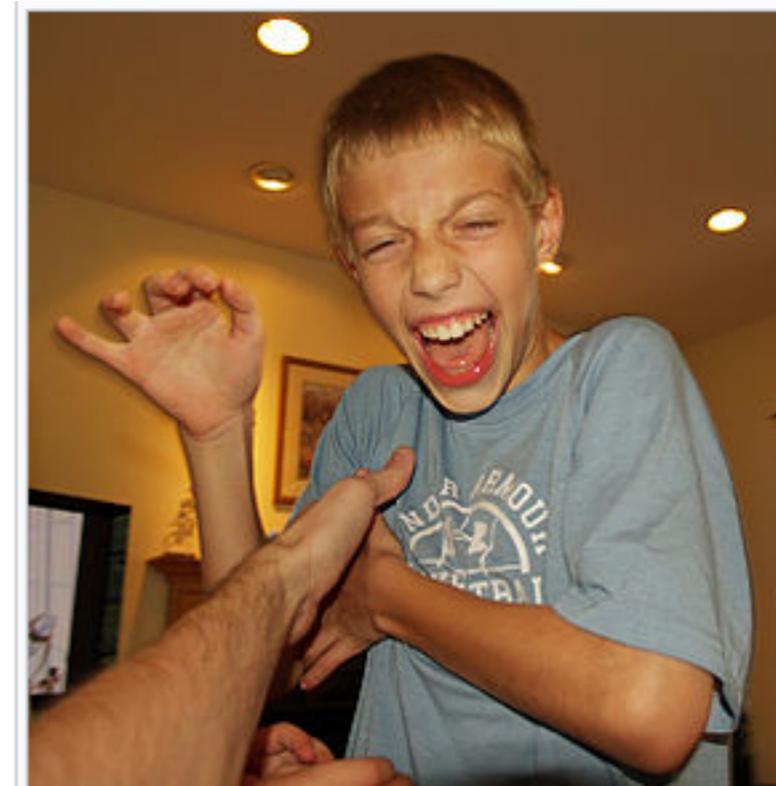
Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability



Biological views on function

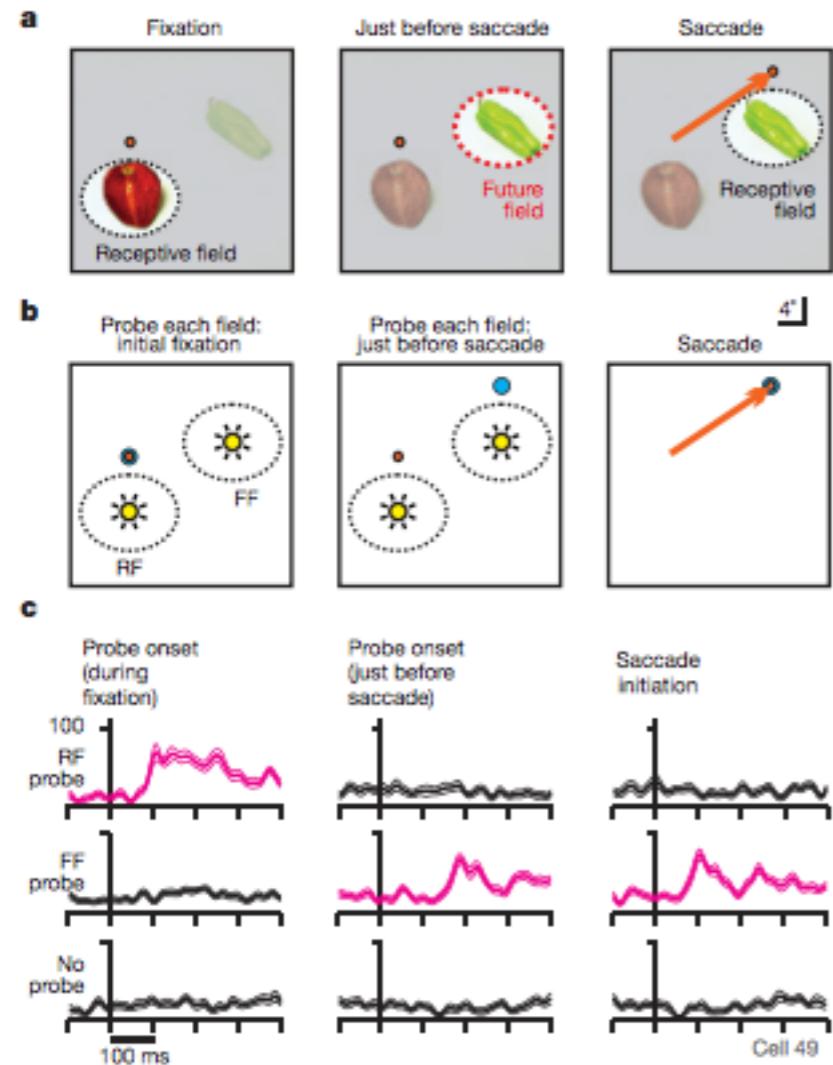
Efference copy = copy of motor instructions, for (e.g.) stability



Efference copies are created with our own movement but not those of other people. This is why other people can tickle us (no efference copies of the movements that touch us) but we cannot tickle ourselves (efference copies tell us that we are stimulating ourselves).

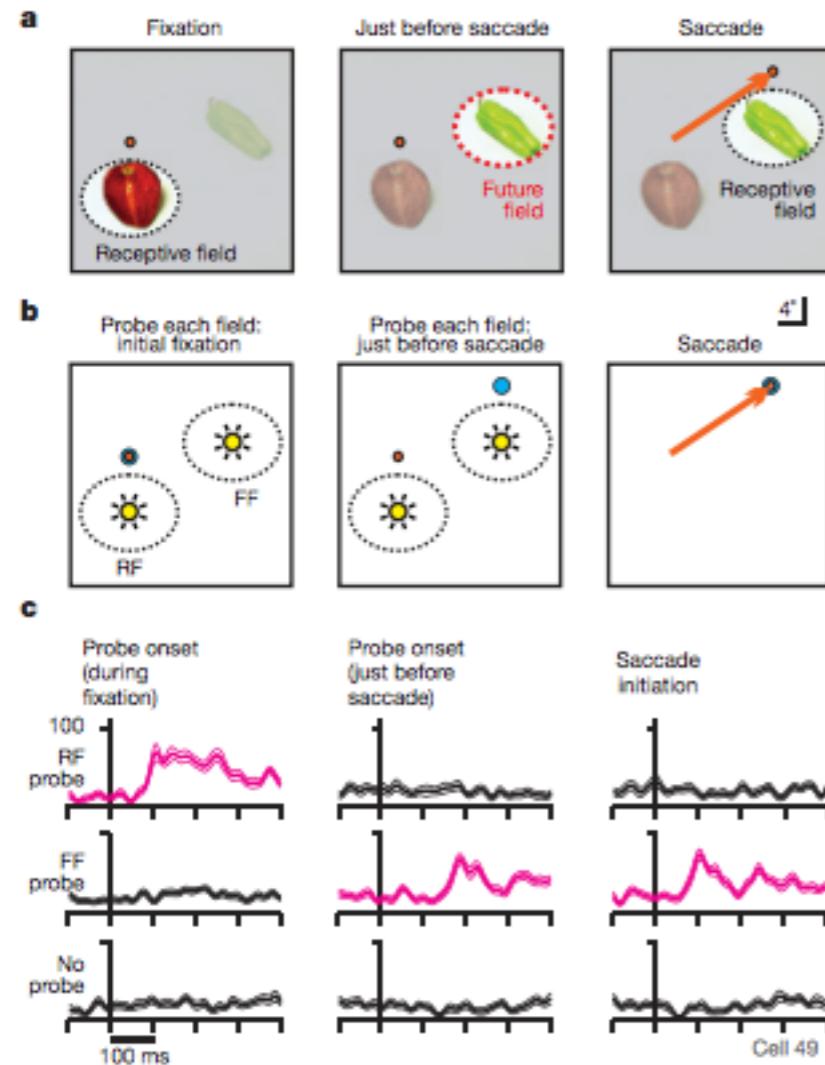
Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability



Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability



Superior Colliculus (SC) — “issues motor commands”

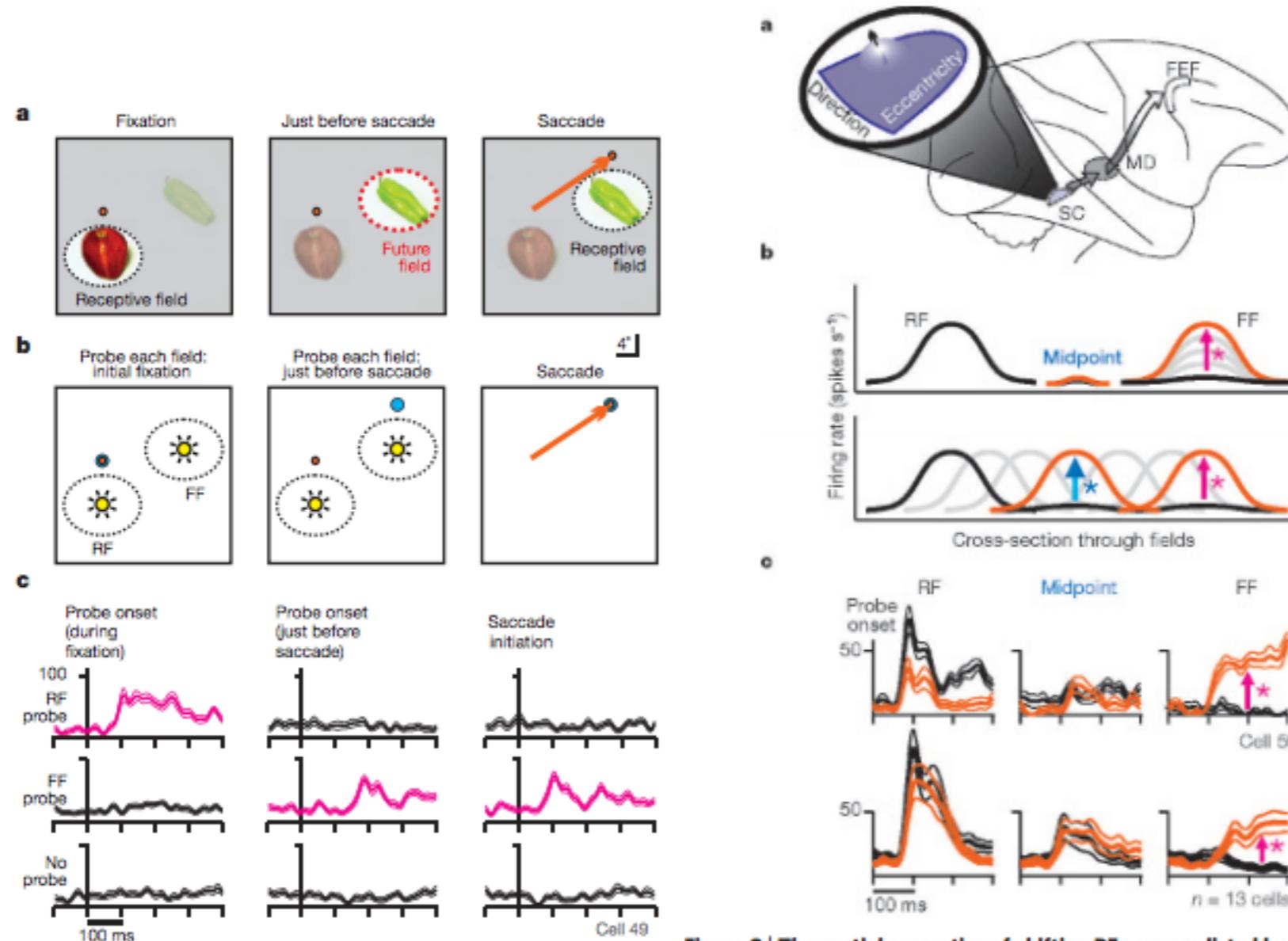
Medial Dorsal (MD) of thalamus — “routing”

Frontal Eye Field (FEF) — moves the eyes

Summer & Wurtz 2006

Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability



Superior Colliculus (SC) — “issues motor commands”

Medial Dorsal (MD) of thalamus — “routing”

Frontal Eye Field (FEF) — moves the eyes

Summer & Wurtz 2006

Biological views on function

Efference copy = copy of motor instructions, for (e.g.) stability

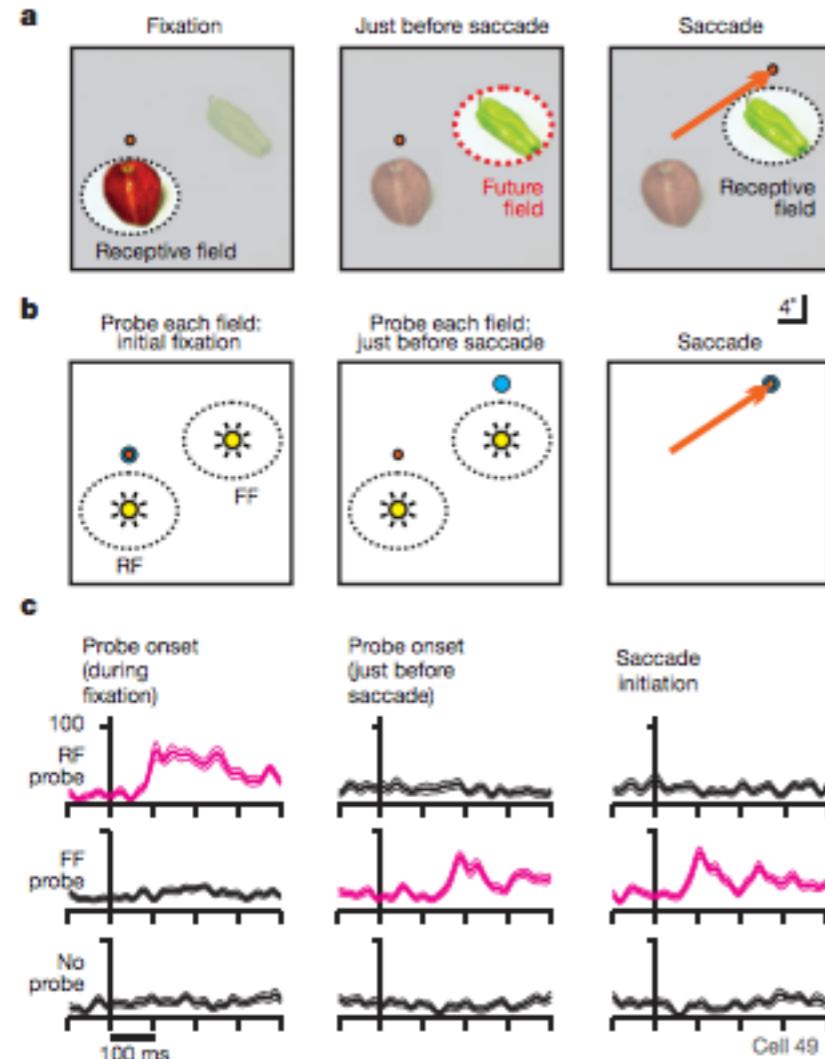


Figure 2 | The spatial properties of shifting RFs are predicted by corollary discharge from the SC-MD-FEF pathway. **a**, The corollary discharge arises

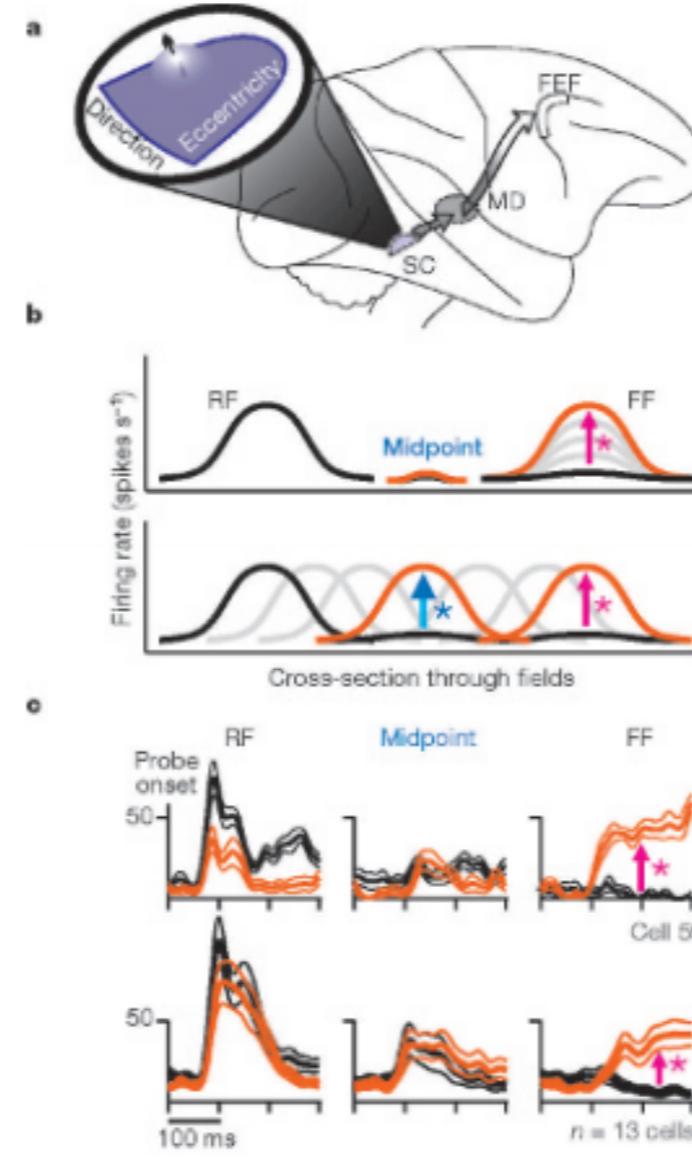


Figure 3 | The temporal properties of shifting RFs are predicted by corollary discharge from the SC-MD-FEF pathway. **a**, Our hypothesis

Superior Colliculus (SC) — “issues motor commands”

Medial Dorsal (MD) of thalamus — “routing”

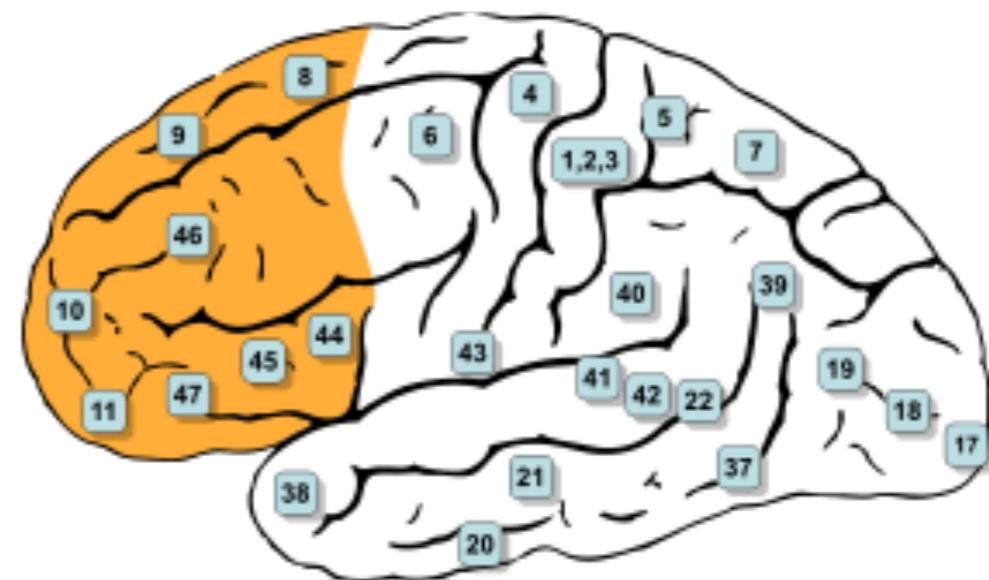
Frontal Eye Field (FEF) — moves the eyes

Summer & Wurtz 2006

Biological views on function

Top-down signal from prefrontal cortex in executive control of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakahara†,
Isao Hasegawa*† & Yasushi Miyashita*†‡



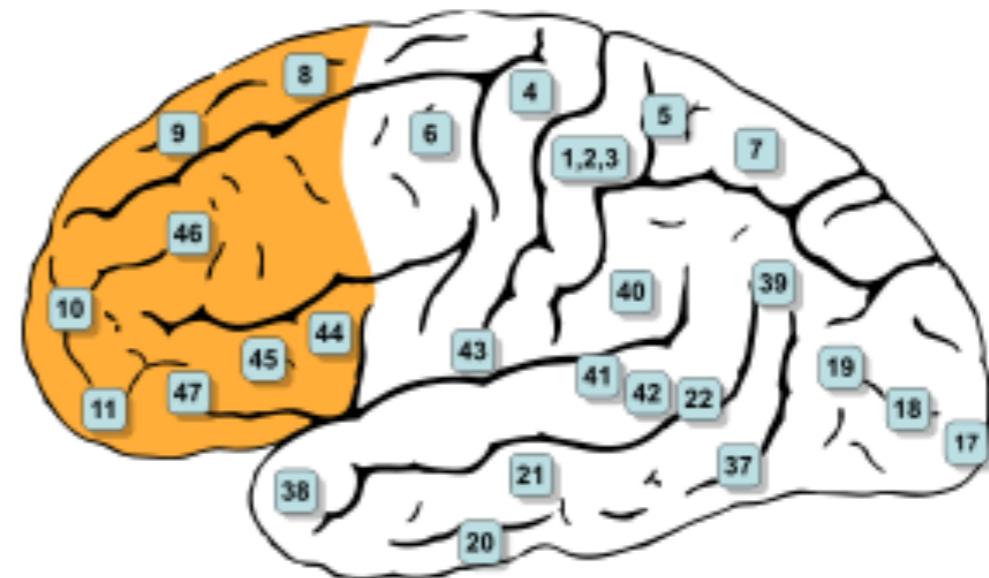
Prefrontal cortex (PFC) ~ “executive control”, long-range planning, decision making, task switching

short-term memory

Biological views on function

Top-down signal from prefrontal cortex in executive control of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakahara†,
Isao Hasegawa*† & Yasushi Miyashita*†‡



Prefrontal cortex (PFC) ~ “executive control”, long-range planning, decision making, task switching

short-term memory

Mixture of memory, task (“executive control”), and prediction

“Feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.”

Biological views on function

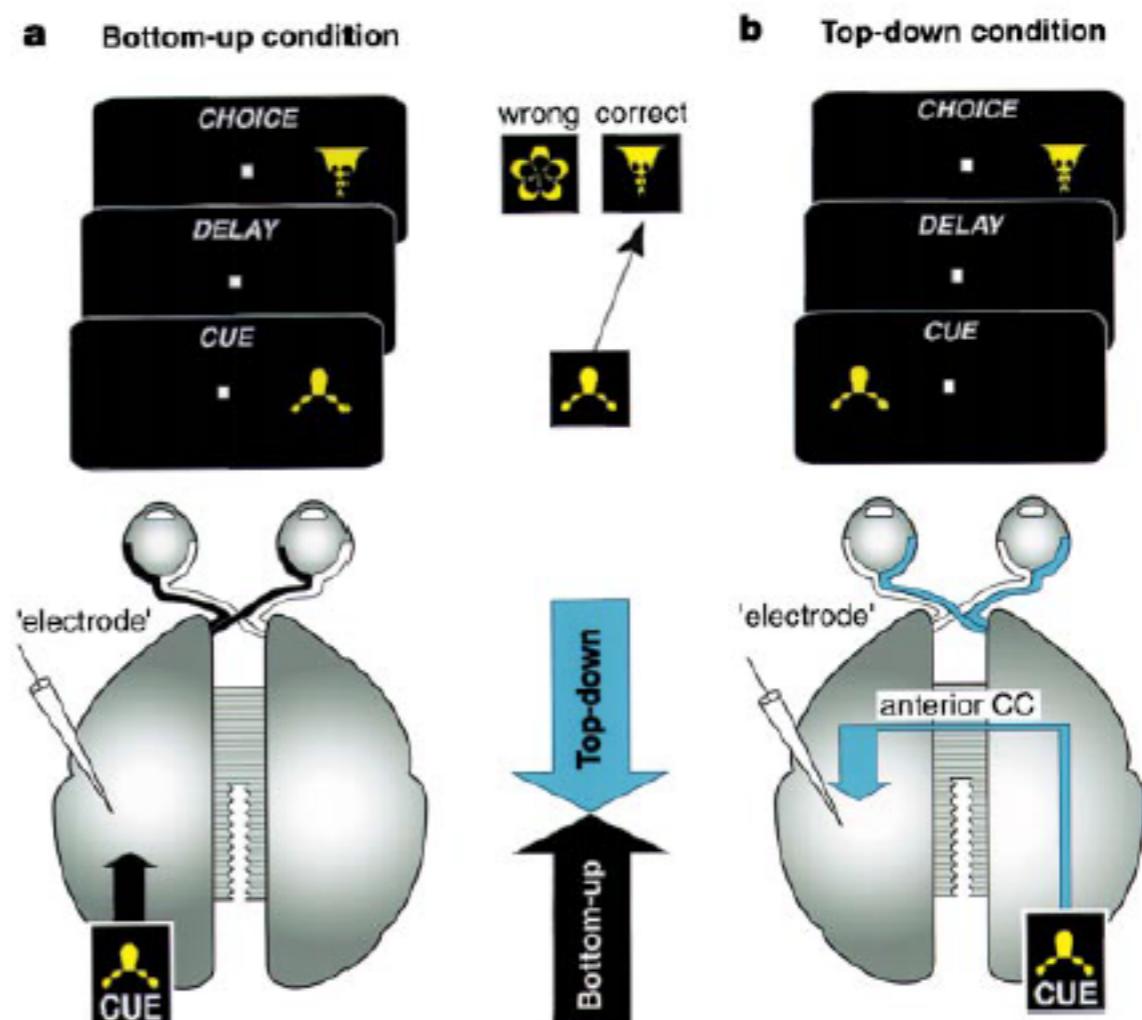
Top-down signal from prefrontal cortex in executive control of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakahara†,
Isao Hasegawa*† & Yasushi Miyashita*†‡

Mixture of memory, task (“executive control”), and prediction

“Feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.”

“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.



Biological views on function

Top-down signal from prefrontal cortex in executive control of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakahara†,
Isao Hasegawa*† & Yasushi Miyashita*†‡

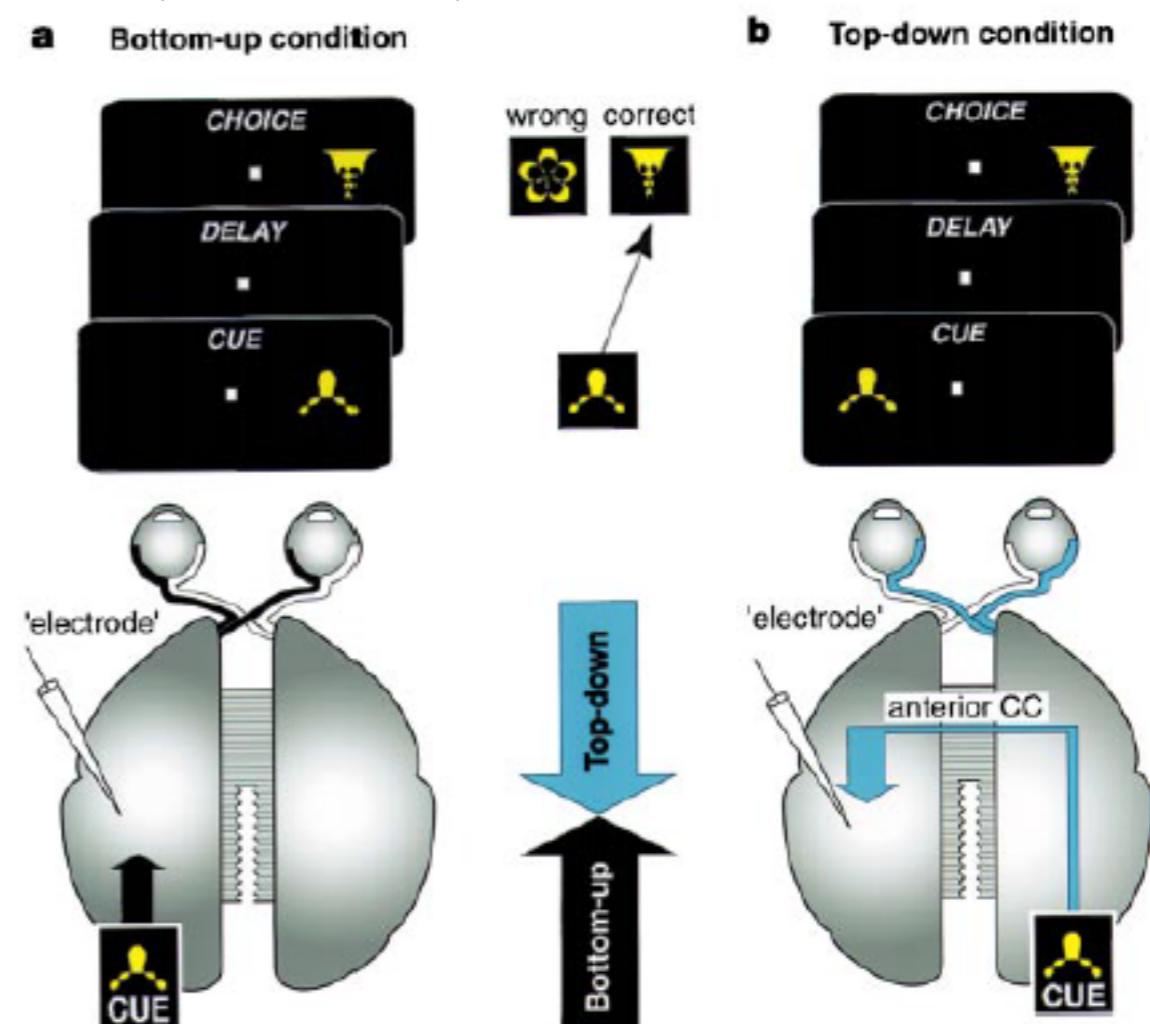
Mixture of memory, task (“executive control”), and prediction

“Feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.”

“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.

Ipsilateral presentation *still* activated IT neurons, but later than contralateral.

Neuron's pattern of responses across stimuli similar regardless of ipsi/contra presentation ($r = \sim 0.8$)



Biological views on function

Top-down signal from prefrontal cortex in executive control of memory retrieval

Hyoe Tomita*, Machiko Ohbayashi*, Kiyoshi Nakahara†,
Isao Hasegawa*† & Yasushi Miyashita*†‡

Mixture of memory, task (“executive control”), and prediction

“Feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.”

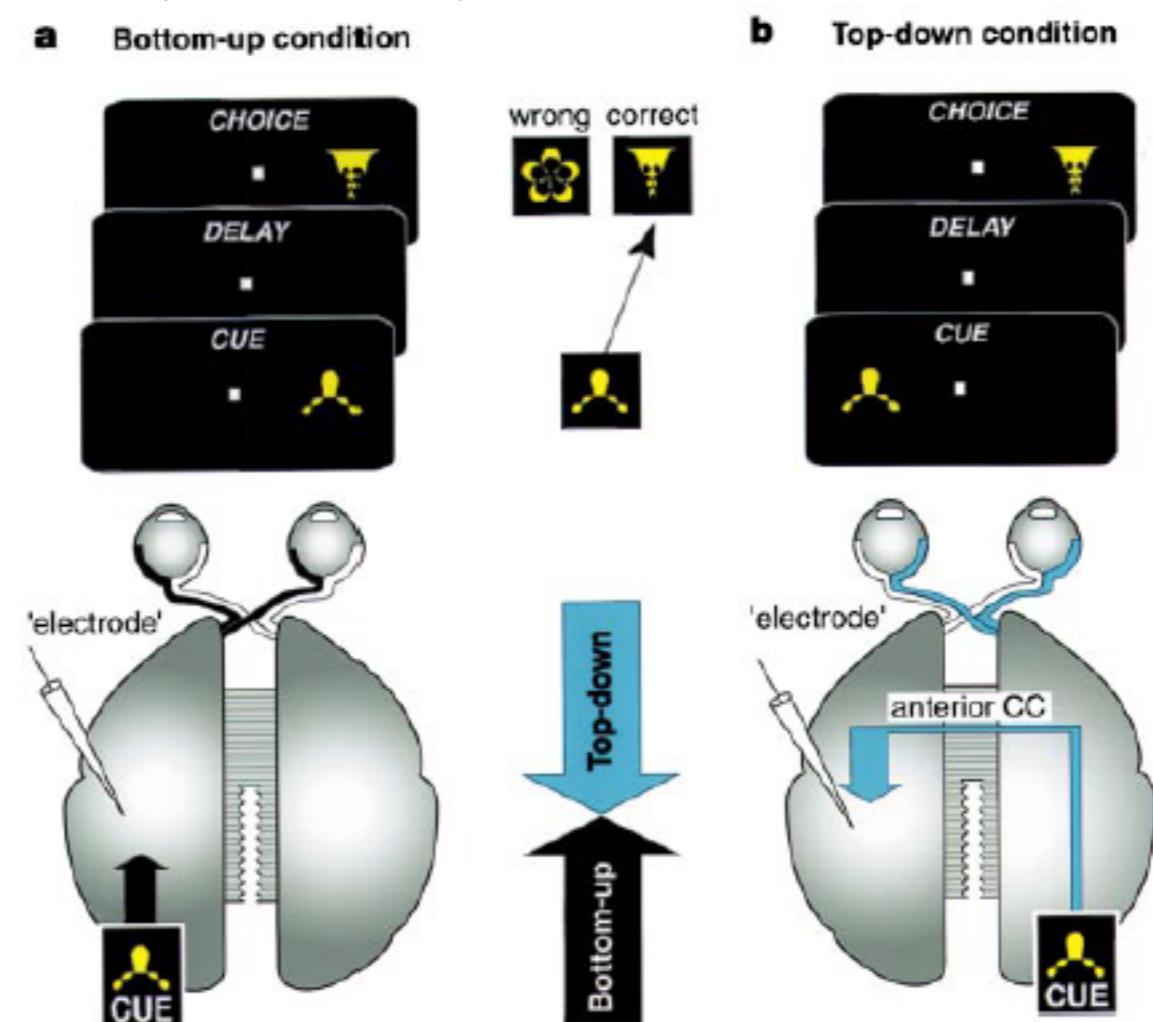
“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield.

Ipsilateral presentation *still* activated IT neurons, but later than contralateral.

Neuron's pattern of responses across stimuli similar regardless of ipsi/contra presentation ($r = \sim 0.8$)

No such transfer in *full* split.

Pair associated test indicates prospective information from PFC sent to IT.



Attention

Neuron

Volume 61, Issue 2, 29 January 2009, Pages 168-185

Review

The Normalization Model of Attention

John H. Reynolds ¹ , David J. Heeger ²

[Show more](#)

<https://doi.org/10.1016/j.neuron.2009.01.002>

Under an Elsevier [user license](#)

[Get rights and content](#)

[open archive](#)

Biological views on function

Neuron

CellPress

Volume 61, Issue 2, 29 January 2009, Pages 168-185

Review

The Normalization Model of Attention

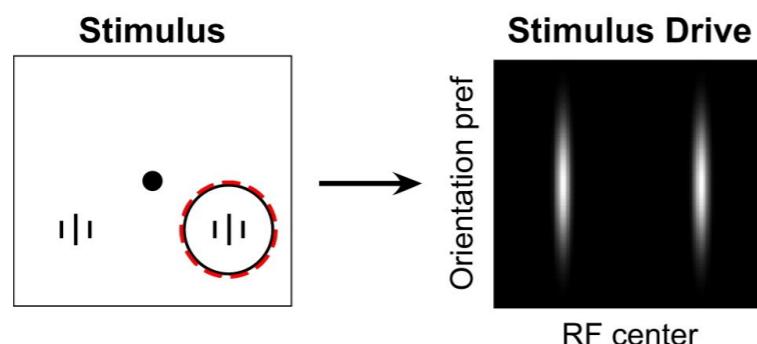
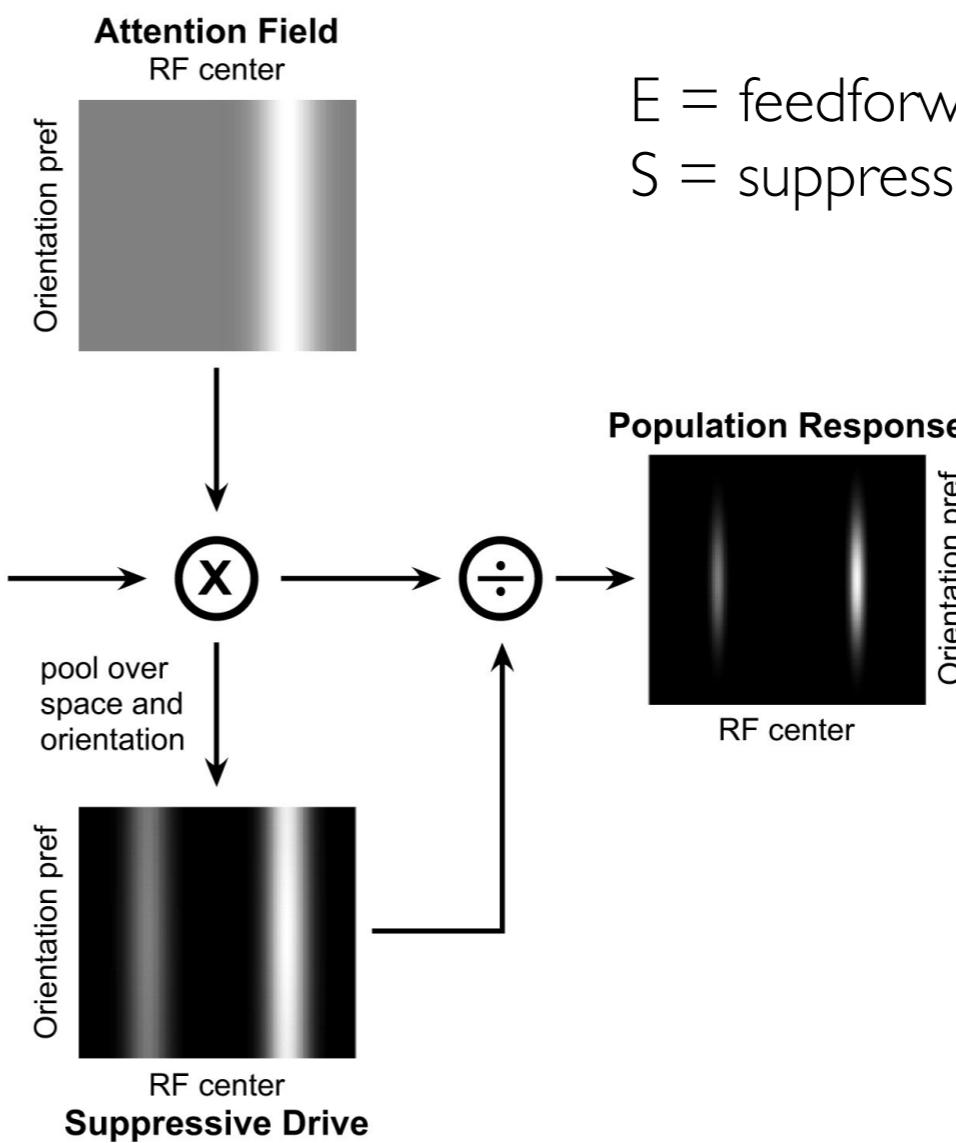
John H. Reynolds ¹✉, David J. Heeger ²

✉ Show more

<https://doi.org/10.1016/j.neuron.2009.01.002>

Under an Elsevier user license

Get rights and content



Biological views on function

Neuron

CellPress

Volume 61, Issue 2, 29 January 2009, Pages 168-185

Review

The Normalization Model of Attention

John H. Reynolds ¹ David J. Heeger ²

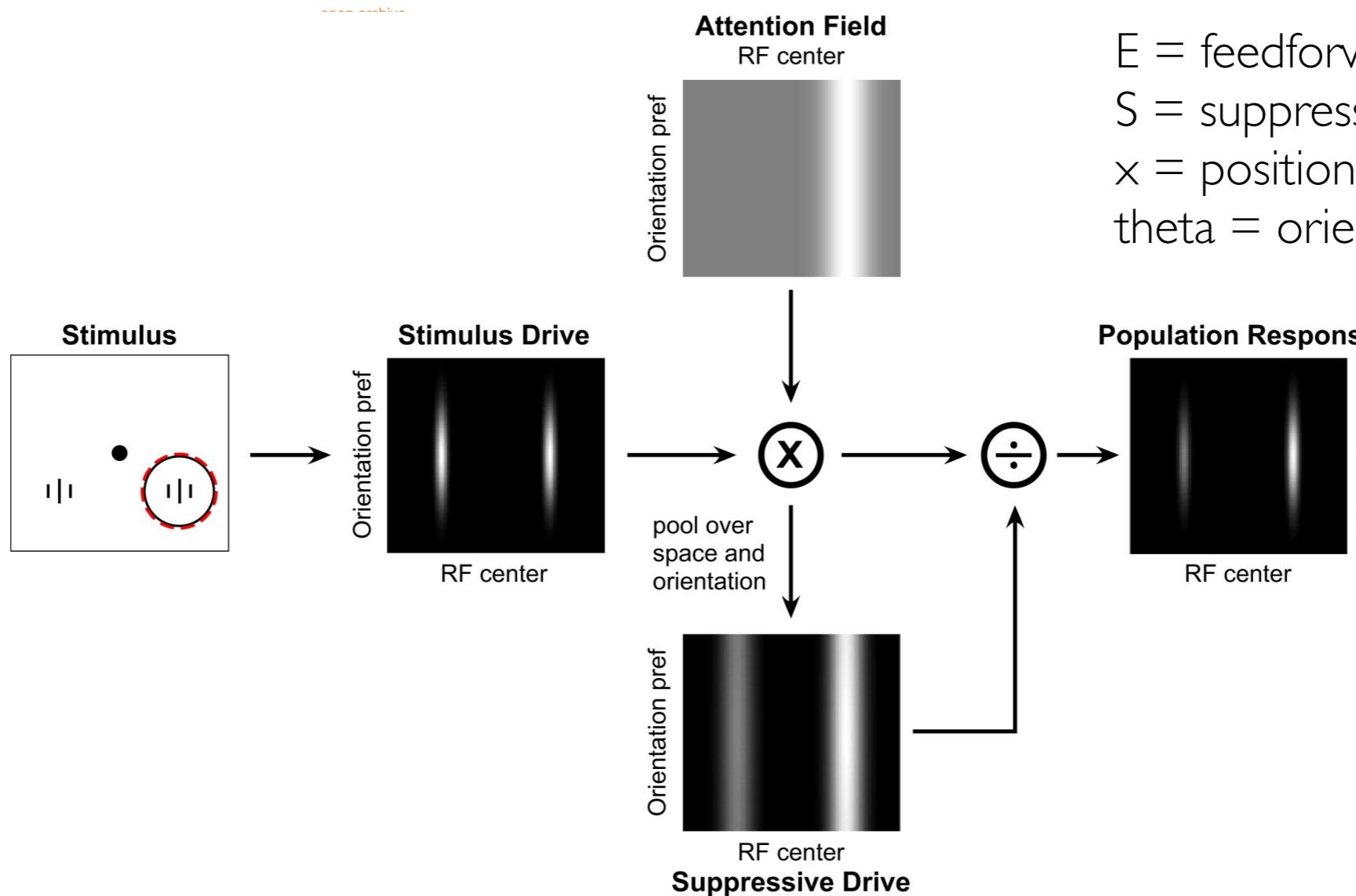
 Show more

<https://doi.org/10.1016/j.neuron.2009.01.002>

Under an Elsevier user license

Get rights and content

$$R(x, \theta) = \text{ReLU}_T \left[\frac{E(x, \theta)}{\text{Conv}_{s(x, \theta)}[E(x, \theta)] + \sigma} \right]$$



E = feedforward input
S = suppression
x = position
theta = orientation

Biological views on function

Neuron

CellPress

Volume 61, Issue 2, 29 January 2009, Pages 168-185

Review

The Normalization Model of Attention

John H. Reynolds ¹ David J. Heeger ²

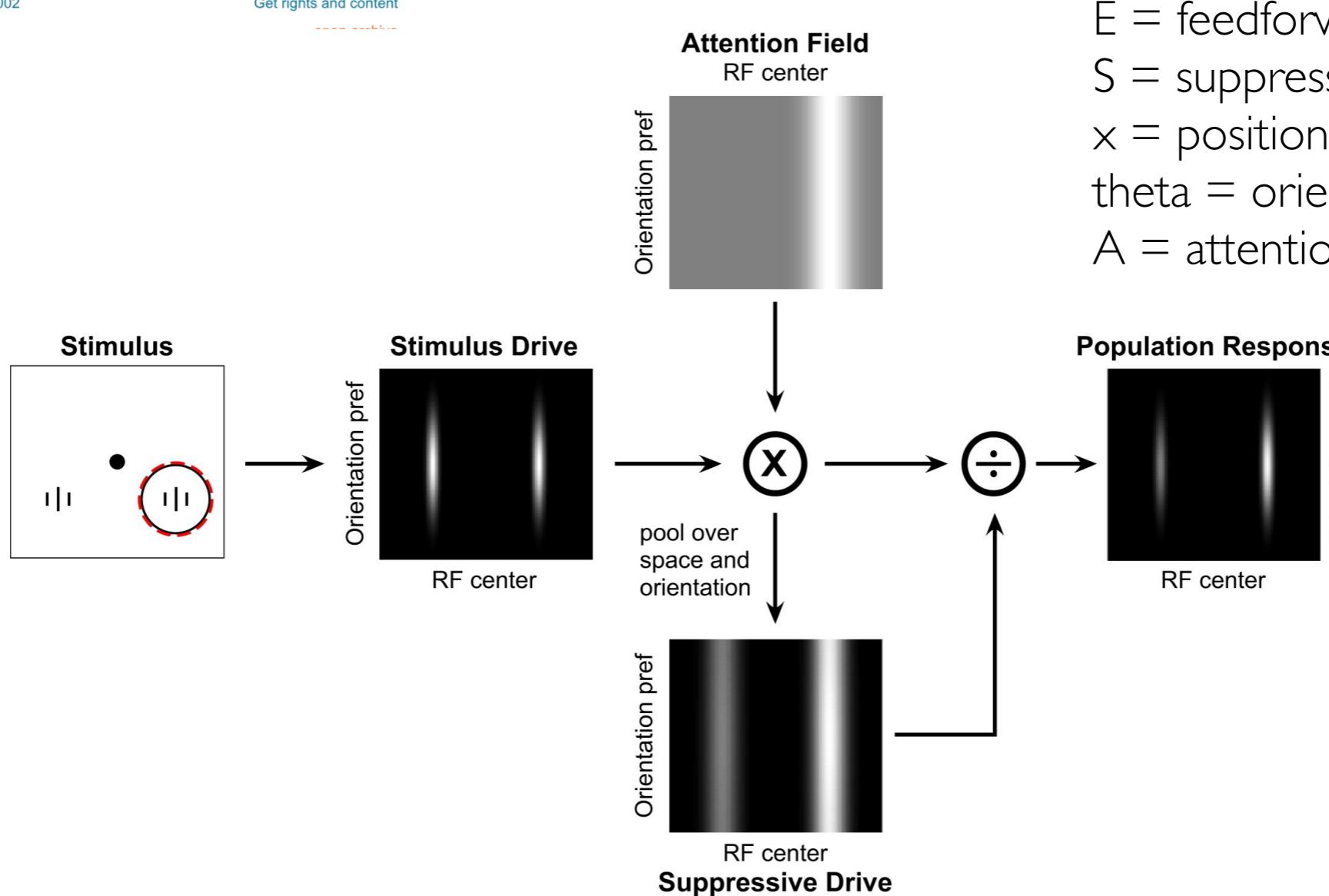
 Show more

<https://doi.org/10.1016/j.neuron.2009.01.002>

Under an Elsevier user license

Get rights and content

$$R(x, \theta) = \text{ReLU}_T \left[\frac{A(x, \theta)E(x, \theta)}{\text{Conv}_{s(x, \theta)}[A(x, \theta)E(x, \theta)] + \sigma} \right]$$



E = feedforward input
S = suppression
x = position
theta = orientation
A = attention field

—> implemented as *equilibrium* of simple recurrent circuit (Heeger 1993)

Biological views on function

Top-down influence in early visual processing

A Bayesian perspective

$$P(S_i | E, H) = \frac{P(E | S_i, H)P(S_i | H)}{P(E | H)}$$

Tai Sing Lee

S_i = scene i

Center for the Neural Basis of Cognition

E = evidence

Department of Computer Science

H = prior information

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Department of Neuroscience

University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

Biological views on function

Top-down influence in early visual processing

A Bayesian perspective

Tai Sing Lee

Center for the Neural Basis of Cognition

Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Department of Neuroscience

University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

Bayesian interaction of two brain areas

$$P(S_i | E, H) = \frac{P(E | S_i, H)P(S_i | H)}{P(E | H)}$$

S_i = scene i output of V1

E = evidence finished to V1 by retina

H = prior information generated by V2

Biological views on function

Top-down influence in early visual processing

A Bayesian perspective

Tai Sing Lee

Center for the Neural Basis of Cognition

Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Department of Neuroscience
University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

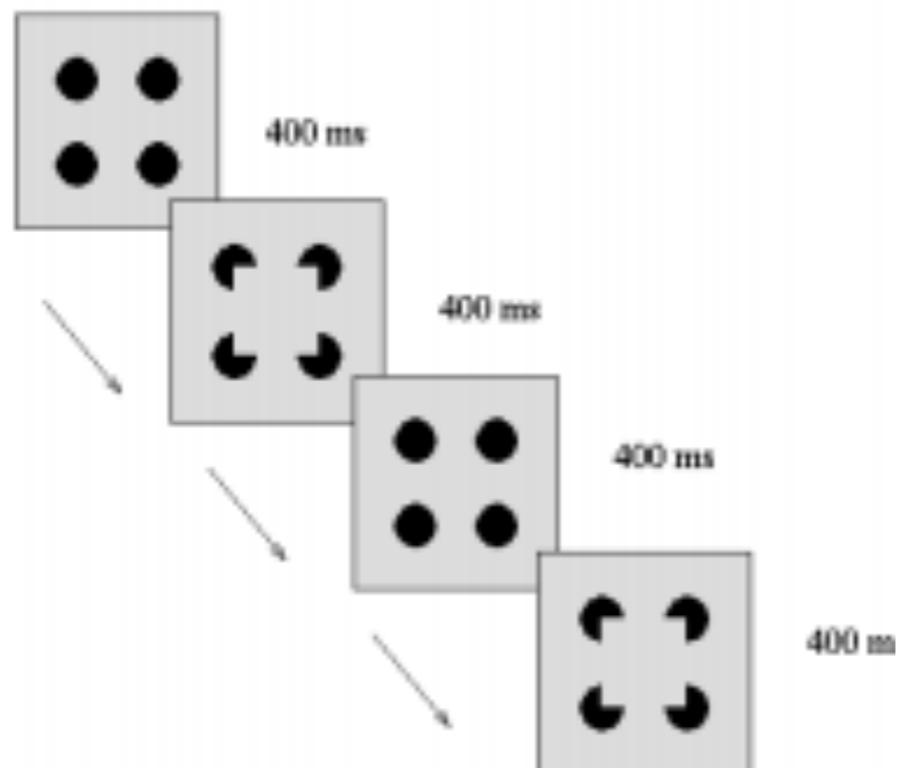
Bayesian interaction of two brain areas

$$P(S_i | E, H) = \frac{P(E | S_i, H)P(S_i | H)}{P(E | H)}$$

S_i = scene i output of V1

E = evidence finished to V1 by retina

H = prior information generated by V2



Biological views on function

Top-down influence in early visual processing

A Bayesian perspective

Tai Sing Lee

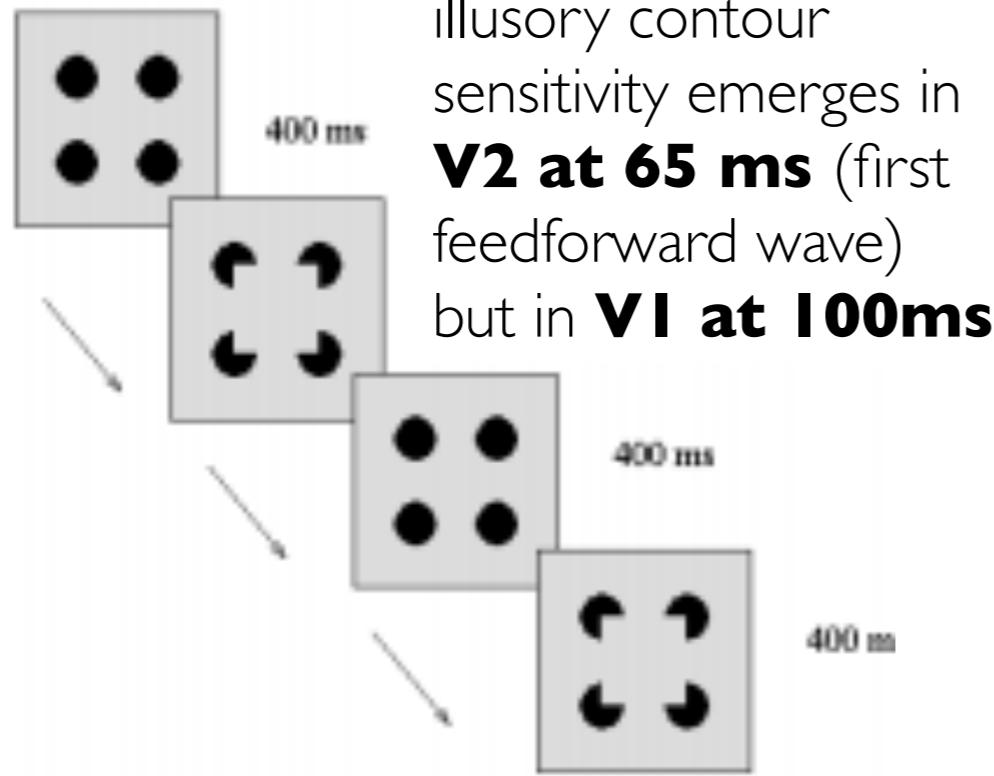
Center for the Neural Basis of Cognition

Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Department of Neuroscience

University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.



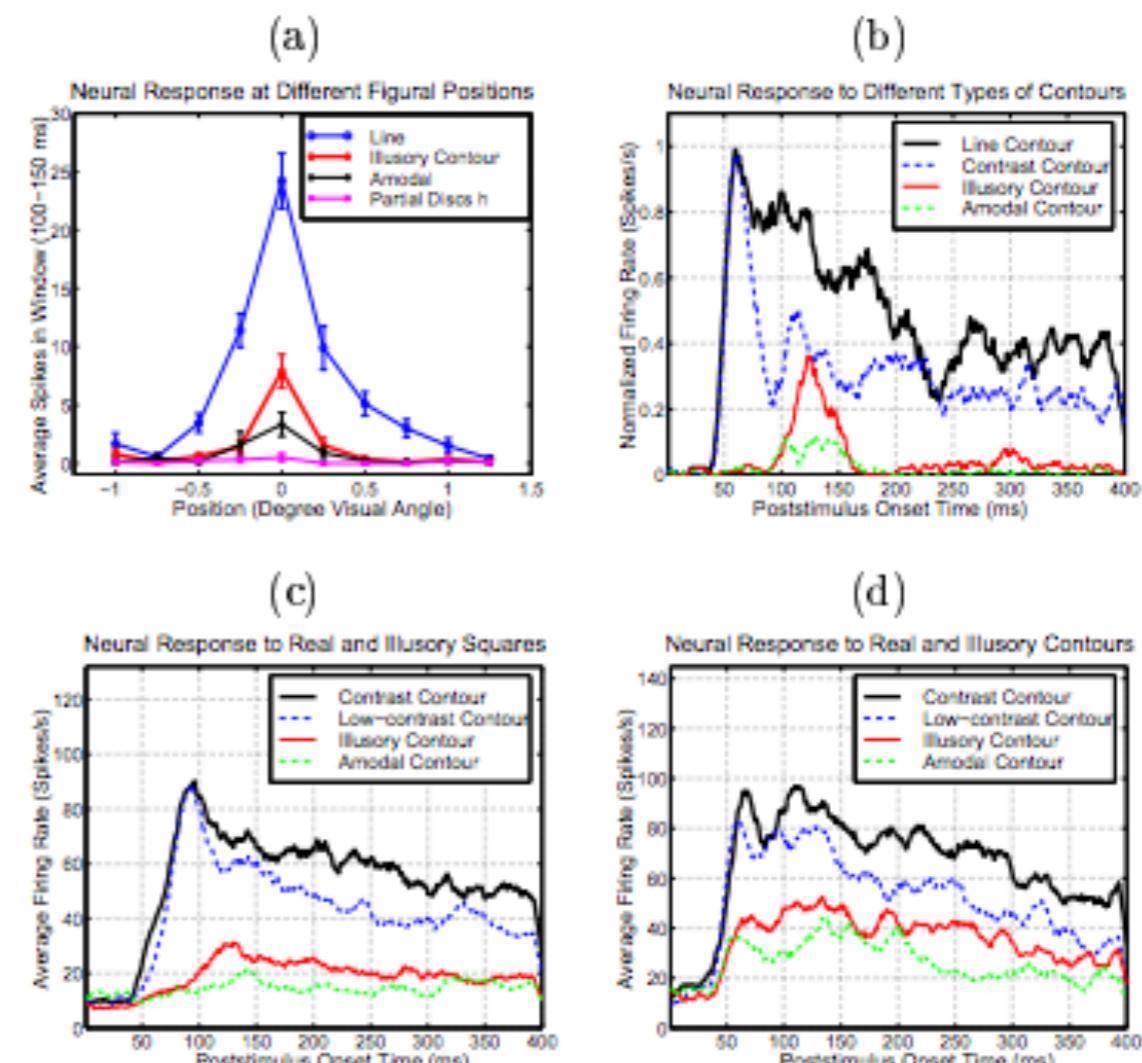
Bayesian interaction of two brain areas

$$P(S_i | E, H) = \frac{P(E | S_i, H)P(S_i | H)}{P(E | H)}$$

S_i = scene i output of VI

E = evidence finished to VI by retina

H = prior information generated by V2



Biological views on function

Task Dependence

Executive control

Adaptive Shape processing

Efferent Copy

Memory

Generalized Attention

Bayesian inference

Implementing Learning

Models

What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

$$P(O, L, X^1, \dots, X^N, I) = P(O)P(L)P(I | X^1, \dots, X^N) \prod_{i=1}^N P(X^i | L, F^i)P(F^i | O)$$

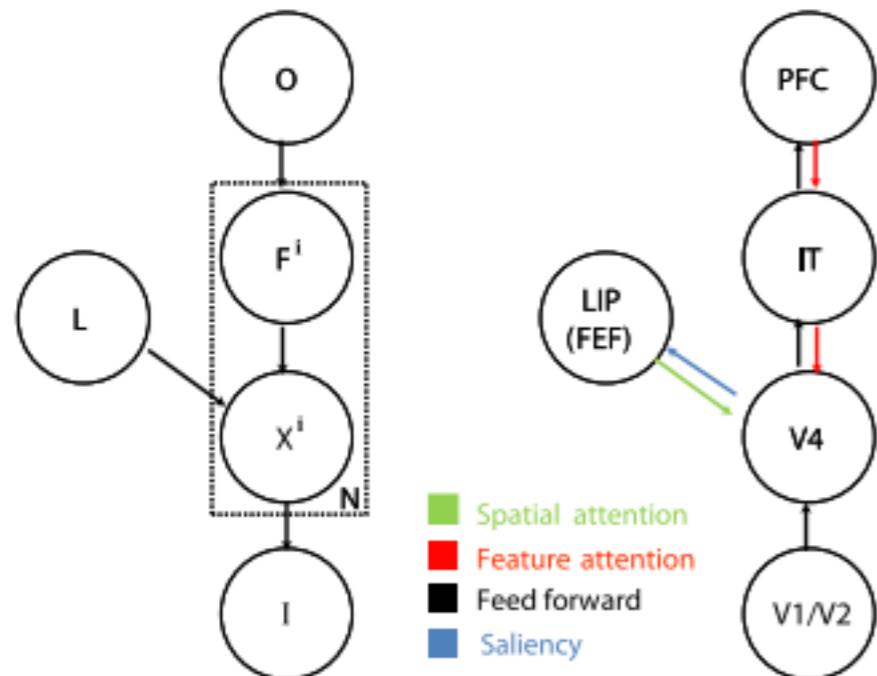


Fig. 2. Left: Proposed Bayesian model. Right: A model illustrating the interaction between the parietal and ventral streams mediated by feedforward and feedback connections. The main additions to the original feedforward model (Serre, Kouh, et al., 2005) (see also Supplementary Online Information) are (i) the cortical feedback within the ventral stream (providing feature-based attention); (ii) the cortical feedback from areas of the parietal cortex onto areas of the ventral stream (providing spatial attention); and (iii) feedforward connections to the parietal cortex that serve as a 'saliency map' encoding the visual relevance of image locations (Koch & Ullman, 1985).

N = number of objects

object encoding O (PFC)

feature encoding F (IT)

location encoding L (FEF)

joint location/feature map Xⁱ (V4)

feedforward input (V1/V2)

What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

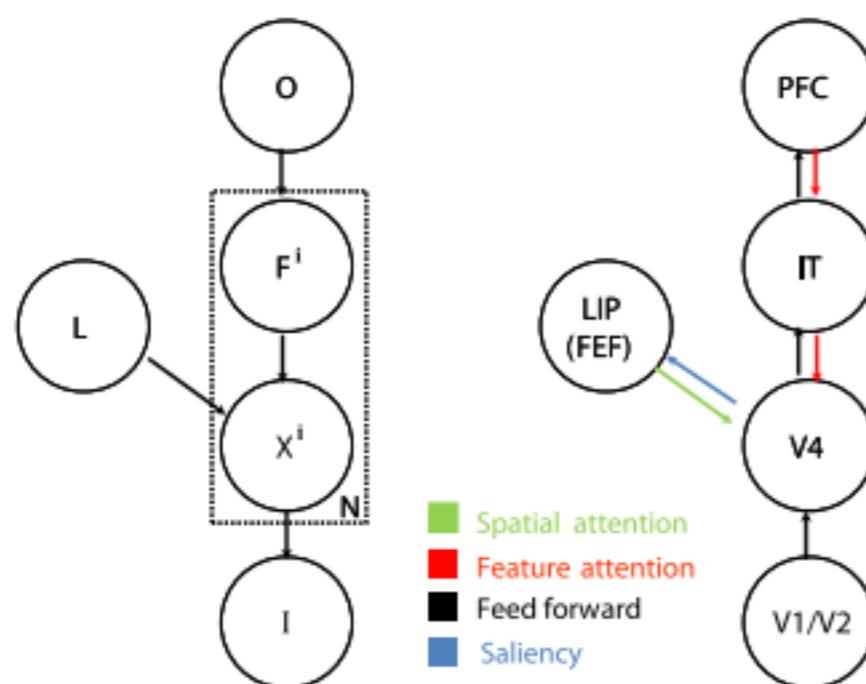


Fig. 2. Left: Proposed Bayesian model. Right: A model illustrating the interaction between the parietal and ventral streams mediated by feedforward and feedback connections. The main additions to the original feedforward model (Serre, Kouh, et al., 2005) (see also Supplementary Online Information) are (i) the cortical feedback within the ventral stream (providing feature-based attention); (ii) the cortical feedback from areas of the parietal cortex onto areas of the ventral stream (providing spatial attention); and (iii) feedforward connections to the parietal cortex that serves as a 'saliency map' encoding the visual relevance of image locations (Koch & Ullman, 1985).

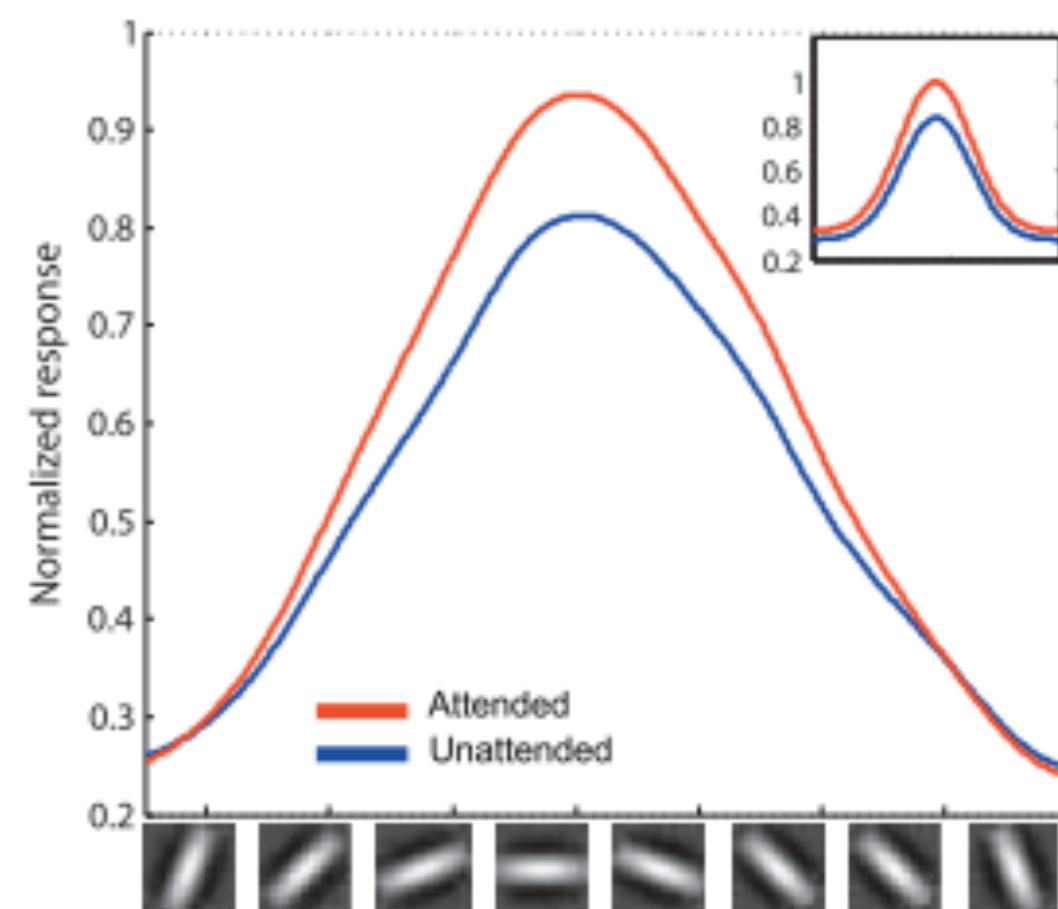


Fig. 4. Effect of spatial attention on tuning response. The tuning curve shows a multiplicative modulation under attention. The inset shows the replotted data from McAdams and Maunsell (1999).

Models

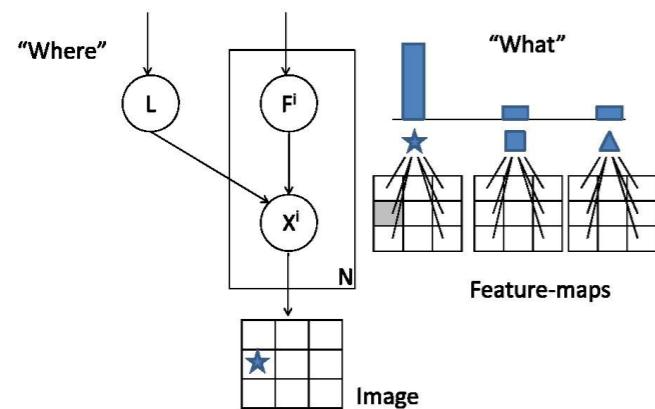
What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

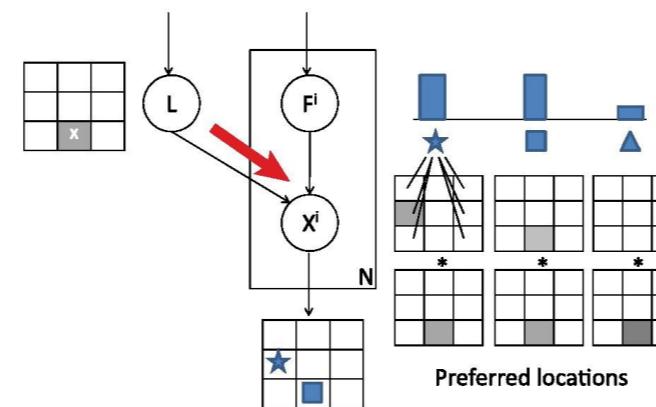
McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

F^i = pools across locations in X^i

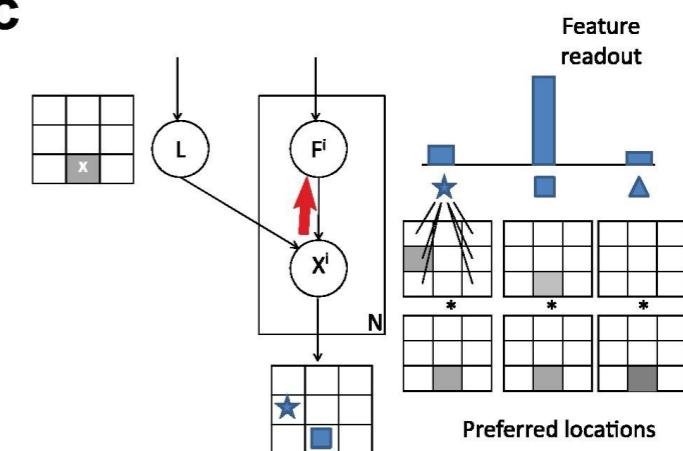
a



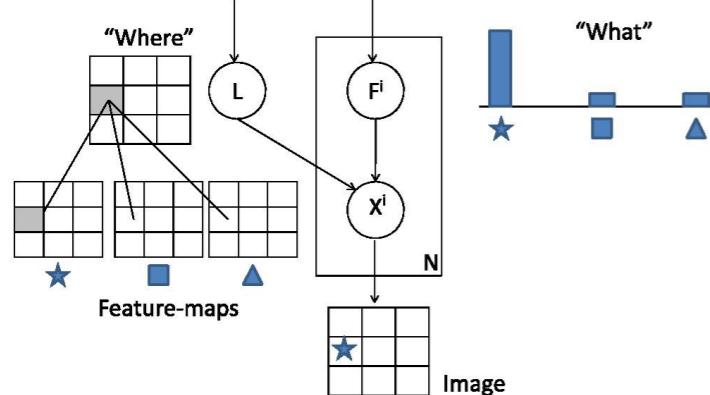
b



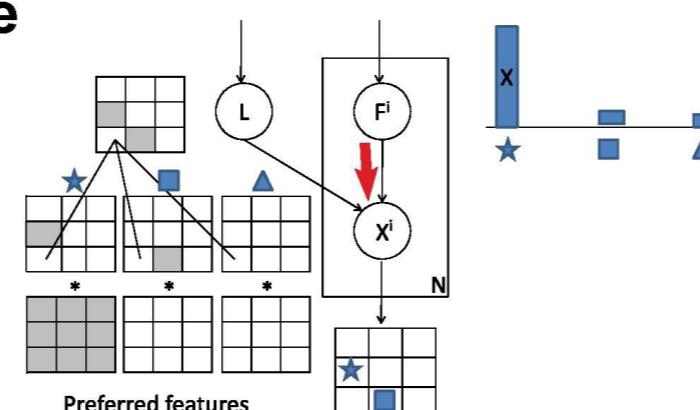
c



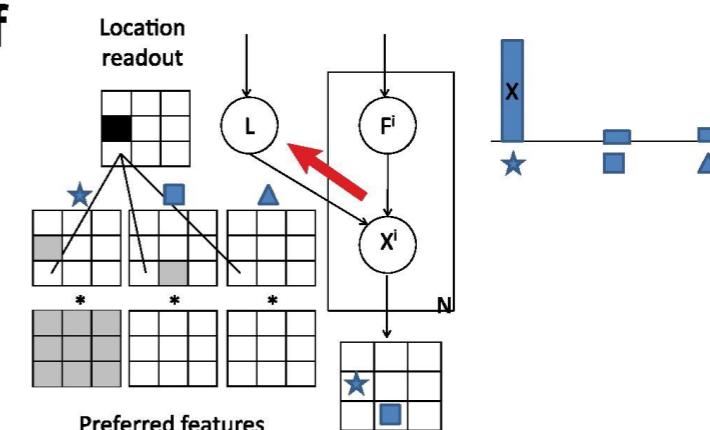
d



e



f



Models

What and where: A Bayesian inference theory of attention

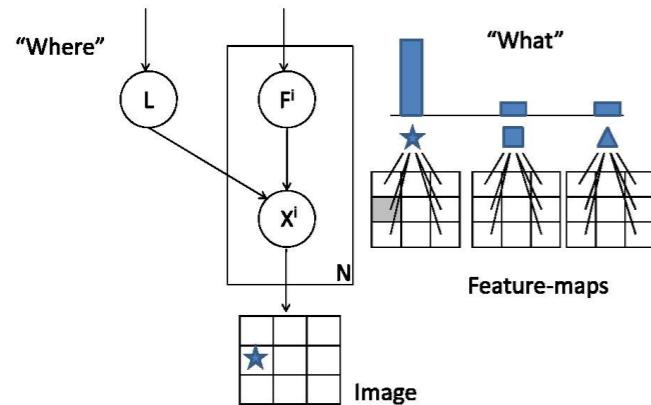
Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

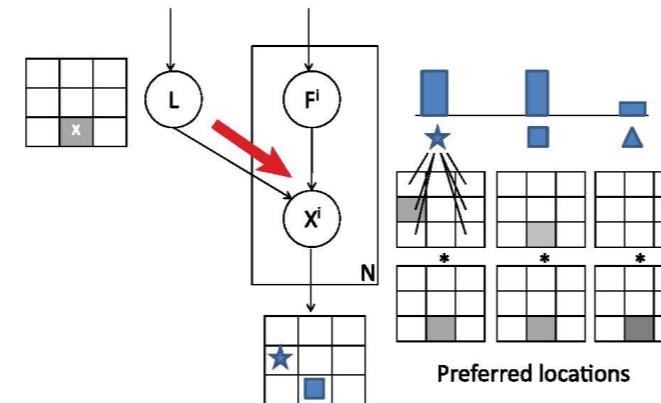
F^i = pools across locations in X^i

Spatial attention spotlight X

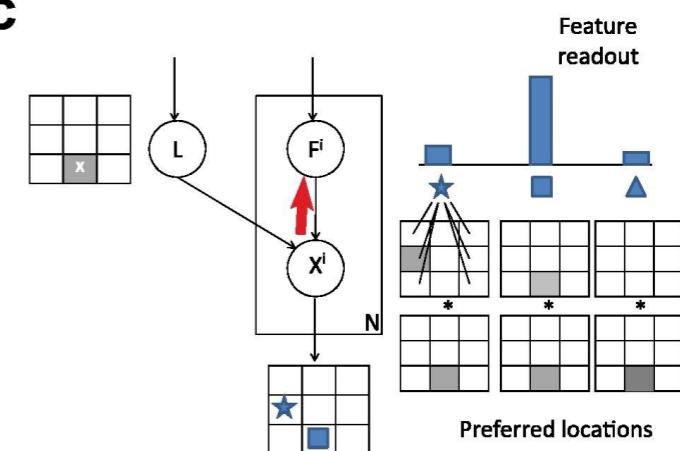
a



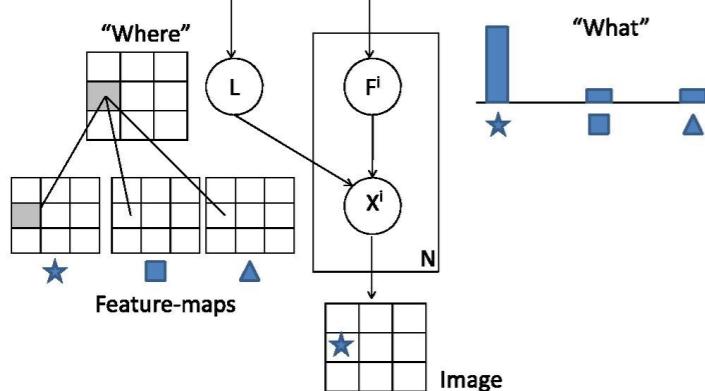
b



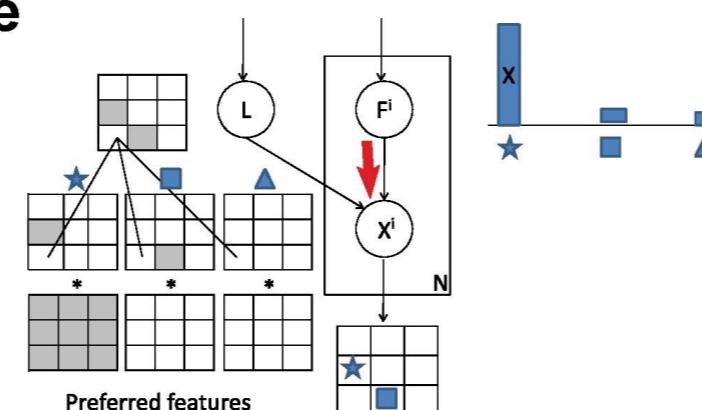
c



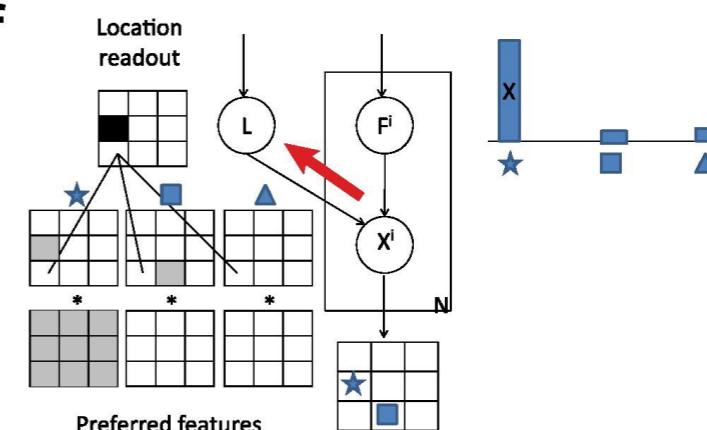
d



e



f



Models

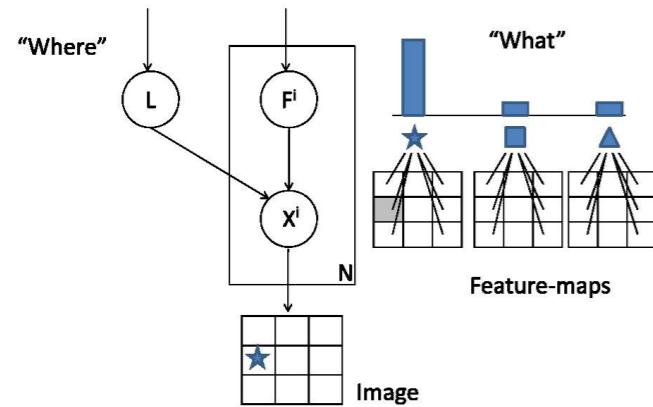
What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

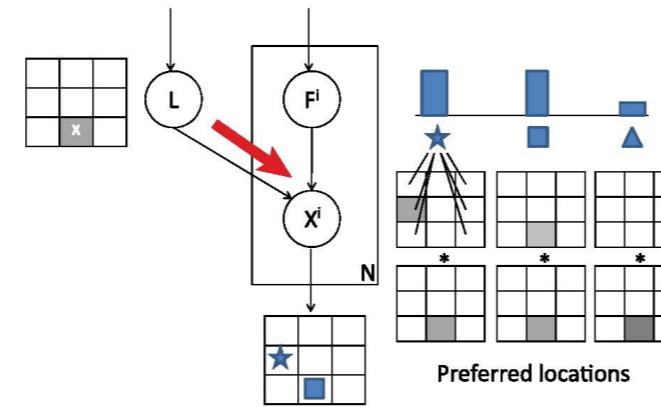
F^i = pools across locations in X^i

a



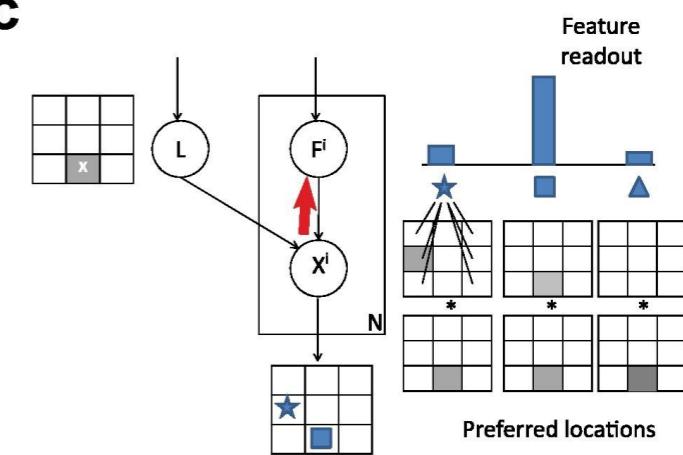
Spatial attention spotlight X

b

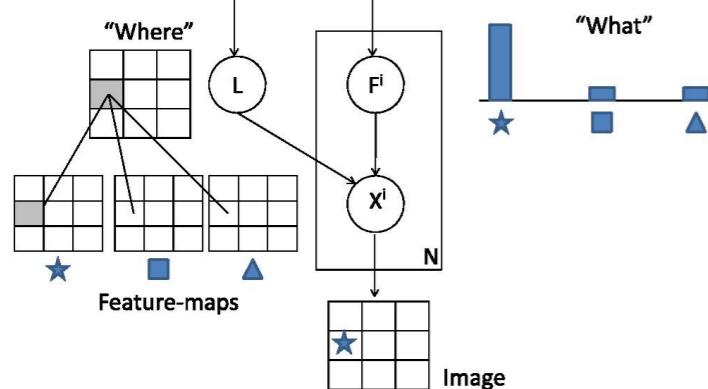


effect read out as $P(F^i | I)$

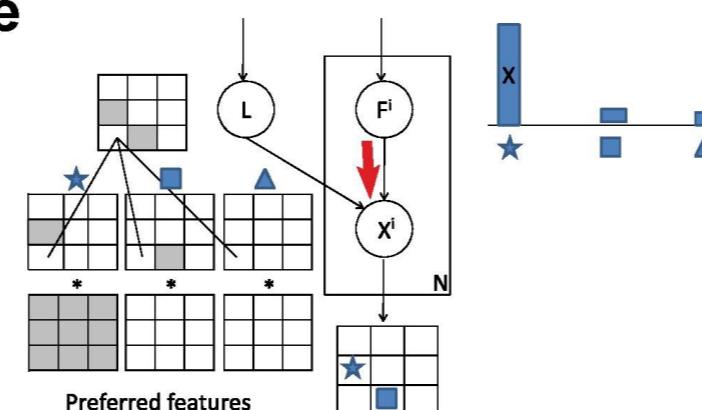
c



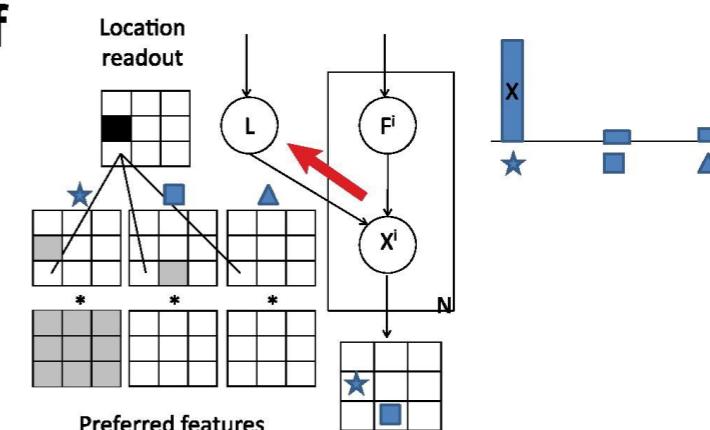
d



e



f



Models

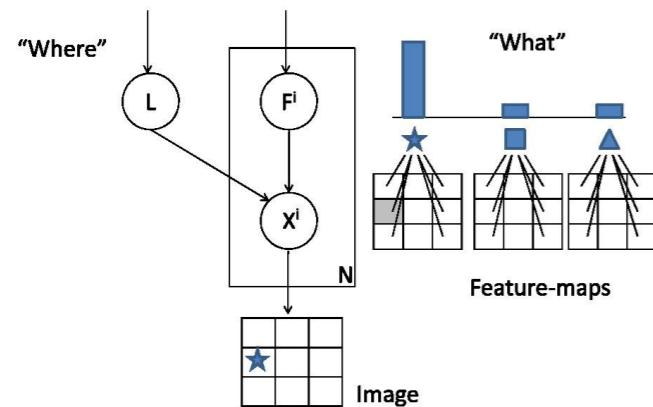
What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

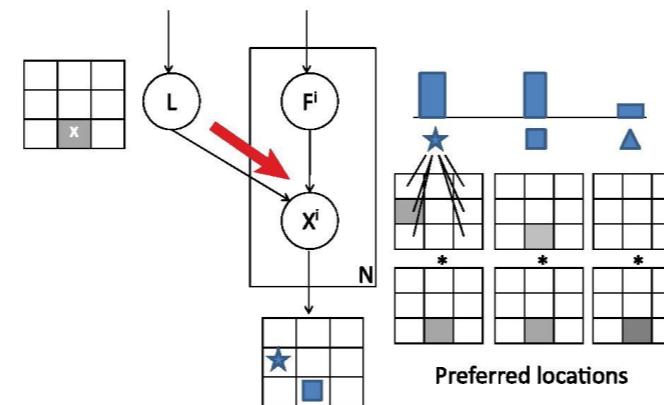
F^i = pools across locations in X^i

a



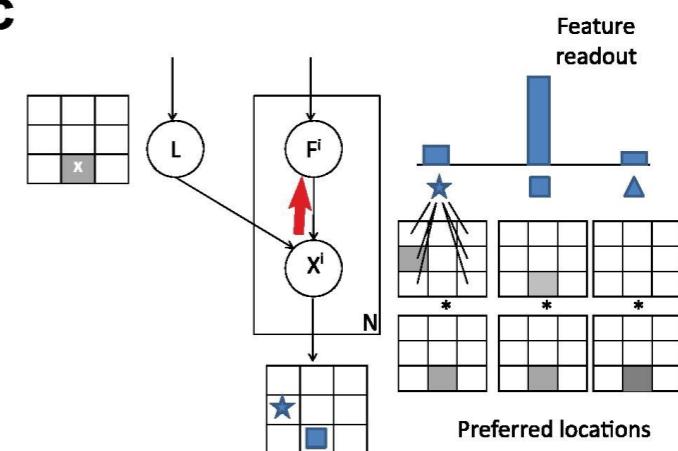
Spatial attention spotlight X

b

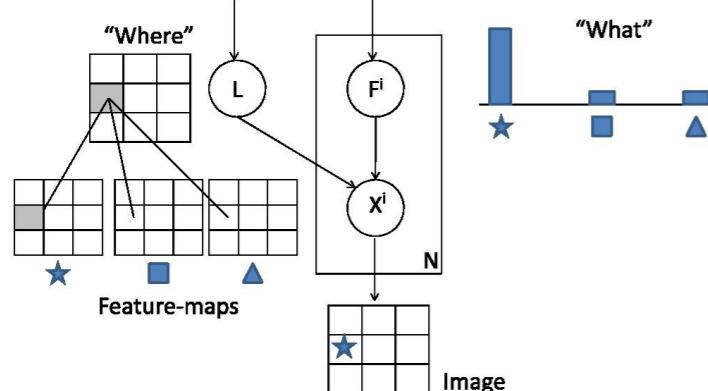


effect read out as $P(F^i | I)$

c

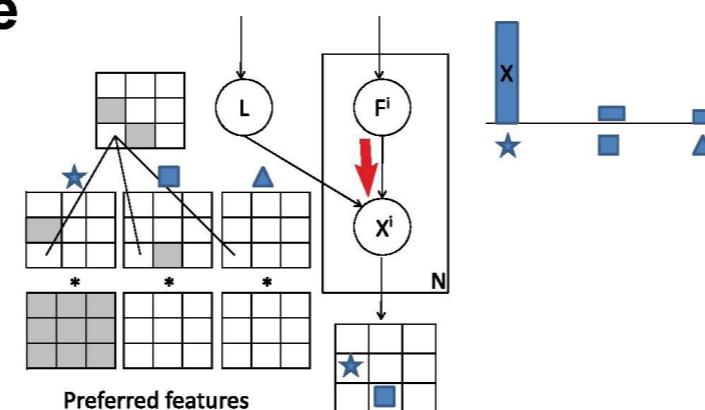


d



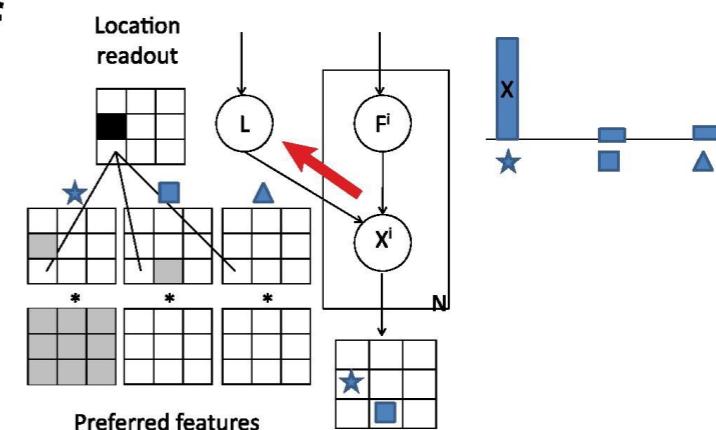
L represented in FEF

e



Feature attention makes $P(F^i)$ high for preferred feature

f



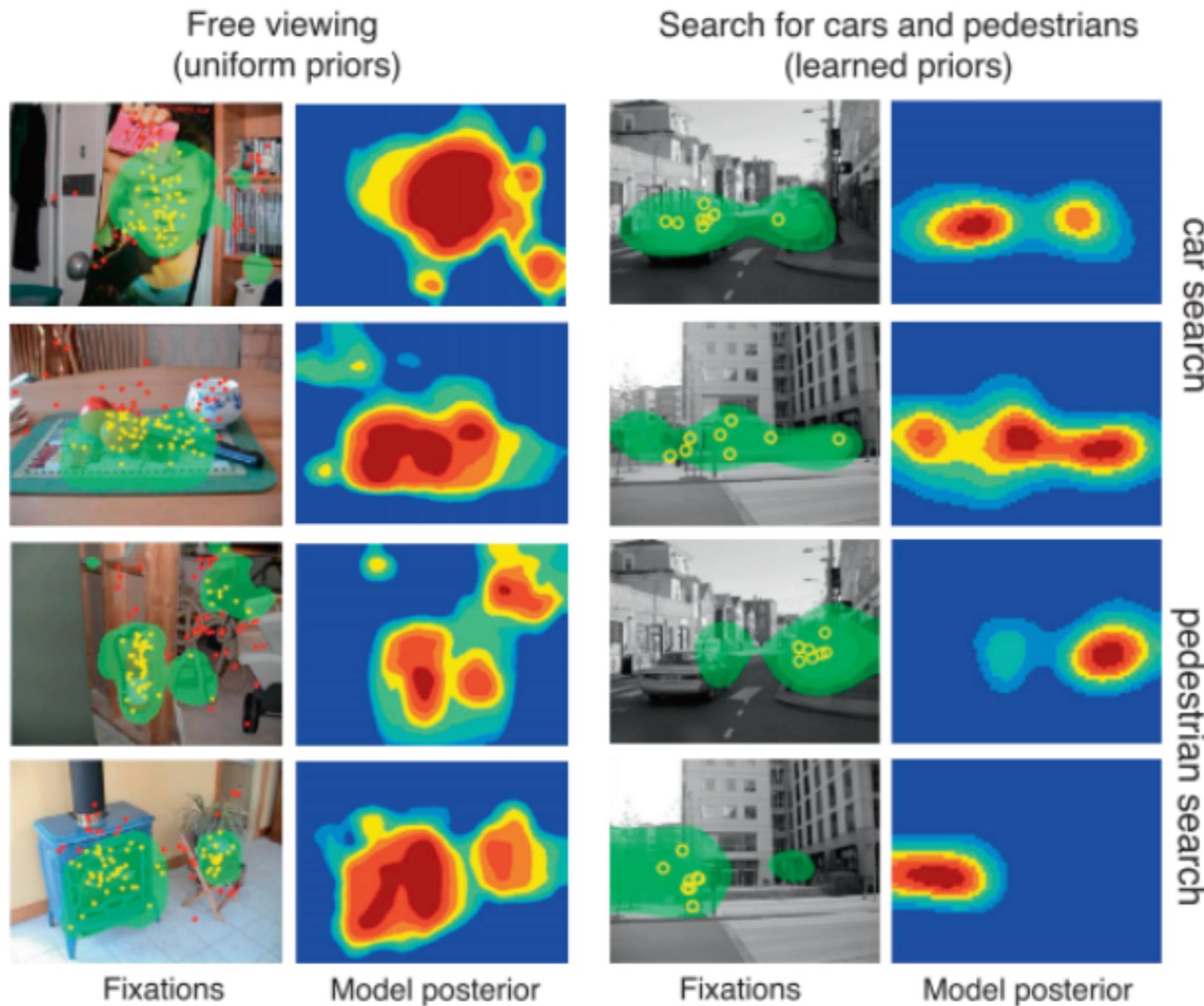
Location of preferred feature read out as $P(L | I)$

Models

What and where: A Bayesian inference theory of attention

Sharat Chikkerur*, Thomas Serre, Cheston Tan, Tomaso Poggio

McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States



A mostly complete chart of
Neural Networks

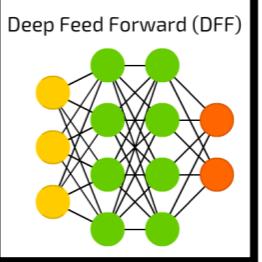
©2016 Fjodor van Veen - asimovinstitute.org

- Backfed Input Cell
- Input Cell
- △ Noisy Input Cell
- Hidden Cell
- Probabilistic Hidden Cell
- △ Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- △ Different Memory Cell
- Kernel
- Convolution or Pool

Perceptron (P)

Feed Forward (FF)

Radial Basis Network (RBF)



Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

Markov Chain (MC)

Hopfield Network (HN)

Boltzmann Machine (BM)

Restricted BM (RBM)

Deep Belief Network (DBN)

Deep Convolutional Network (DCN)

Deconvolutional Network (DN)

Deep Convolutional Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN)

Liquid State Machine (LSM)

Extreme Learning Machine (ELM)

Echo State Network (ESN)

Deep Residual Network (DRN)

Kohonen Network (KN)

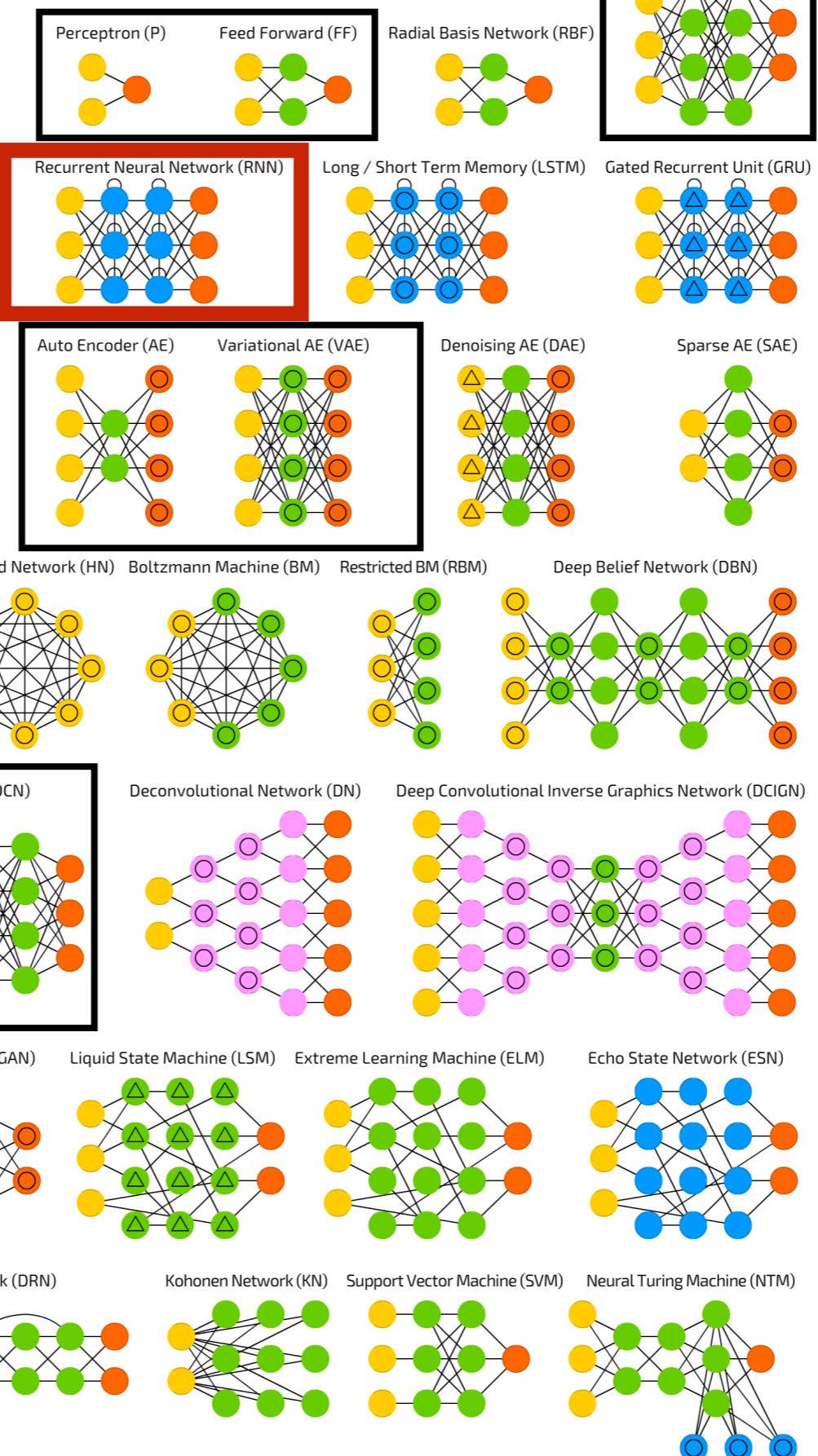
Support Vector Machine (SVM)

Neural Turing Machine (NTM)

A mostly complete chart of
Neural Networks

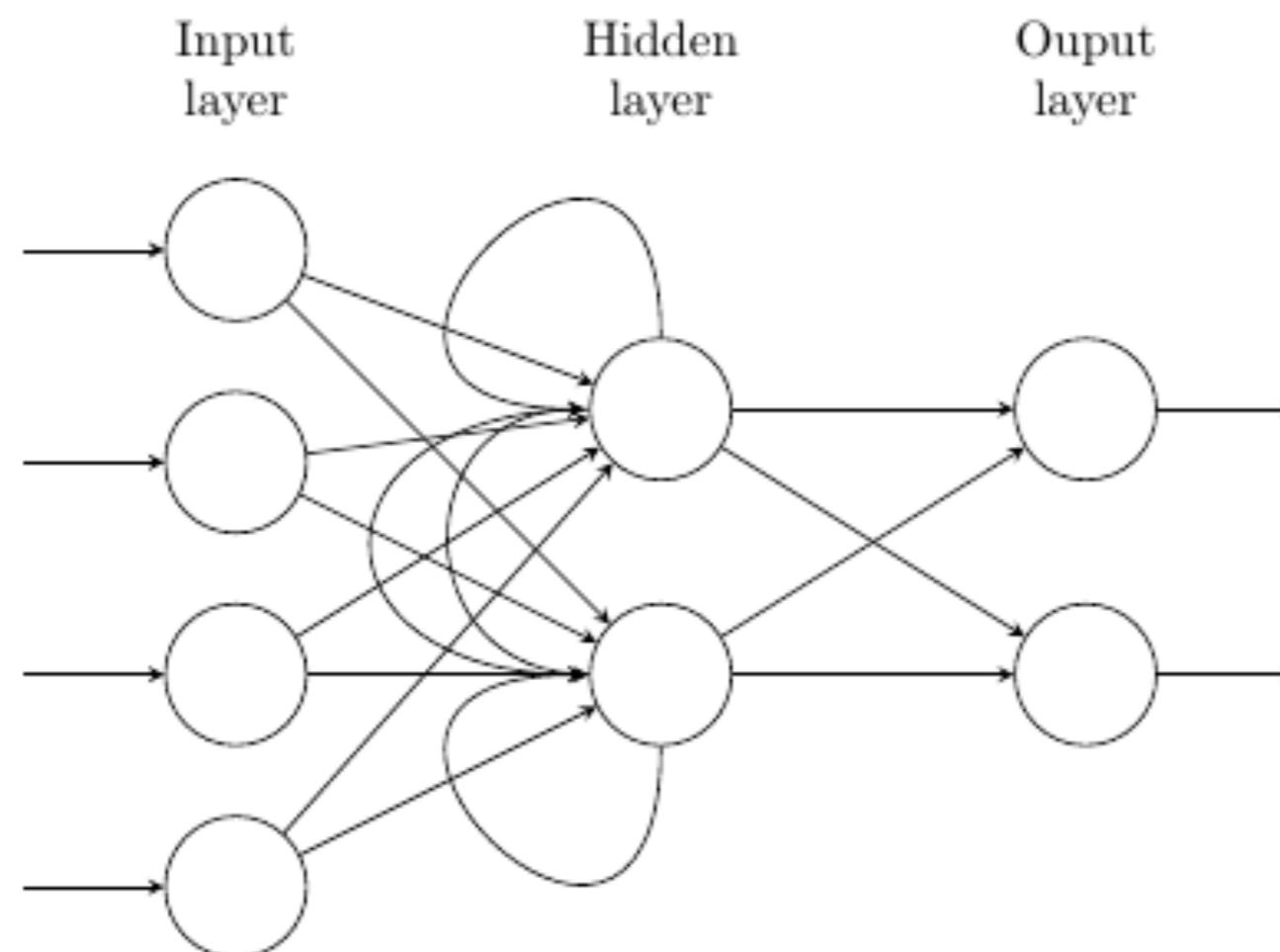
©2016 Fjodor van Veen - asimovinstitute.org

- Backfed Input Cell
- Input Cell
- △ Noisy Input Cell
- Hidden Cell
- Probabilistic Hidden Cell
- △ Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- △ Different Memory Cell
- Kernel
- Convolution or Pool



Models: RNNs

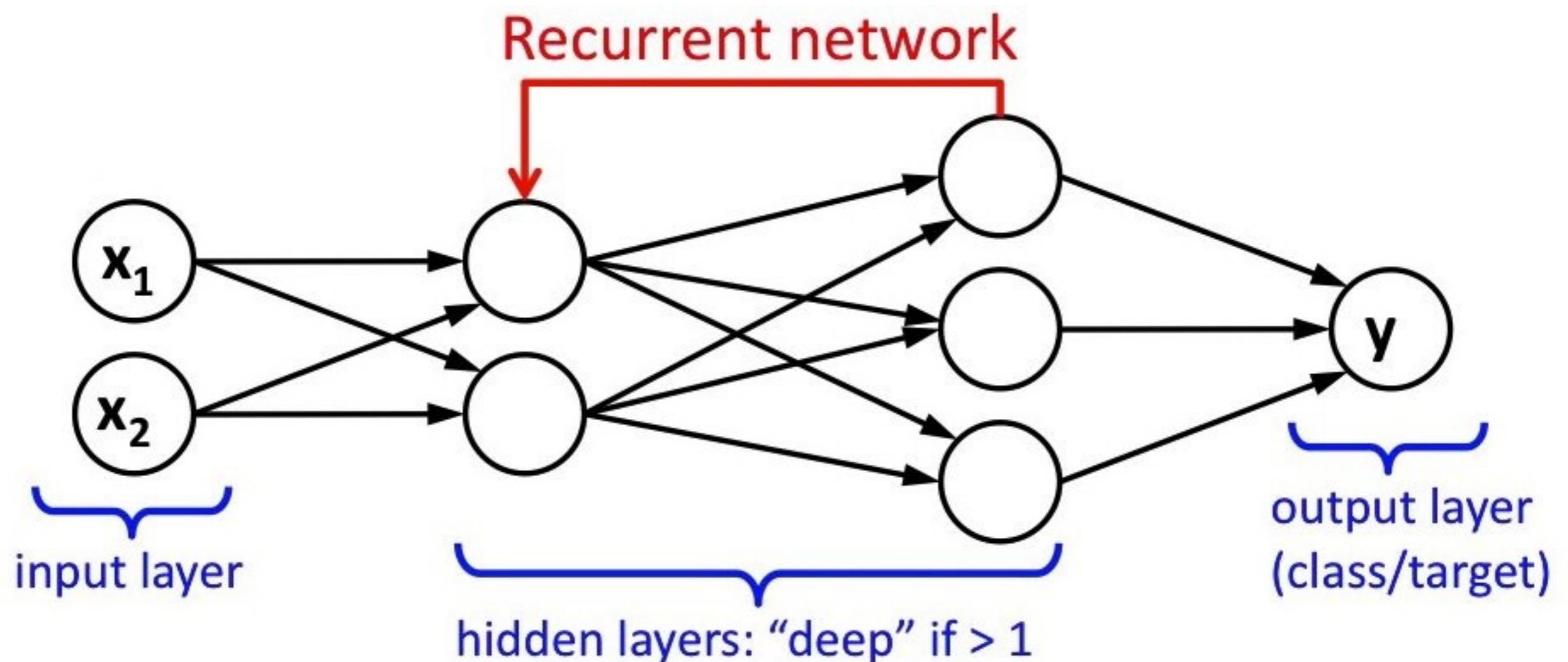
Simple (unrestricted) RNNs



Unlike feedforward networks, recurrent networks can **store state**.

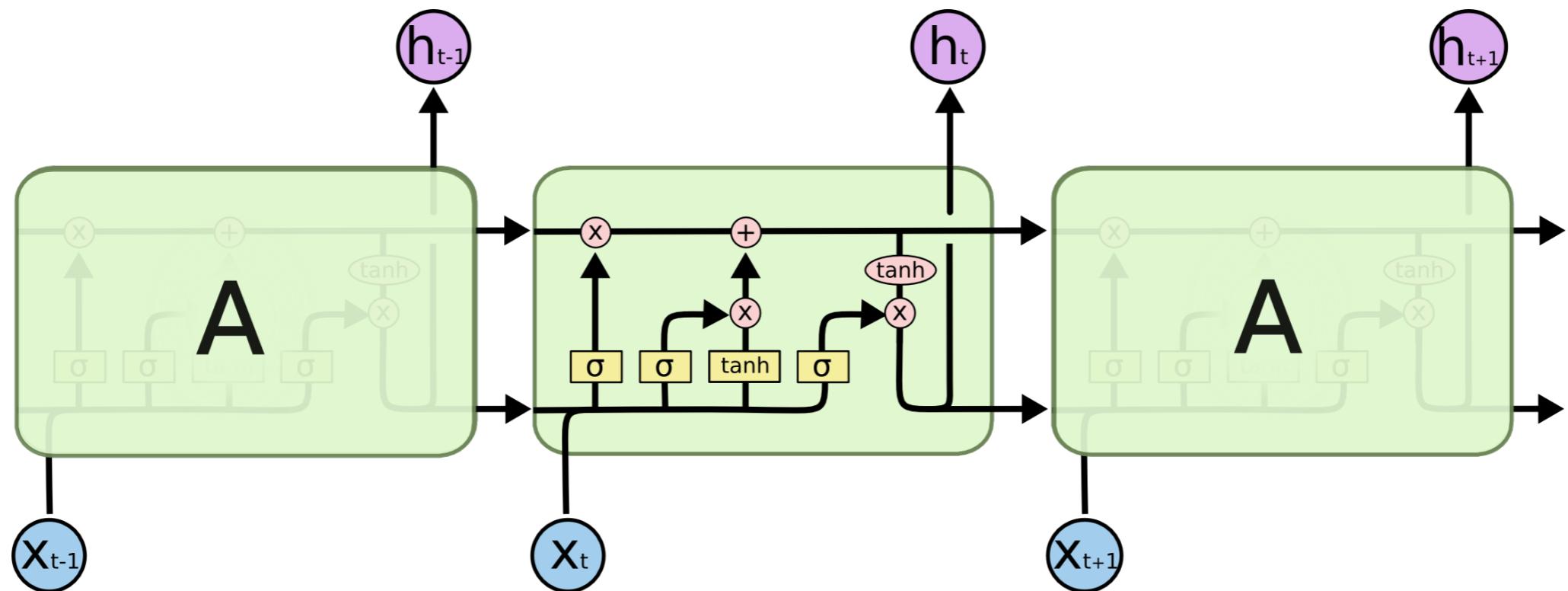
Models: RNNs

Simple (unrestricted) RNNs



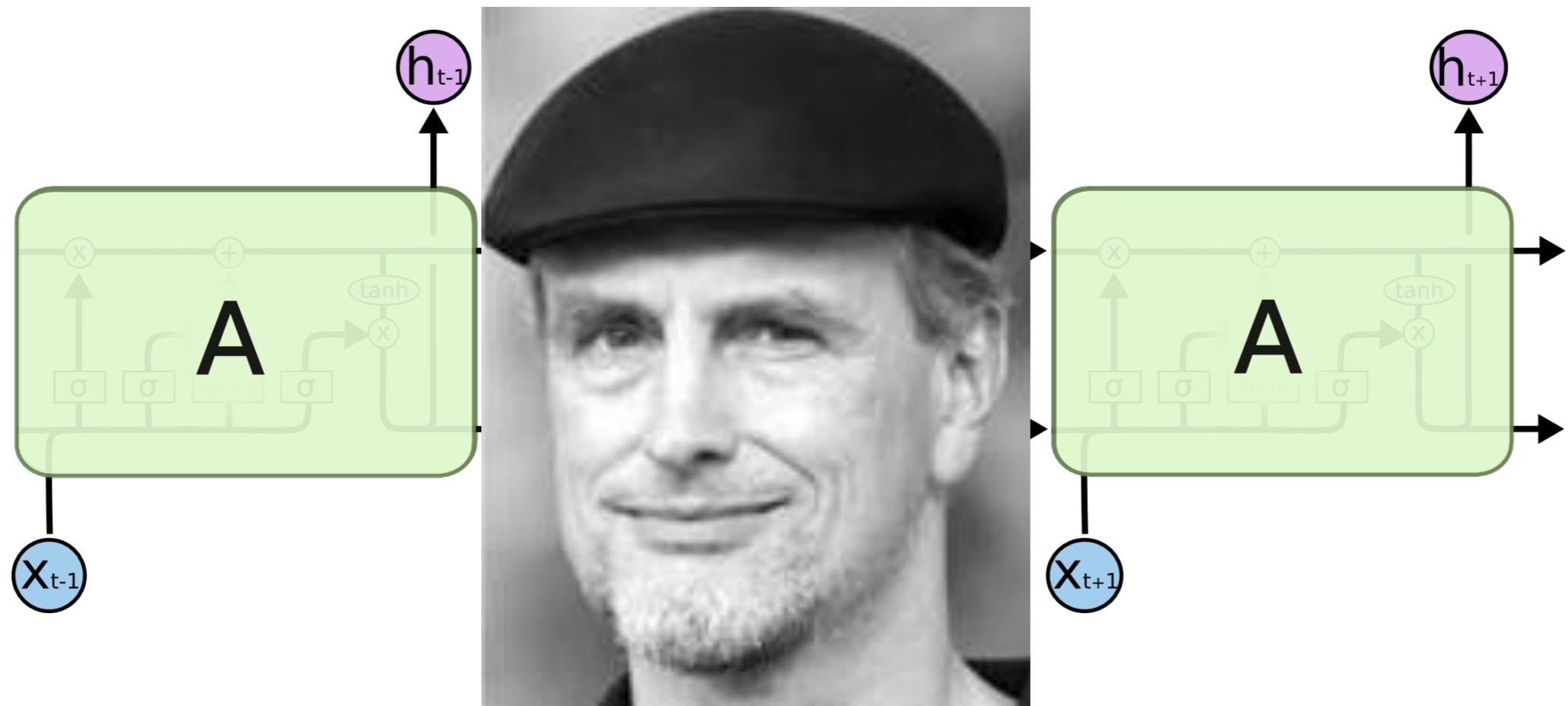
Models: RNNs

Long-Short Term Memory (LSTMs)



Models: RNNs

Long-Short Term Memory (LSTMs)

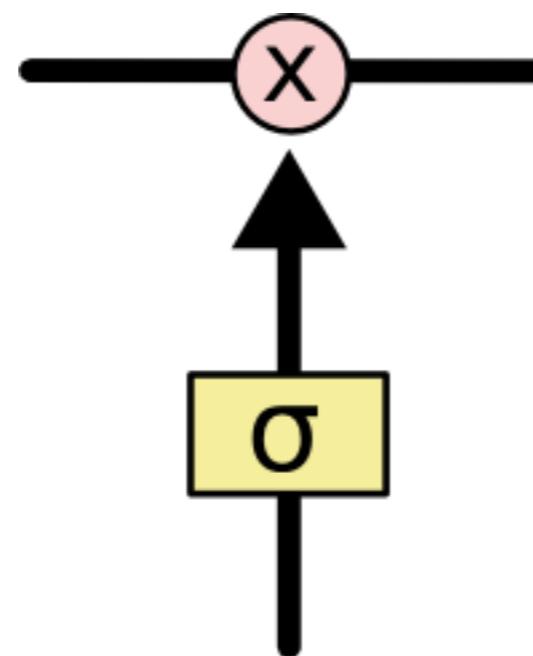


Jürgen Schmidhuber

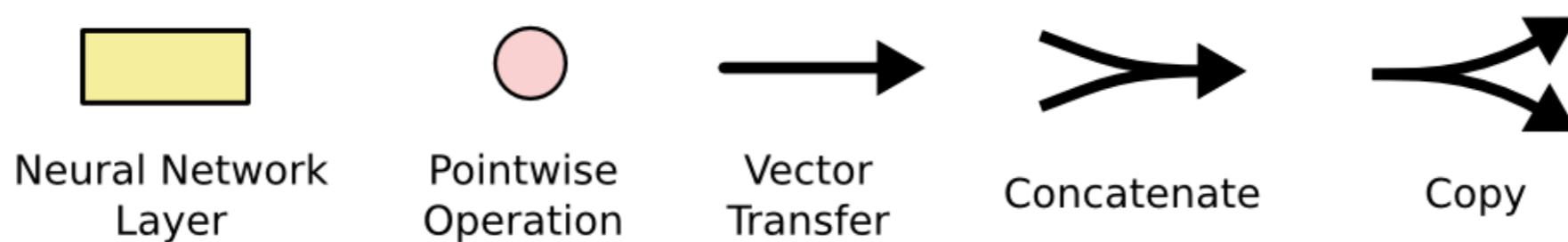
Models: RNNs

Long-Short Term Memory (LSTMs)

Gate:

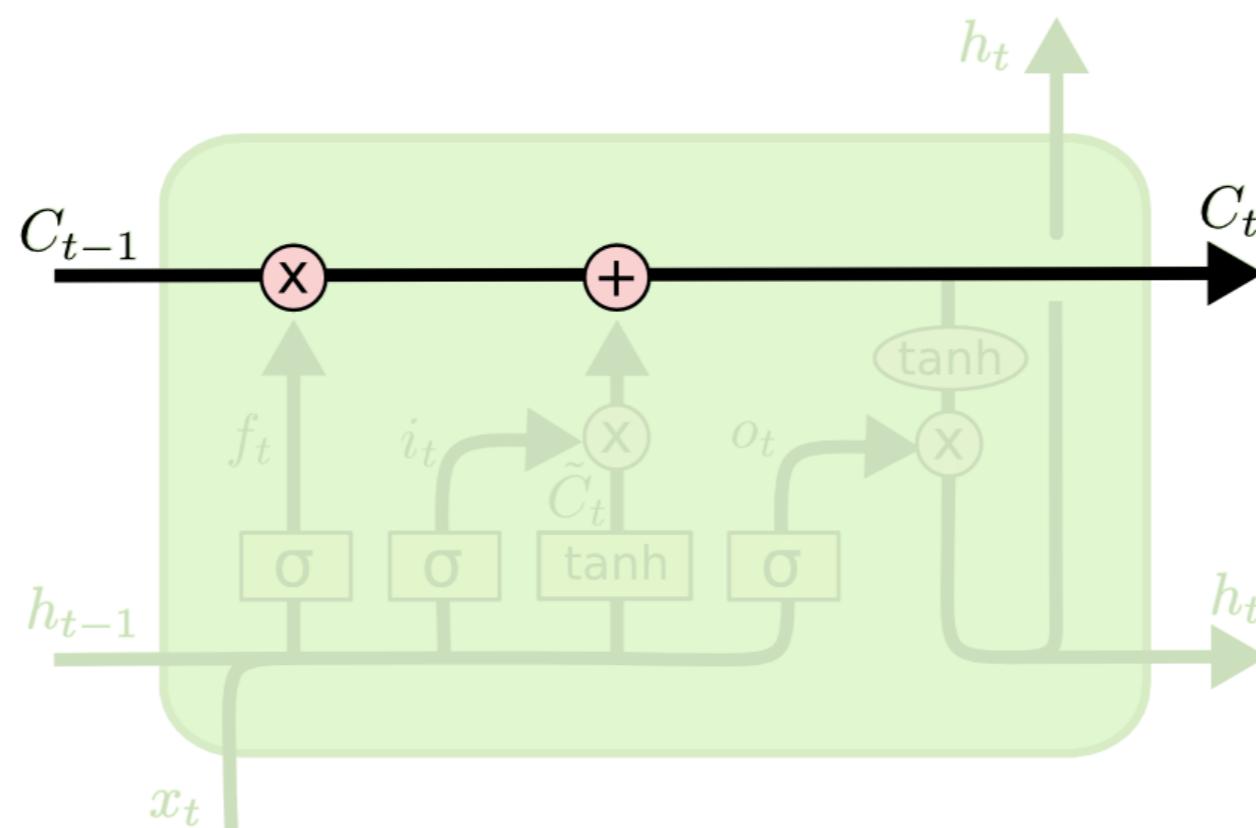
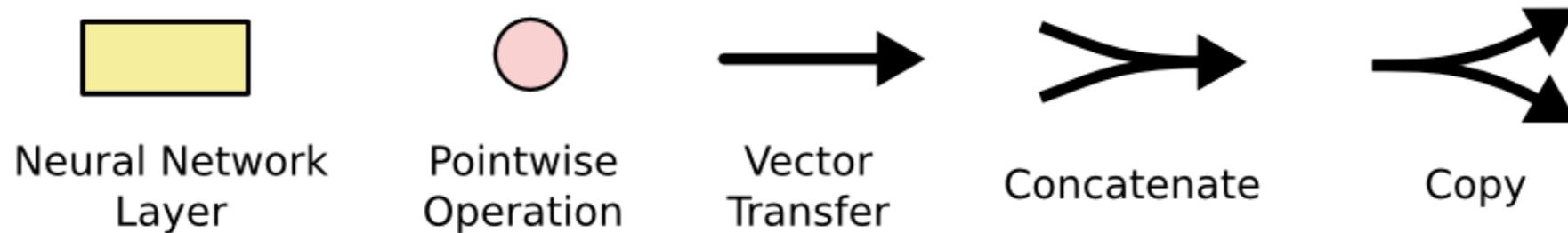


sigmoid + pointwise multiplication



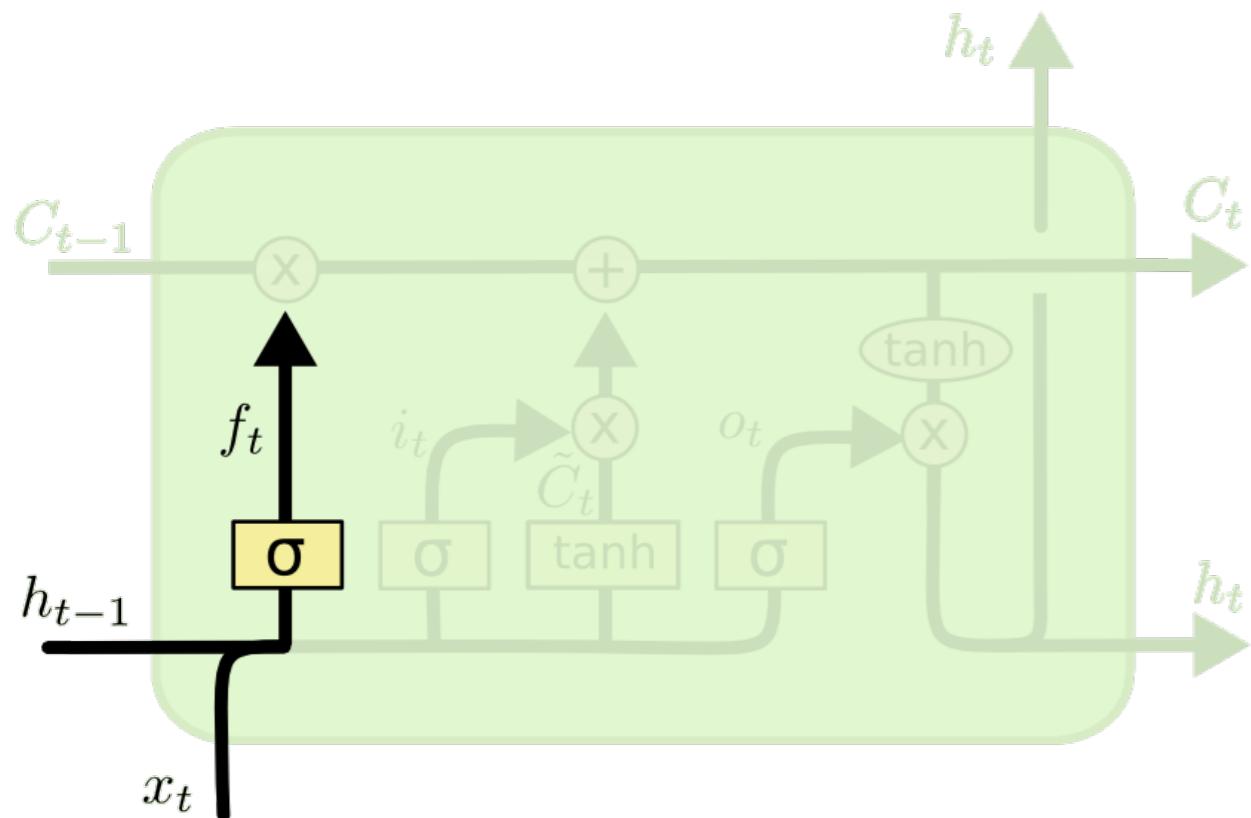
Models: RNNs

Long-Short Term Memory (LSTMs)



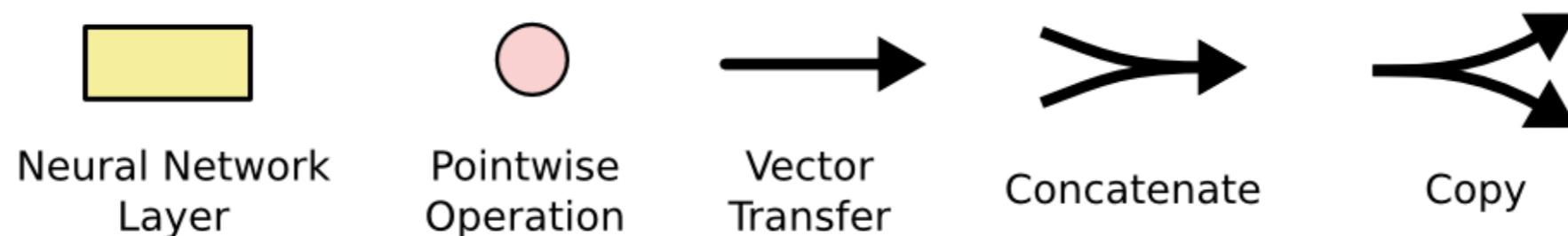
Models: RNNs

Long-Short Term Memory (LSTMs)



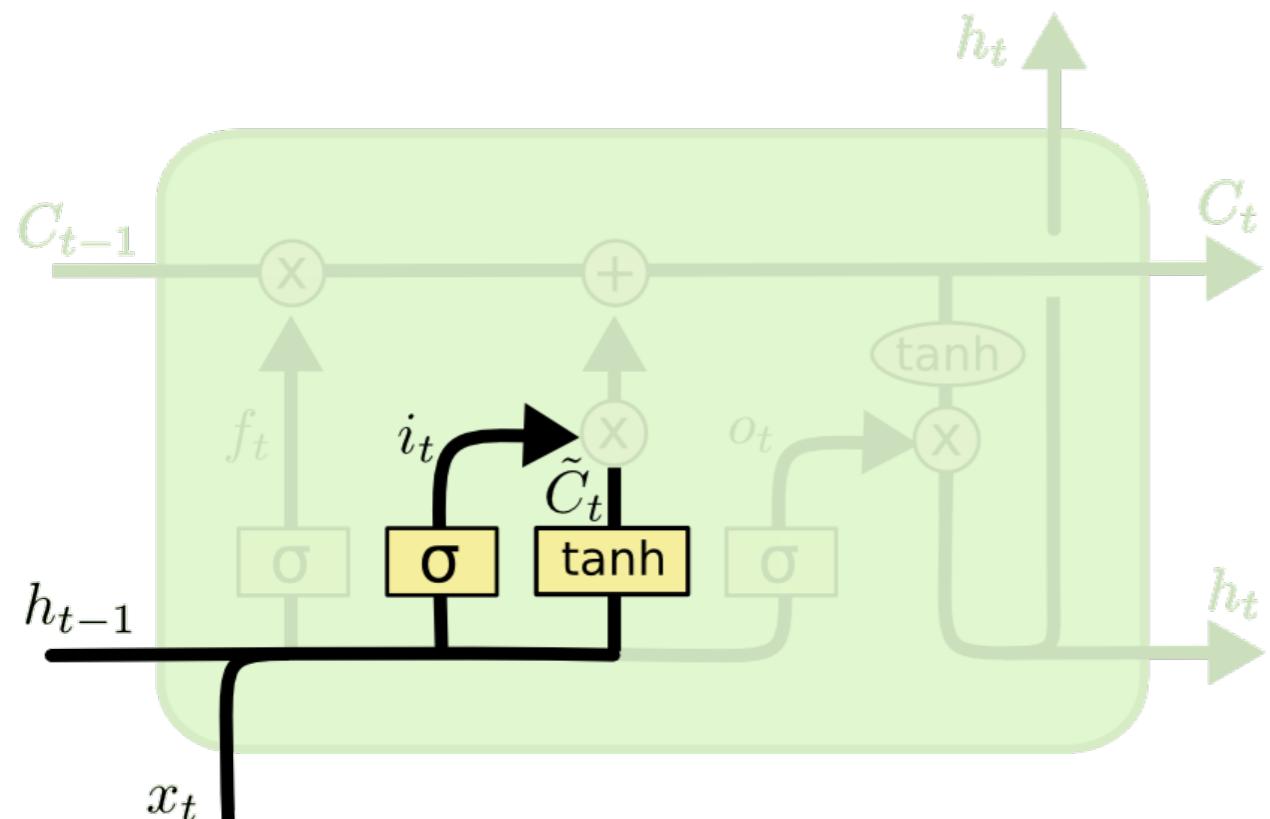
what to throw away:

$$f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$$



Models: RNNs

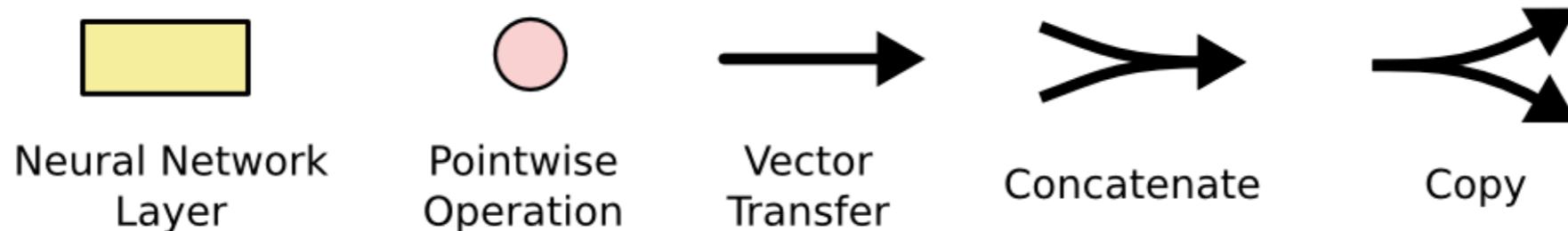
Long-Short Term Memory (LSTMs)



what to store:

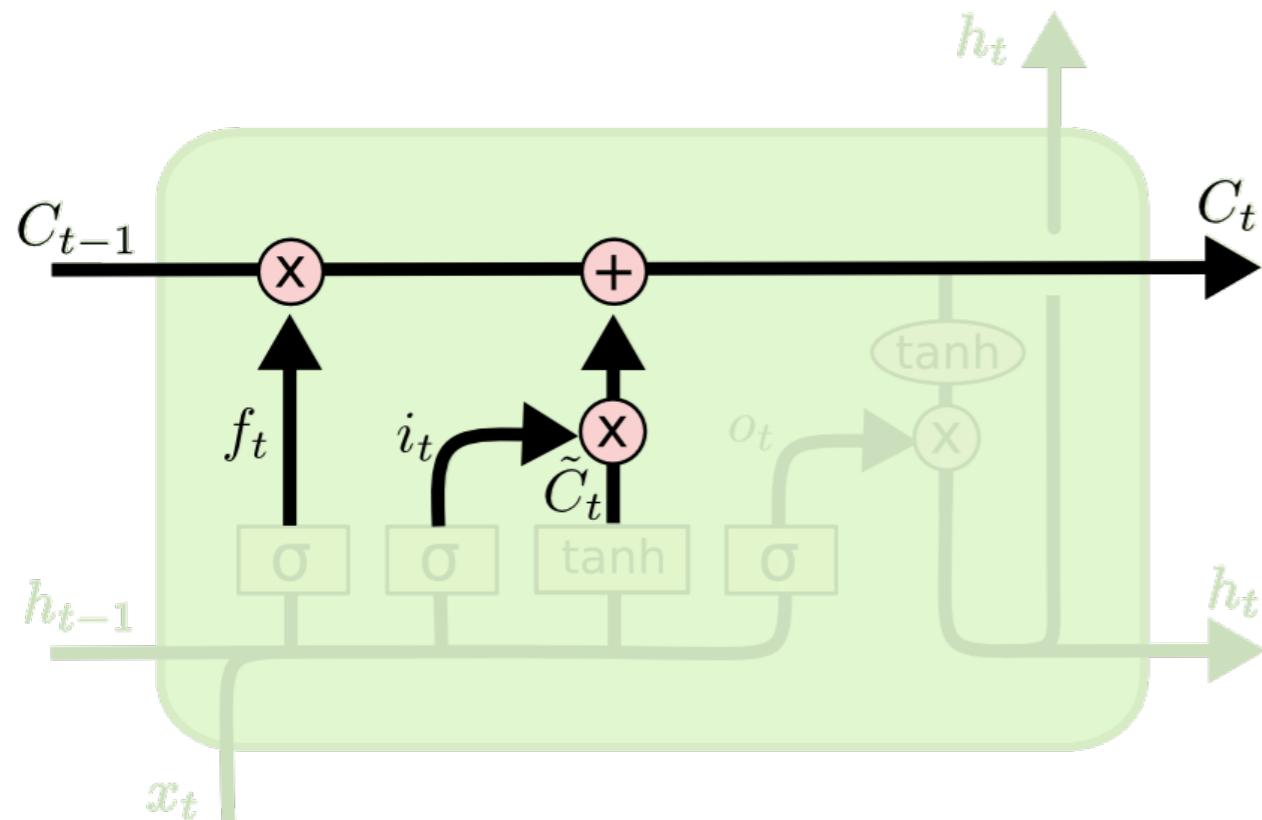
$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh (W_C \cdot [h_{t-1}, x_t] + b_C)$$



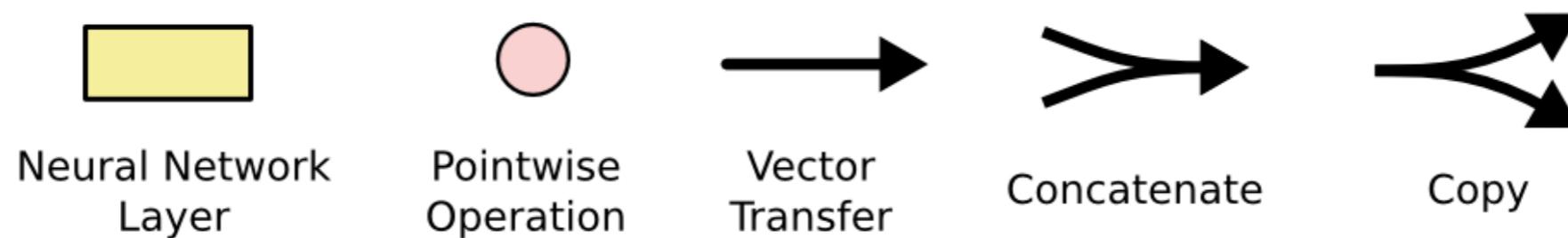
Models: RNNs

Long-Short Term Memory (LSTMs)



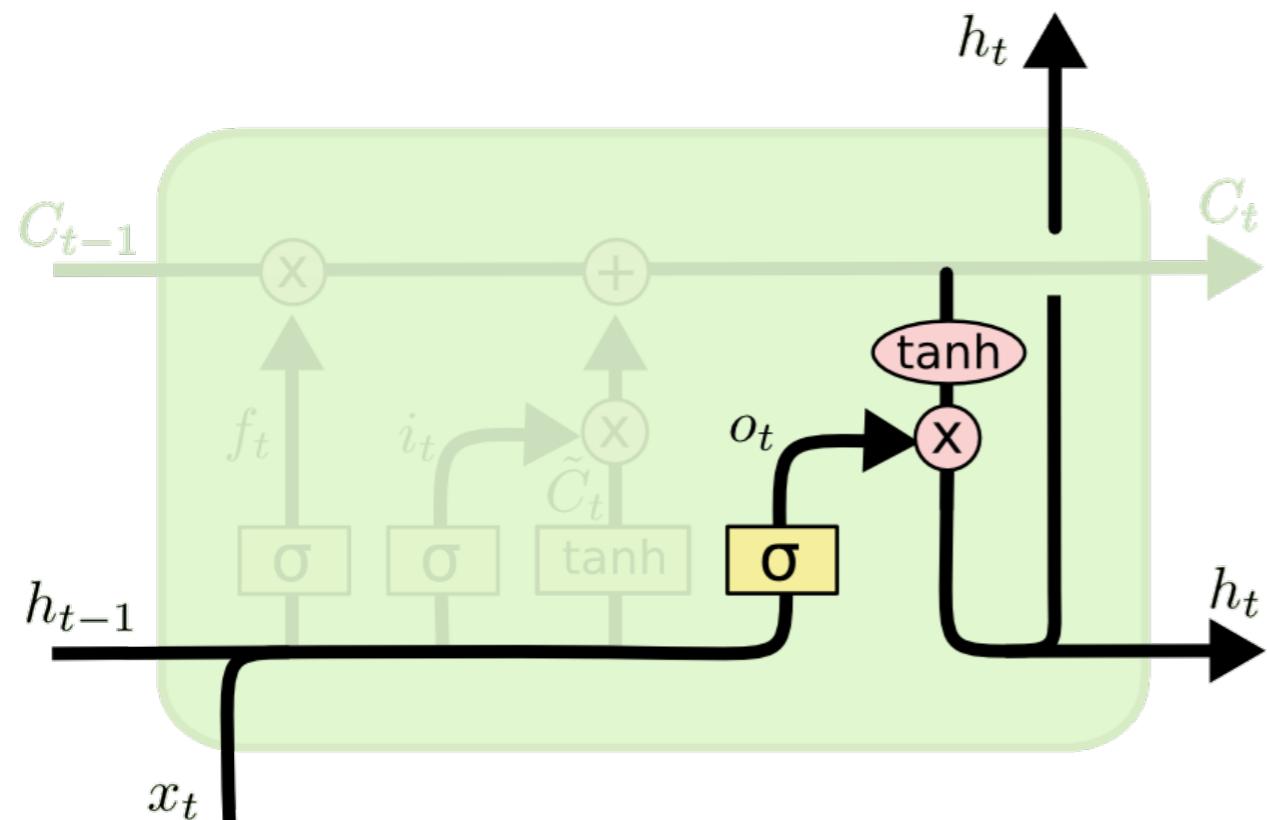
update old cell state:

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$



Models: RNNs

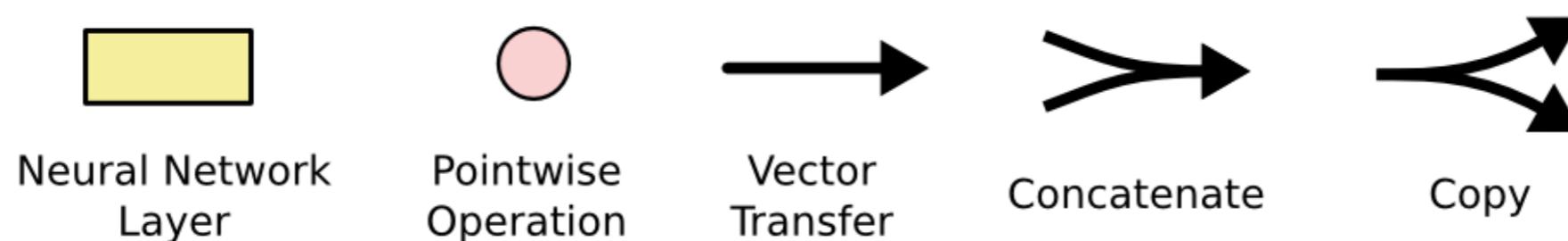
Long-Short Term Memory (LSTMs)



what to actually output:

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

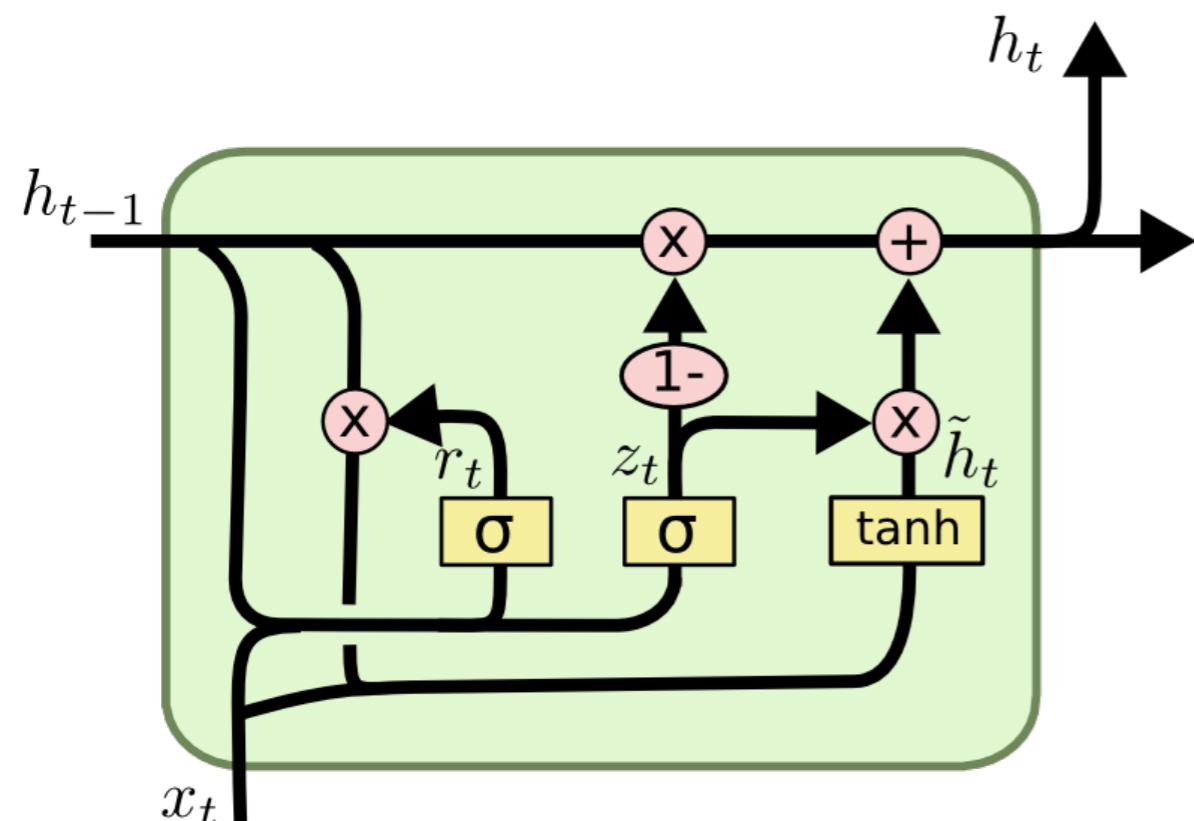
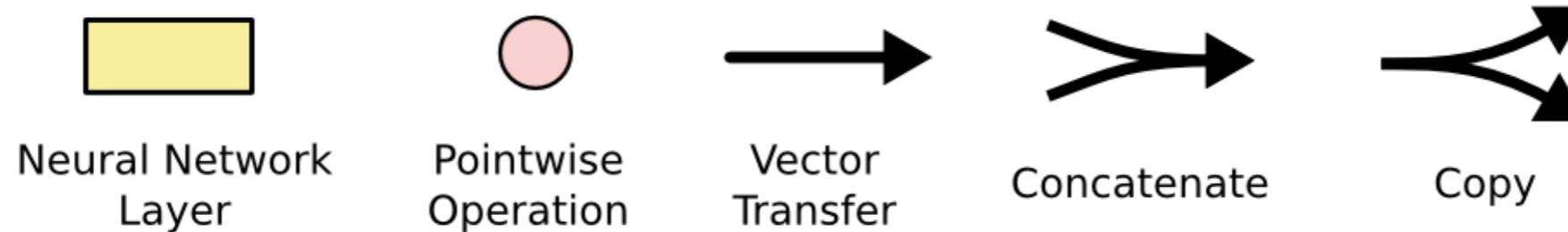
$$h_t = o_t * \tanh (C_t)$$



Models: RNNs

Gated Recurrent Unit (GRU)

combines forget and input gate:



$$z_t = \sigma (W_z \cdot [h_{t-1}, x_t])$$

$$r_t = \sigma (W_r \cdot [h_{t-1}, x_t])$$

$$\tilde{h}_t = \tanh (W \cdot [r_t * h_{t-1}, x_t])$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Recurrent convolutional neural networks suppress occluders and enhance targets in occluded object recognition

Courtney J. Spoerer (courtney.spoerer@mrc-cbu.cam.ac.uk)

Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

Nikolaus Kriegeskorte (nikokriegeskorte@gmail.com)

Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

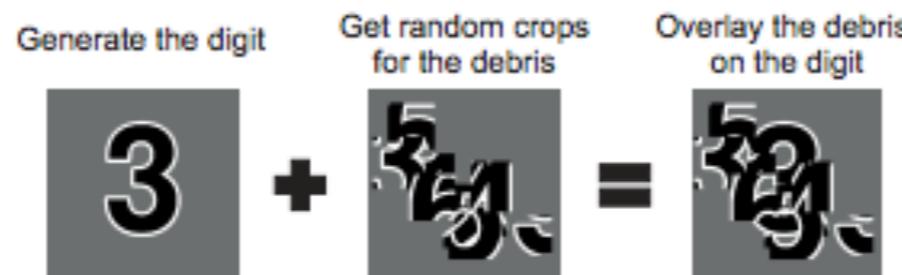


Figure 1: The process for generating stimuli for digit debris. First the target digit is generated. Random crops of all possible targets are taken to create a mask of debris, which is applied to the target as an occluder.

Models

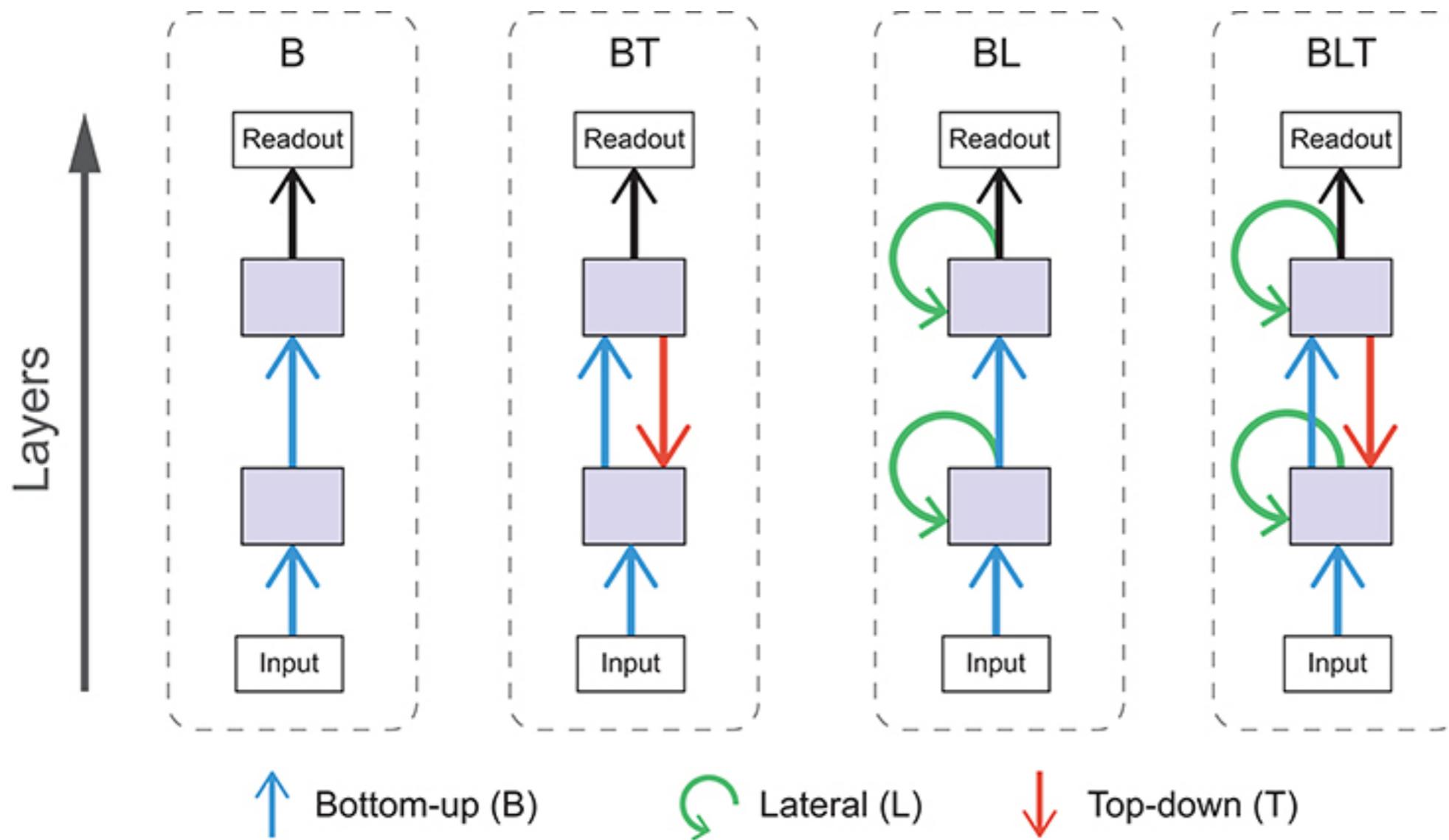
Recurrent convolutional neural networks suppress occluders and enhance targets in occluded object recognition

Courtney J. Spoerer (courtney.spoerer@mrc-cbu.cam.ac.uk)

Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

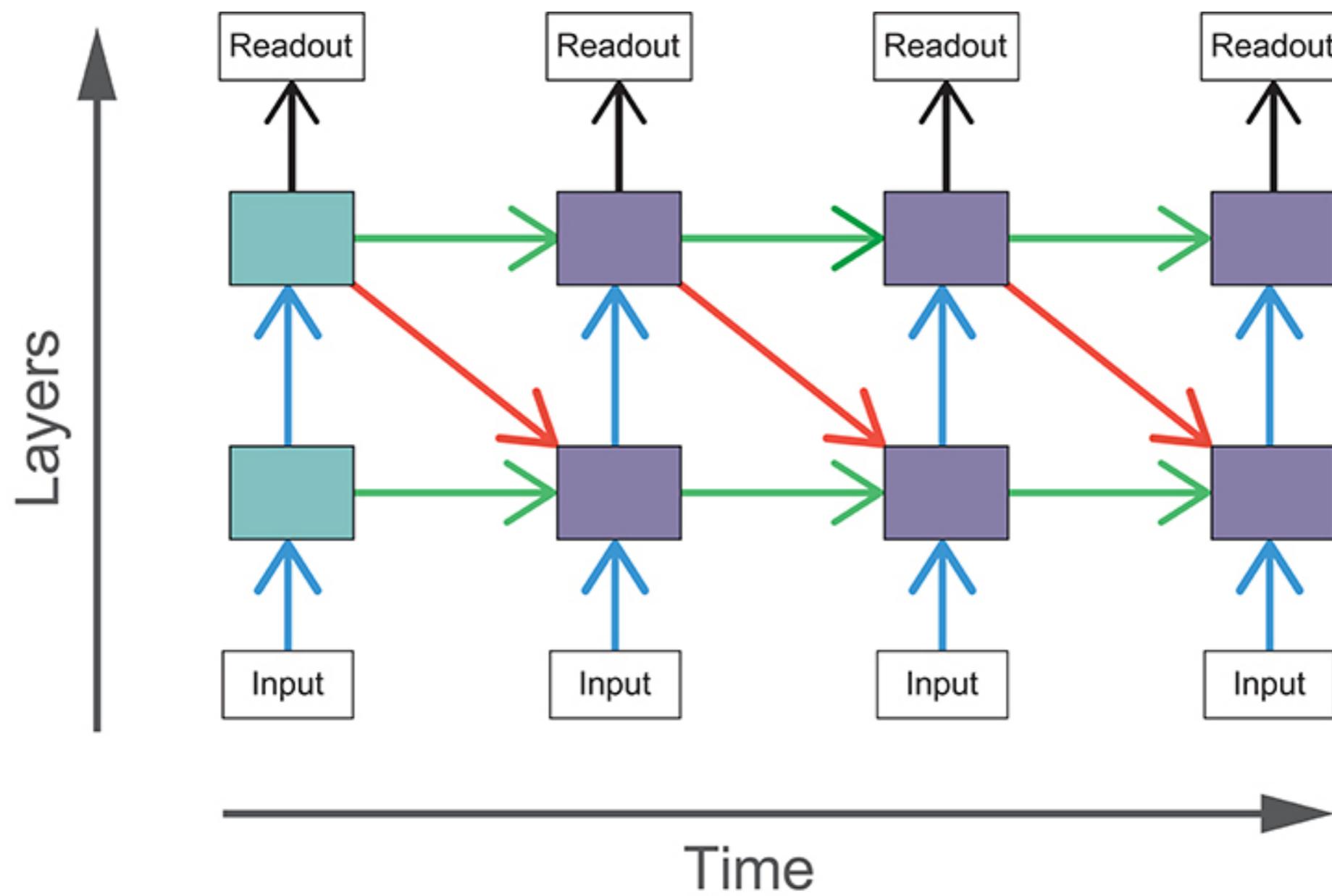
Nikolaus Kriegeskorte (nikokriegeskorte@gmail.com)

Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK



Models

All RNNs executed by unrolling in time



Models

Recurrent convolutional neural networks suppress occluders and enhance targets in occluded object recognition

Courtney J. Spoerer (courtney.spoerer@mrc-cbu.cam.ac.uk)

Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

Nikolaus Kriegeskorte (nikokriegeskorte@gmail.com)
Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

Results

Recurrent networks significantly out-performed feedforward networks across varying levels of occlusion. The difference in performance between feedforward and recurrent networks increased as the occlusion increased (Figure 2).

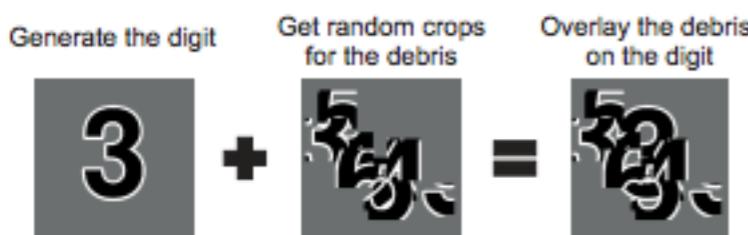


Figure 1: The process for generating stimuli for digit debris. First the target digit is generated. Random crops of all possible targets are taken to create a mask of debris, which is applied to the target as an occluder.

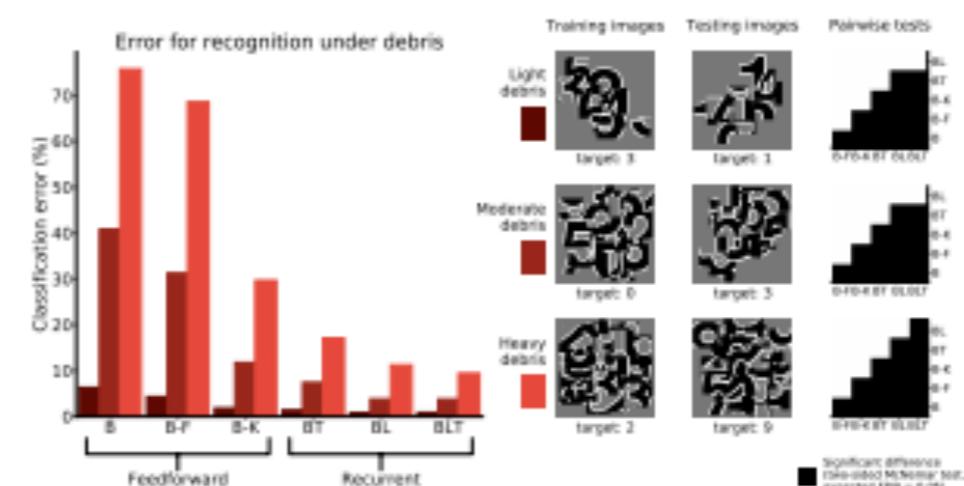


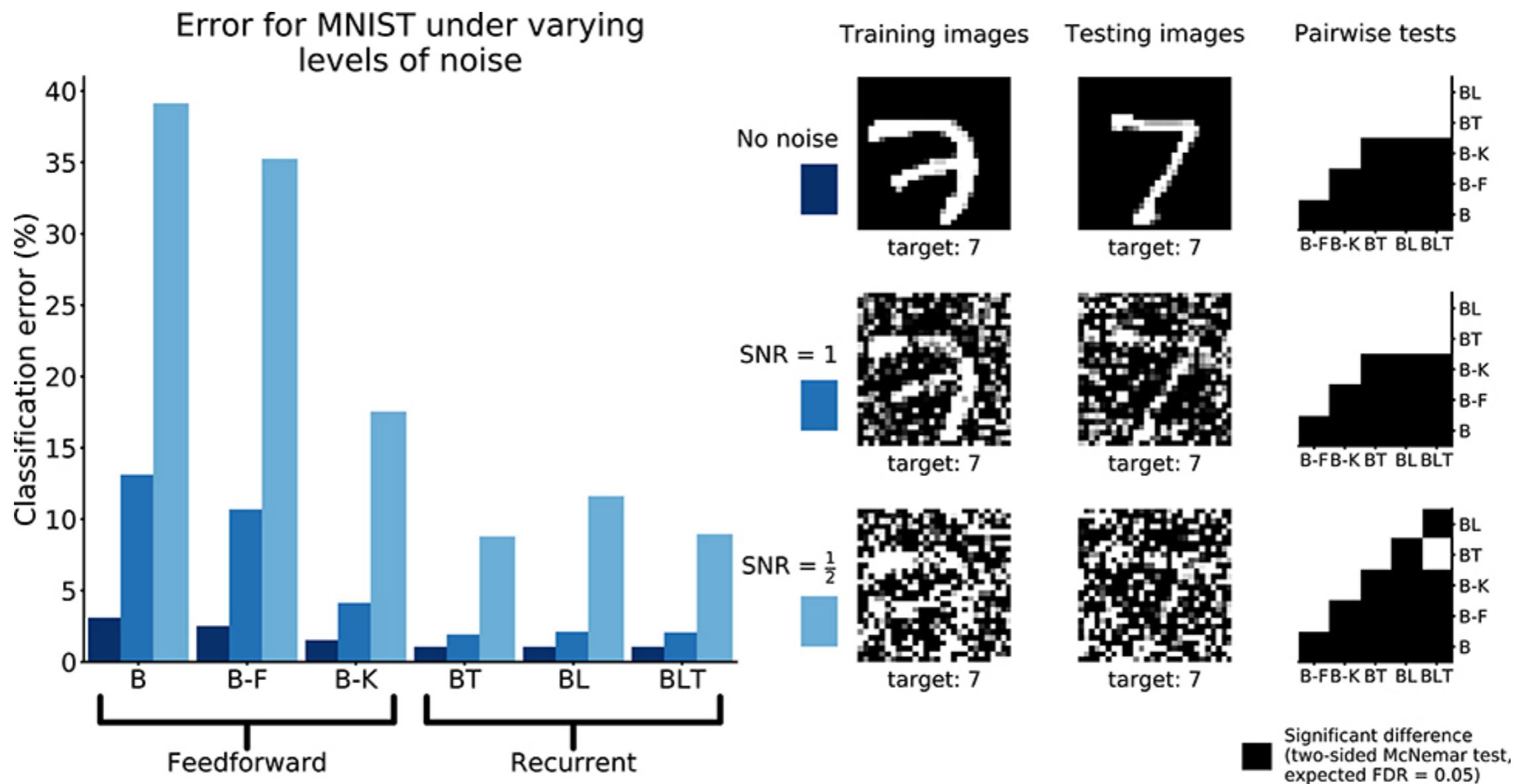
Figure 2: Classification error of the networks across increasing levels of debris (left). Pairwise differences across architectures for different levels of debris are indicated in matrix form (right).

Models

Recurrent convolutional neural networks suppress occluders and enhance targets in occluded object recognition

Courtney J. Spoerer (courtney.spoerer@mrc-cbu.cam.ac.uk)
Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

Nikolaus Kriegeskorte (nikokriegeskorte@gmail.com)
Medical Research Council Cognition and Brain Sciences Unit,
15 Chaucer Road, Cambridge, CB2 7EF, UK

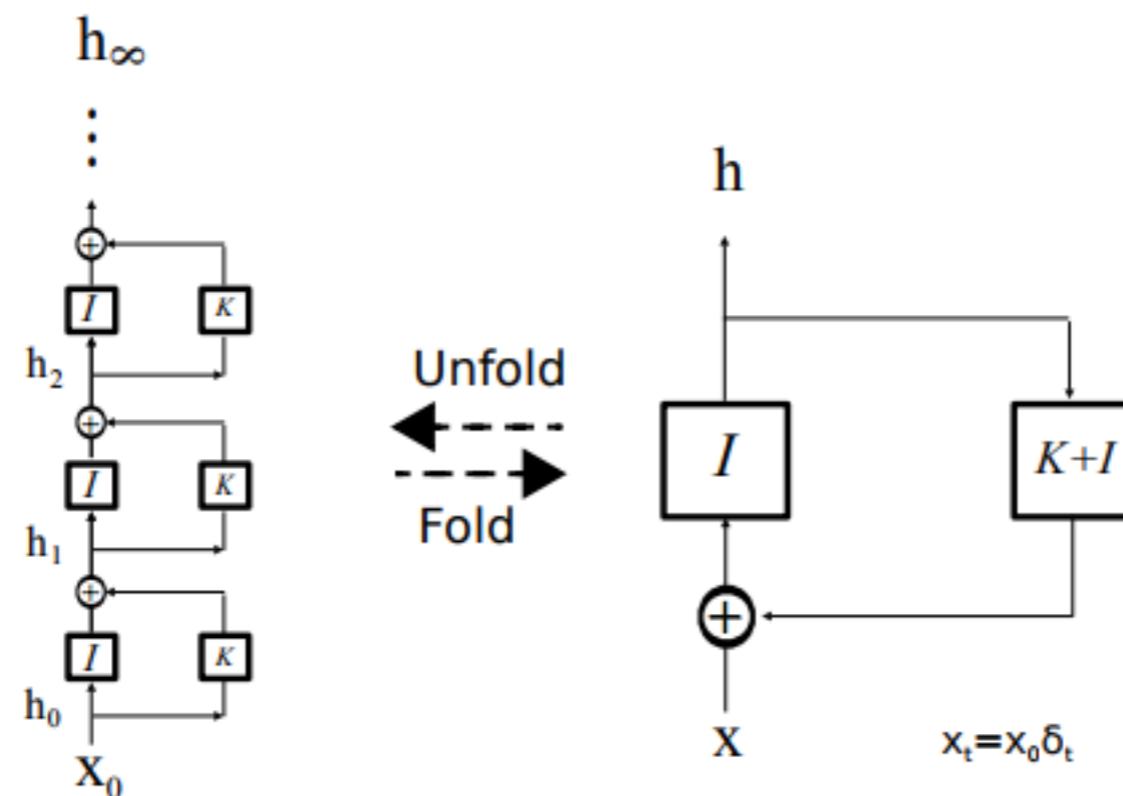


Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex

by

Qianli Liao and Tomaso Poggio

Center for Brains, Minds and Machines, McGovern Institute, MIT



(A) ResNet with shared weights

(B) ResNet in recurrent form

Models

Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex

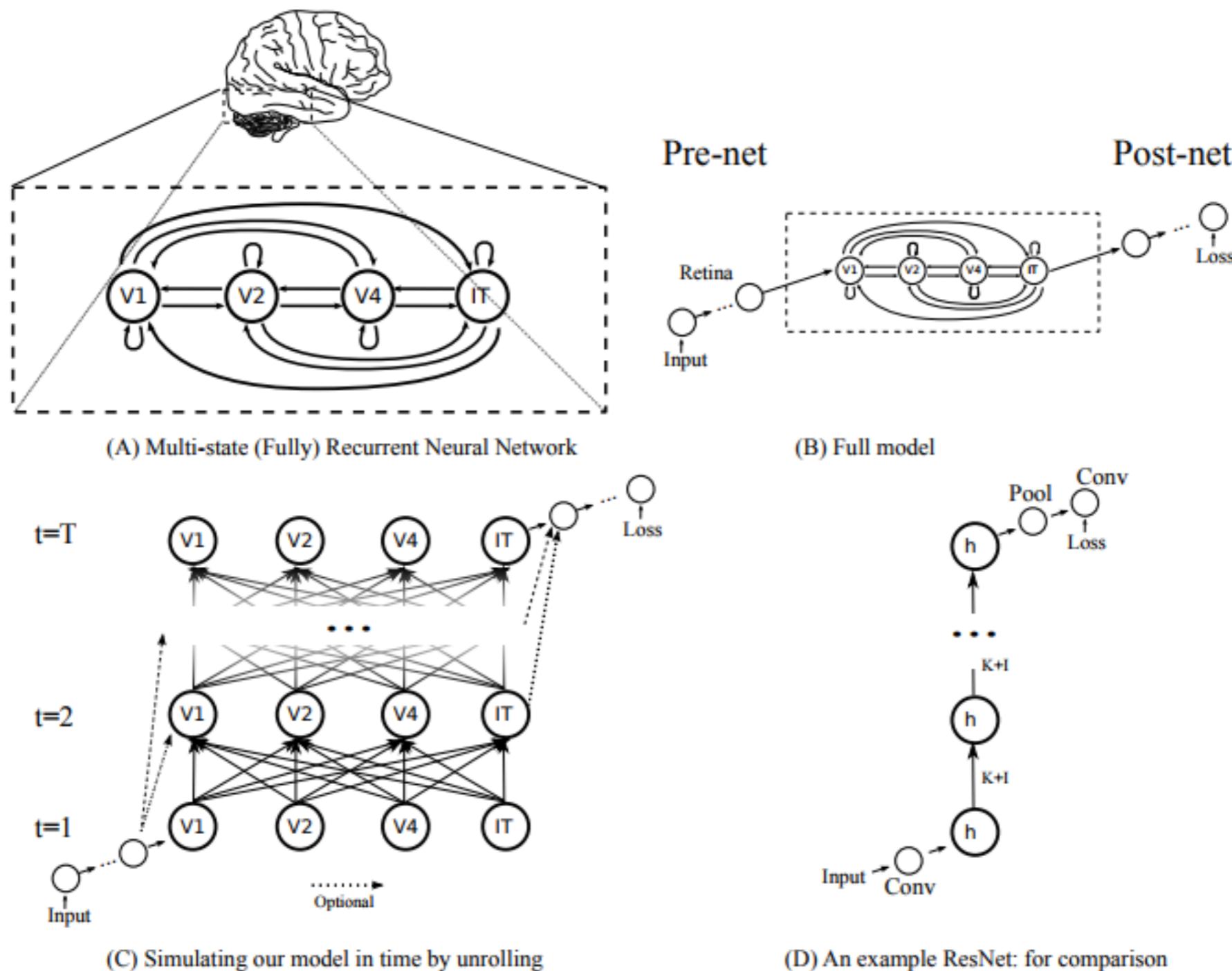


Figure 2: Modeling the ventral stream of visual cortex using a multi-state fully recurrent neural network

Models

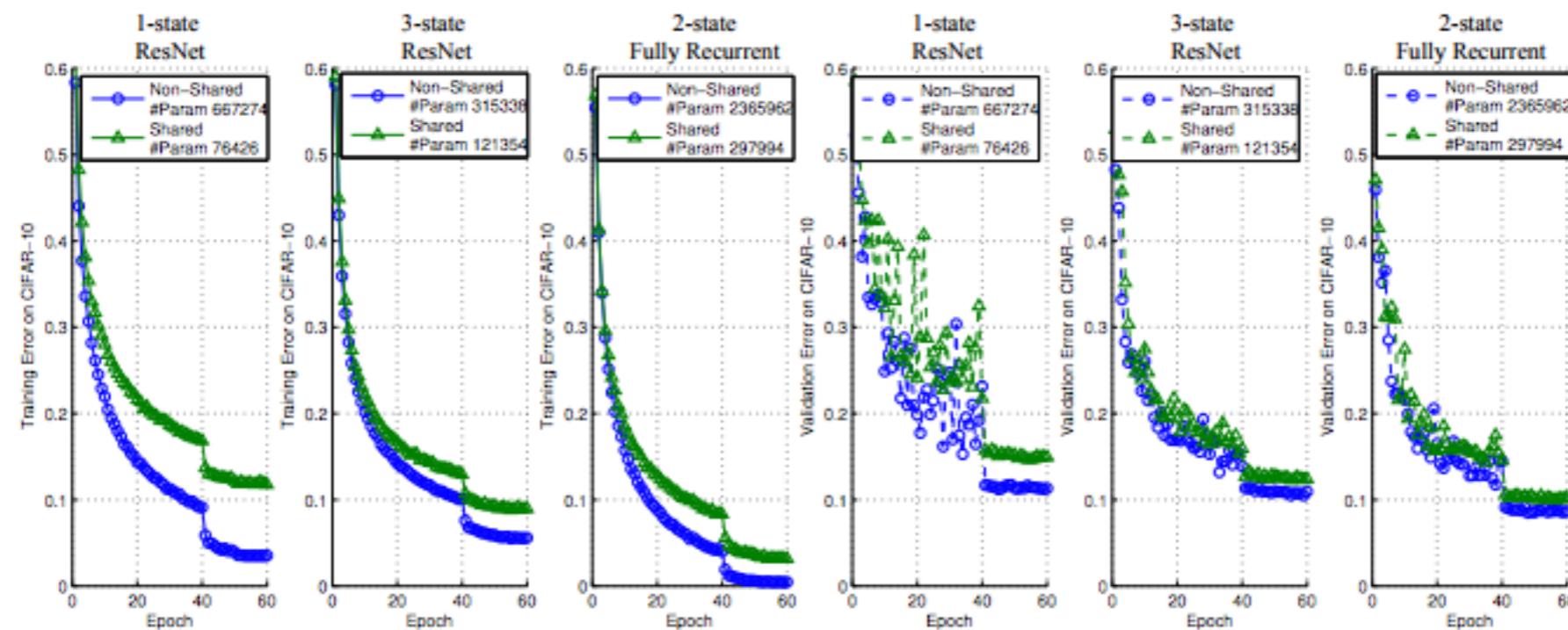
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex

by

Qianli Liao and Tomaso Poggio

Center for Brains, Minds and Machines, McGovern Institute, MIT

CIFAR-10 Error



Feedback Networks

Amir R. Zamir^{1,3*} Te-Lin Wu^{1*} Lin Sun^{1,2} William B. Shen¹ Bertram E. Shi²
Jitendra Malik³ Silvio Savarese¹

¹ Stanford University ² HKUST ³ University of California, Berkeley

<http://feedbacknet.stanford.edu/>

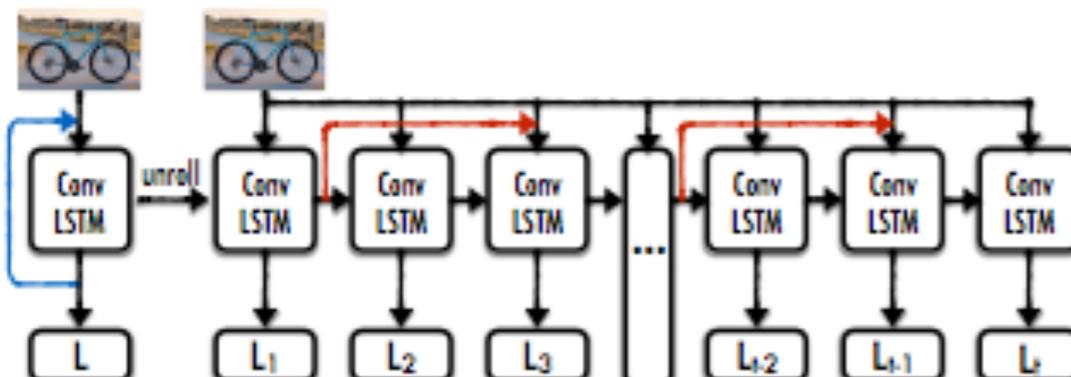


Figure 2. Illustration of our core feedback model and skip connections (shown in red) when unrolled in time. 'ConvLSTM' and 'L' boxes represent convolutional operations and iteration losses, respectively.

$$L = \sum_{t=1}^T \gamma^t L_t, \text{ where } L_t = -\log \frac{e^{\mathbf{H}_t^D[C]}}{\sum_j e^{\mathbf{H}_t^D[j]}}.$$

Models

Feedback Networks

Amir R. Zamir^{1,3*} Te-Lin Wu^{1*} Lin Sun^{1,2} William B. Shen¹ Bertram E. Shi²
Jitendra Malik³ Silvio Savarese¹

¹ Stanford University ² HKUST ³ University of California, Berkeley

<http://feedbacknet.stanford.edu/>

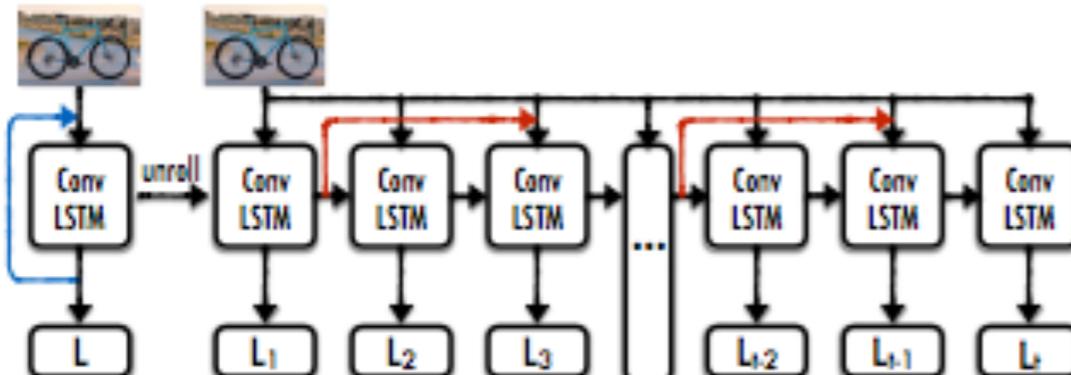


Figure 2. Illustration of our core feedback model and skip connections (shown in red) when unrolled in time. 'ConvLSTM' and 'L' boxes represent convolutional operations and iteration losses, respectively.

$$L = \sum_{t=1}^T \gamma^t L_t, \text{ where } L_t = -\log \frac{e^{\mathbf{H}_t^D[C]}}{\sum_j e^{\mathbf{H}_t^D[j]}}.$$

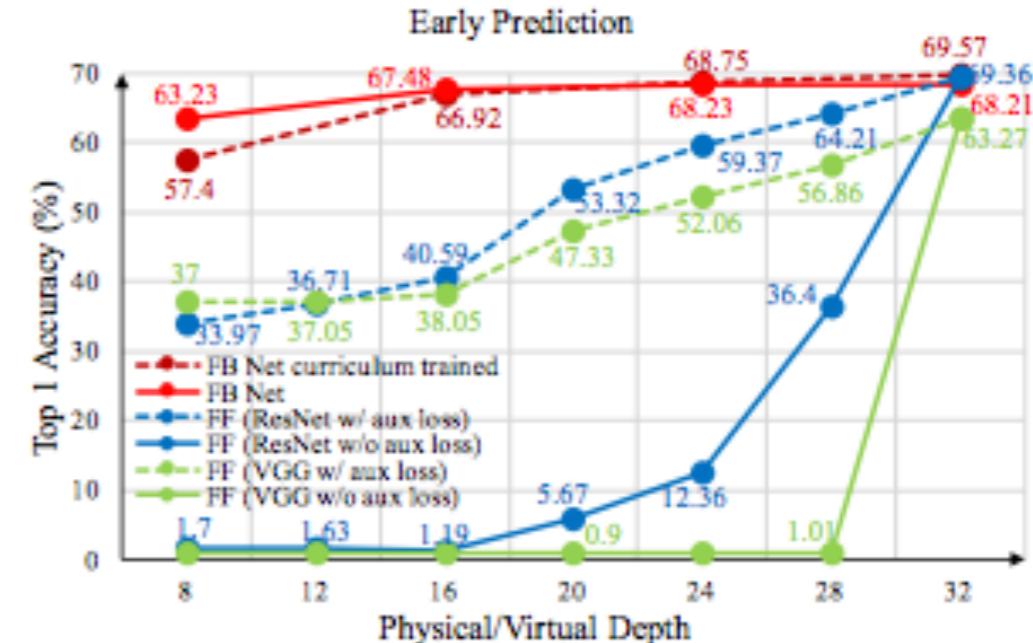


Figure 5. Evaluation of early predictions. Comparison of accuracy of feedback (FB) model and feedforward (FF) baselines (ResNet & VGG, with or without auxiliary loss layers)

Feedback Networks

Amir R. Zamir^{1,3*} Te-Lin Wu^{1*} Lin Sun^{1,2} William B. Shen¹ Bertram E. Shi²
Jitendra Malik³ Silvio Savarese¹

¹ Stanford University ² HKUST ³ University of California, Berkeley

<http://feedbacknet.stanford.edu/>

Model	Physical Depth	Virtual Depth	Top1 (%)	Top5 (%)
Feedback Net 	12	48	71.12	91.51
	8	32	69.57	91.01
	4	16	67.83	90.12
Feedforward (ResNet[19]) 	48	-	70.04	90.96
	32	-	69.36	91.07
	12	-	66.35	90.02
	8	-	64.23	88.95
	128*	-	70.92	91.28
	110*	-	72.06	92.12
	64*	-	71.01	91.48
	48*	-	70.56	91.60
	32*	-	69.58	91.55
Feedforward (VGG[48]) 	48	-	55.08	82.1
	32	-	63.56	88.41
	12	-	64.65	89.26
	8	-	63.91	88.90
Highway [53]	19	-	67.76	-
ResNet v2[20]	1001	-	77.29	-
Stochastic Depth [24]	110	-	75.02	-
SwapOut [49]	32 fat	-	77.28	-
RCNN [37]	4 fat	16	68.25	-

Table 6. Endpoint performance comparison on CIFAR-100. Baselines denoted with * are the architecture used in the original ResNet paper.

$$L = \sum_{t=1}^T \gamma^t L_t, \text{ where } L_t = -\log \frac{e^{\mathbf{H}_t^D[C]}}{\sum_j e^{\mathbf{H}_t^D[j]}}.$$

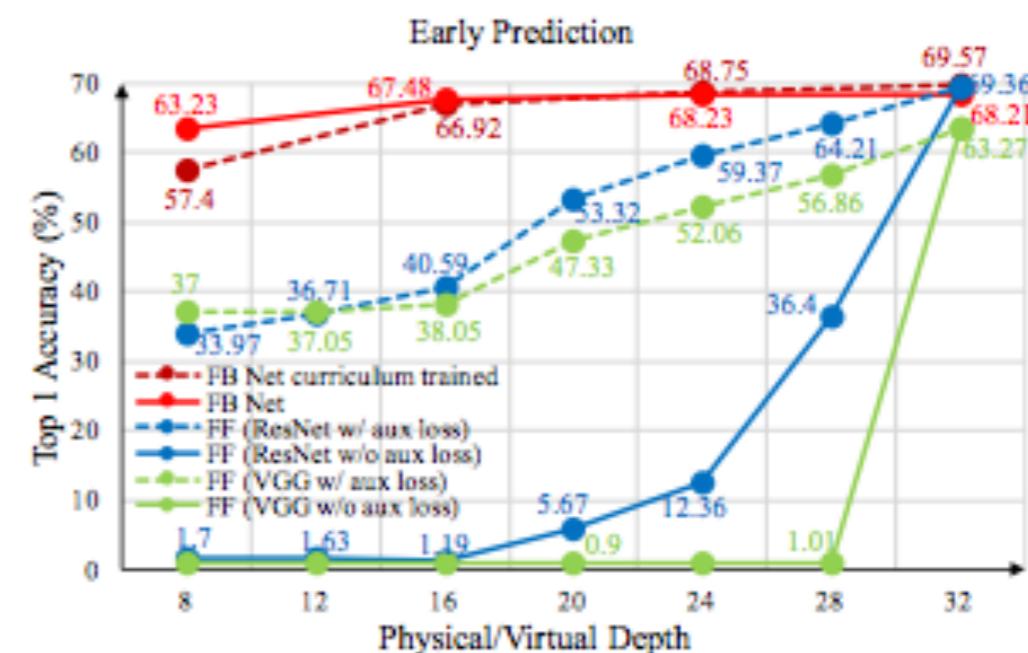


Figure 5. Evaluation of early predictions. Comparison of accuracy of feedback (FB) model and feedforward (FF) baselines (ResNet & VGG, with or without auxiliary loss layers)

Models

Feedback Networks

Amir R. Zamir^{1,3*} Te-Lin Wu^{1*} Lin Sun^{1,2} William B. Shen¹ Bertram E. Shi²
Jitendra Malik³ Silvio Savarese¹

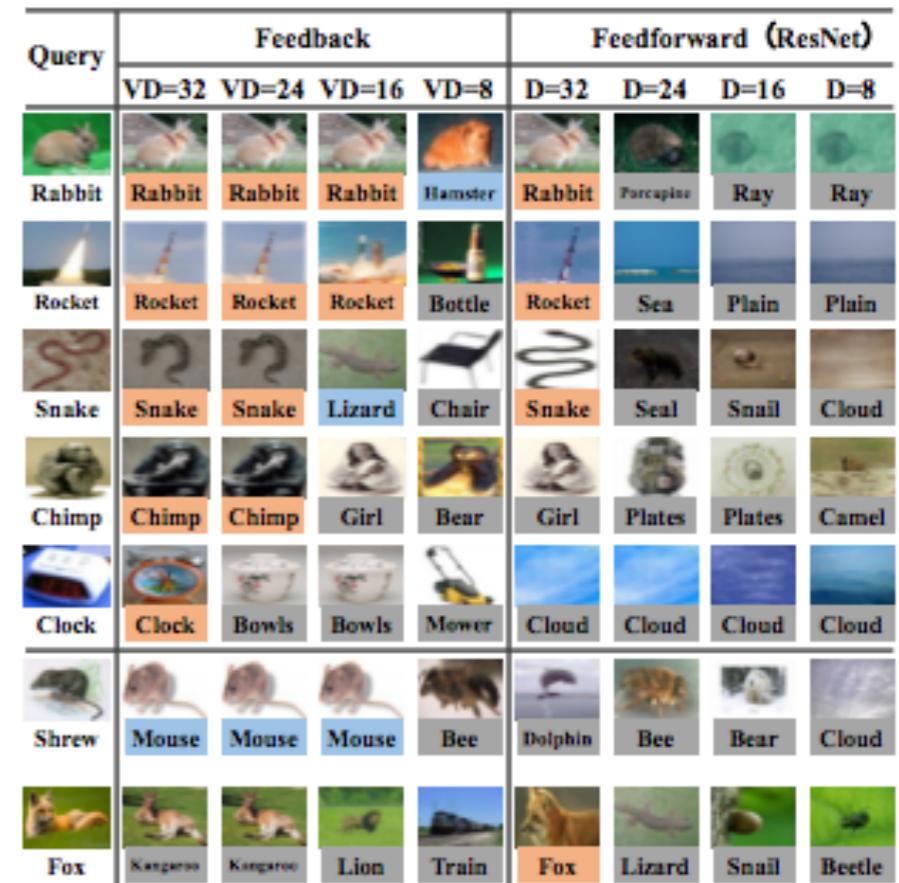
¹ Stanford University ² HKUST ³ University of California, Berkeley

<http://feedbacknet.stanford.edu/>

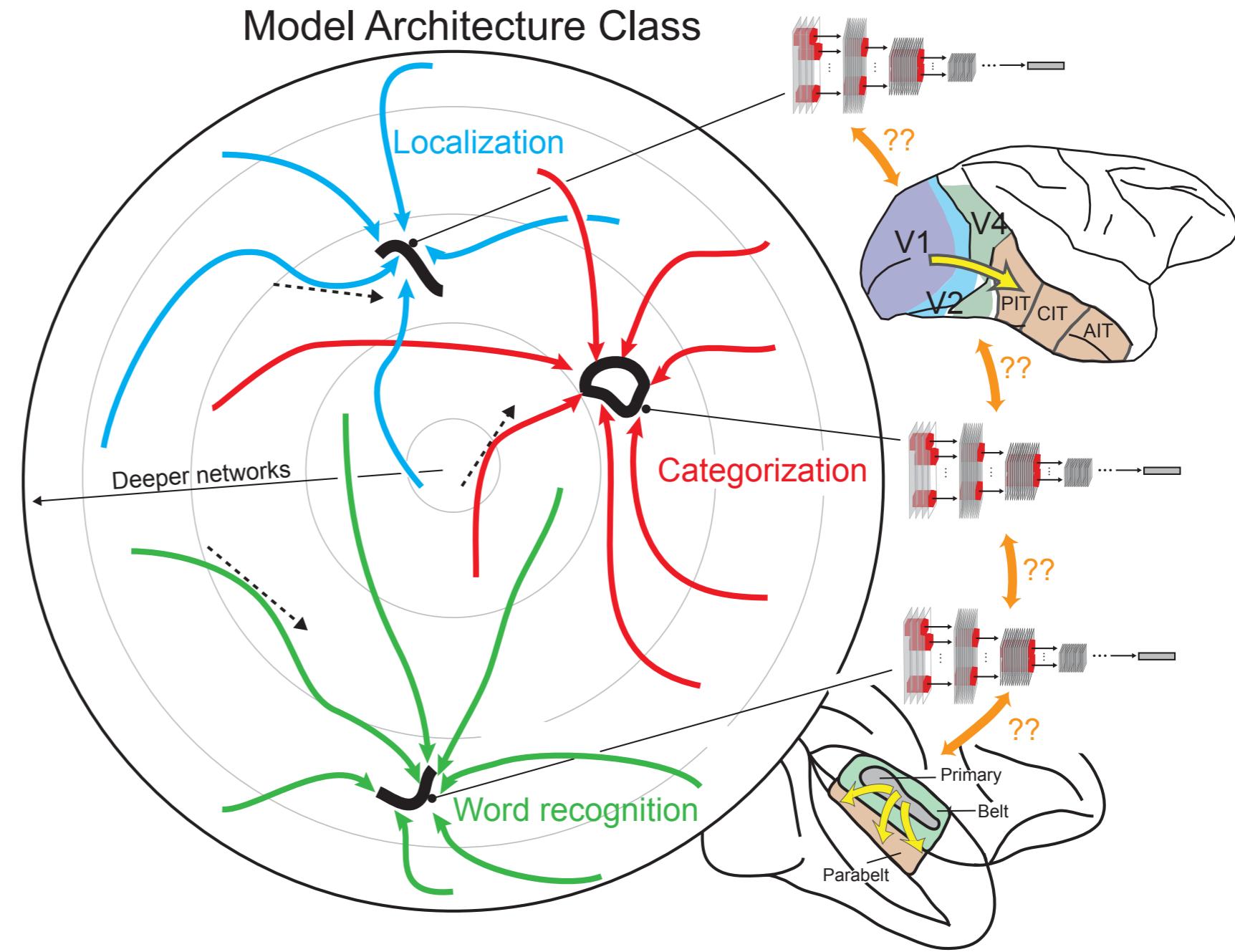
Model	Physical Depth	Virtual Depth	Top1 (%)	Top5 (%)
Feedback Net 	12	48	71.12	91.51
	8	32	69.57	91.01
	4	16	67.83	90.12
Feedforward (ResNet[19]) 	48	-	70.04	90.96
	32	-	69.36	91.07
	12	-	66.35	90.02
	8	-	64.23	88.95
	128*	-	70.92	91.28
	110*	-	72.06	92.12
	64*	-	71.01	91.48
	48*	-	70.56	91.60
	32*	-	69.58	91.55
Feedforward (VGG[48]) 	48	-	55.08	82.1
	32	-	63.56	88.41
	12	-	64.65	89.26
	8	-	63.91	88.90
Highway [53]	19	-	67.76	-
ResNet v2[20]	1001	-	77.29	-
Stochastic Depth [24]	110	-	75.02	-
SwapOut [49]	32 fat	-	77.28	-
RCNN [37]	4 fat	16	68.25	-

Table 6. Endpoint performance comparison on CIFAR-100. Baselines denoted with * are the architecture used in the original ResNet paper.

$$L = \sum_{t=1}^T \gamma^t L_t, \text{ where } L_t = -\log \frac{e^{H_t^D[C]}}{\sum_j e^{H_t^D[j]}}.$$



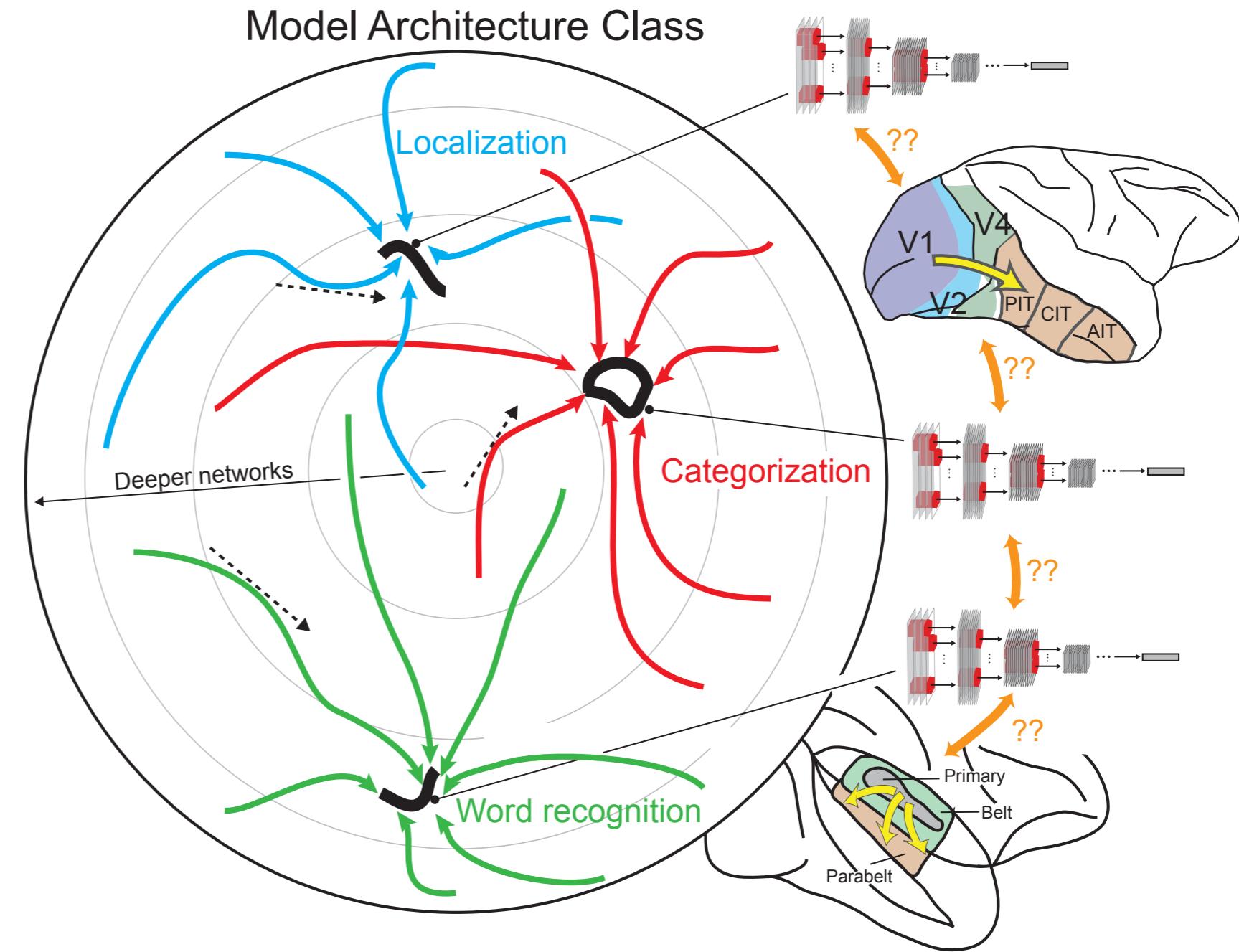
- > Formulate comprehensive model class (**CNNs**)
- > Choose challenging, ethologically-valid tasks (**categorization**)
- > Implement generic learning rules (**gradient descent**)
- > Map to brain data. (**temporal averages in ventral stream**)



> Formulate comprehensive model class
(ConvRNNs)

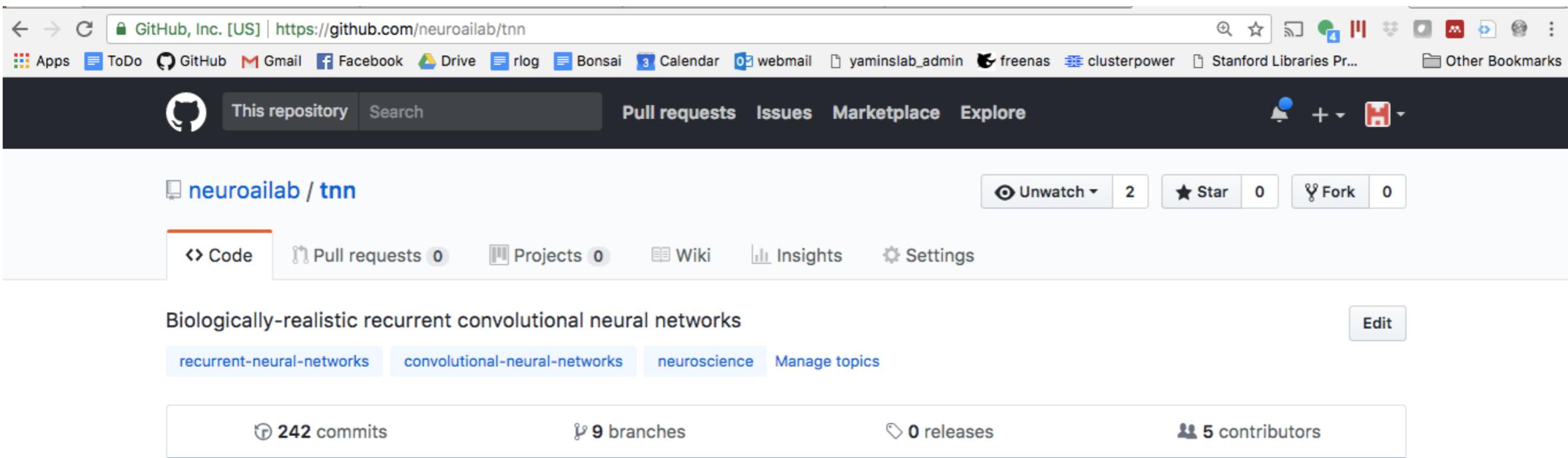
> Choose challenging, ethologically-valid tasks
(??)

> Map to brain data.
(ventral stream dynamics)



Temporal Neural Networks (TNN) Library

<http://github.com/neuroailab/tnn>



GitHub, Inc. [US] | <https://github.com/neuroailab/tnn>

This repository Search Pull requests Issues Marketplace Explore

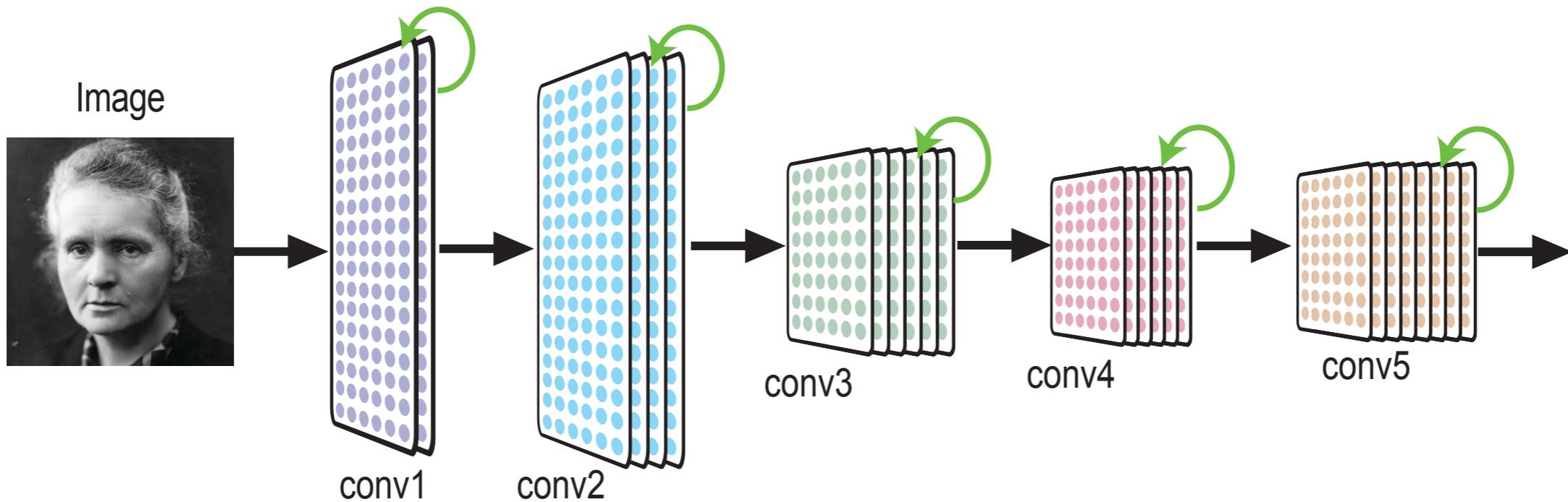
neuroailab / tnn Unwatch 2 Star 0 Fork 0

Code Pull requests 0 Projects 0 Wiki Insights Settings

Biologically-realistic recurrent convolutional neural networks Edit

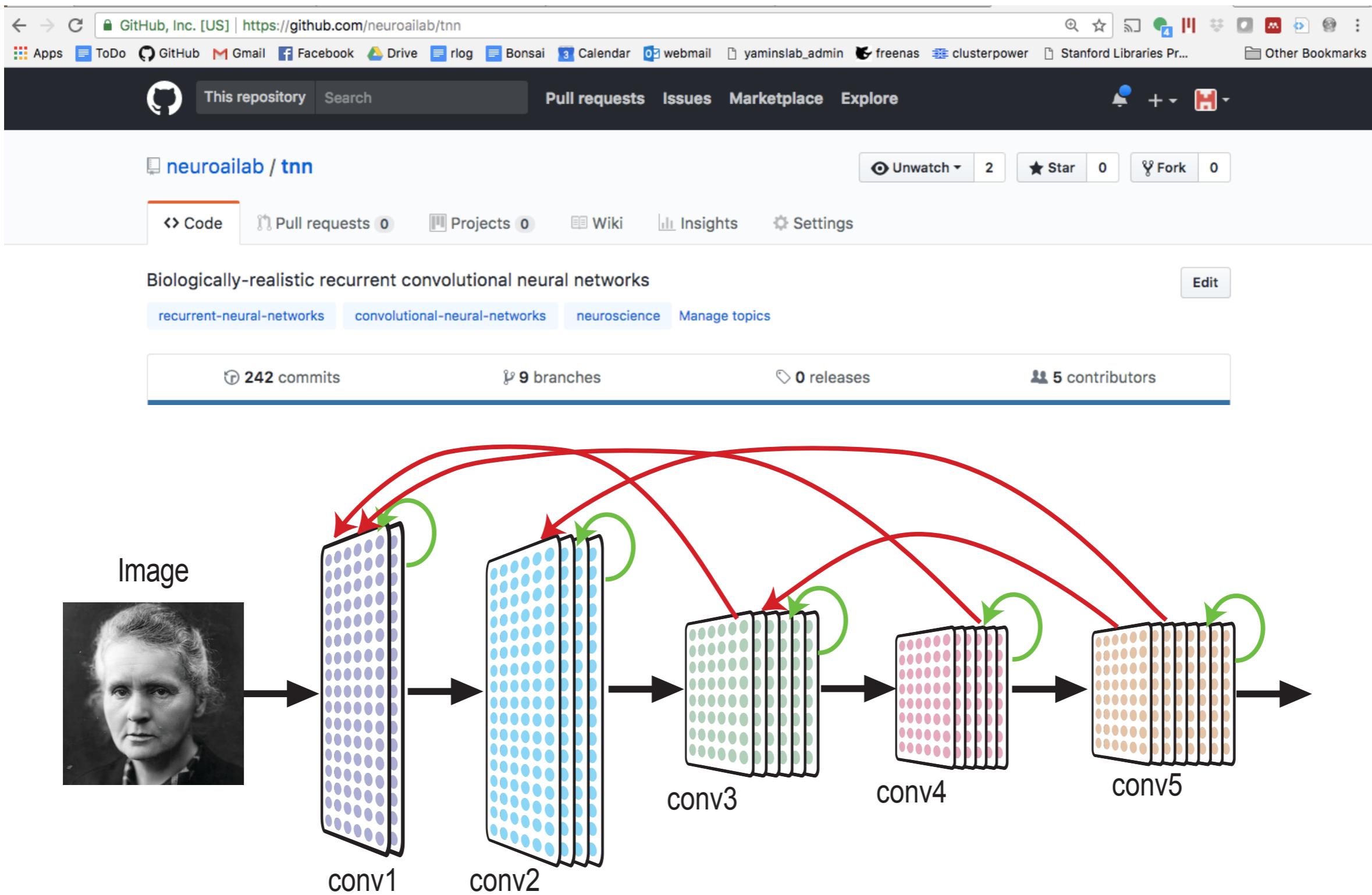
recurrent-neural-networks convolutional-neural-networks neuroscience Manage topics

242 commits 9 branches 0 releases 5 contributors



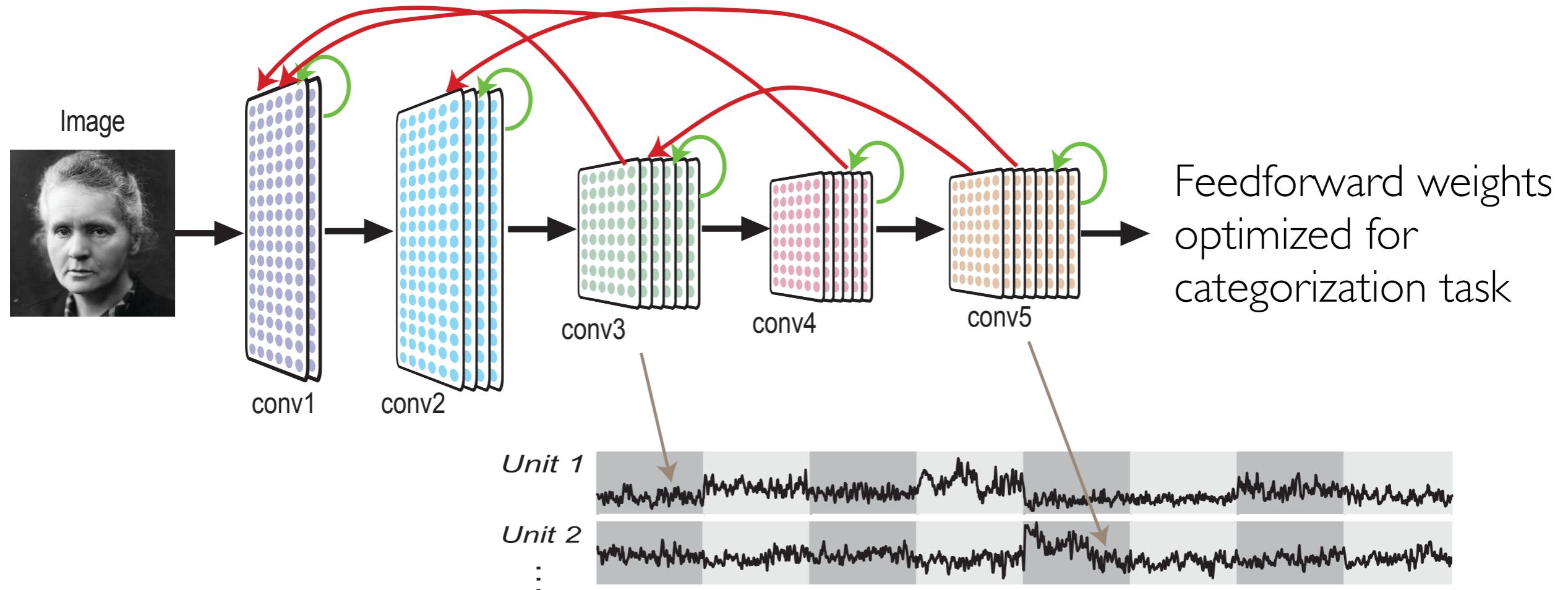
Temporal Neural Networks (TNN) Library

<http://github.com/neuroailab/tnn>



Fitting Recurrent Dynamics Directly

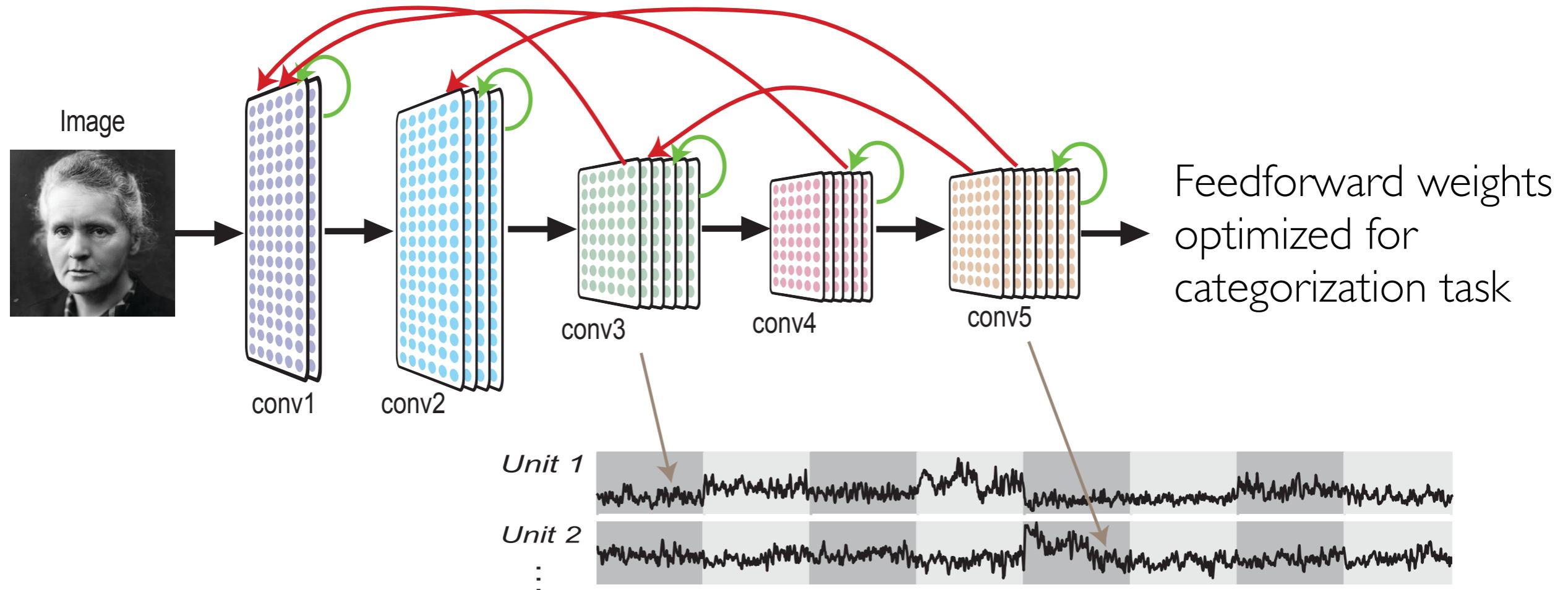
Convolutional RNNs (convRNNs) with **local** and **long-range** feedback:



Recurrent weights optimized to match neural dynamics in V4 and IT

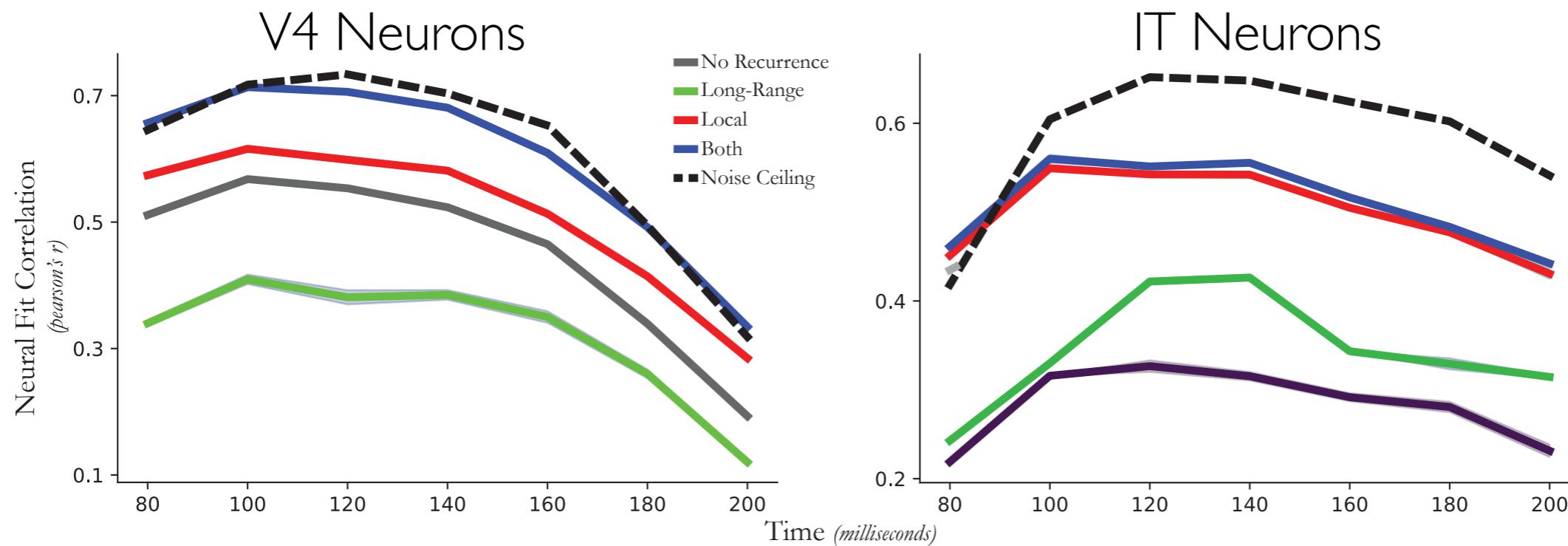
Fitting Recurrent Dynamics Directly

Convolutional RNNs (convRNNs) with **local** and **long-range** feedback:



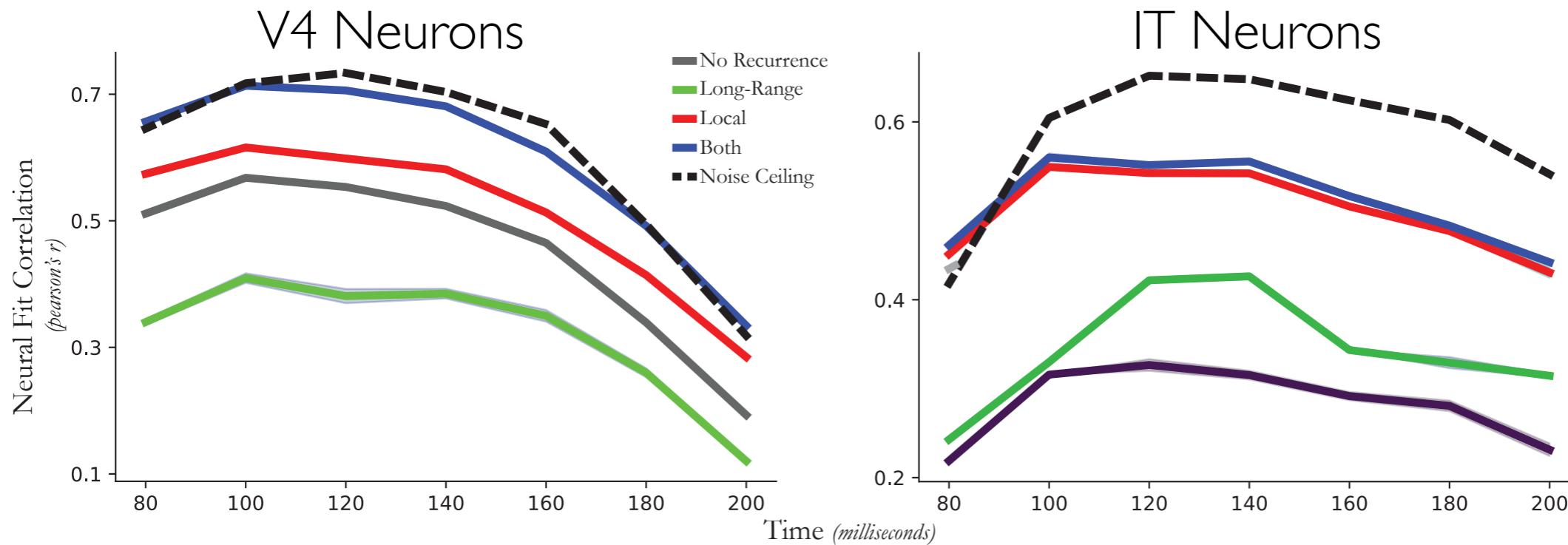
Loss: L2 averaged over 10ms timebins up to 250ms

Fitting Recurrent Dynamics Directly



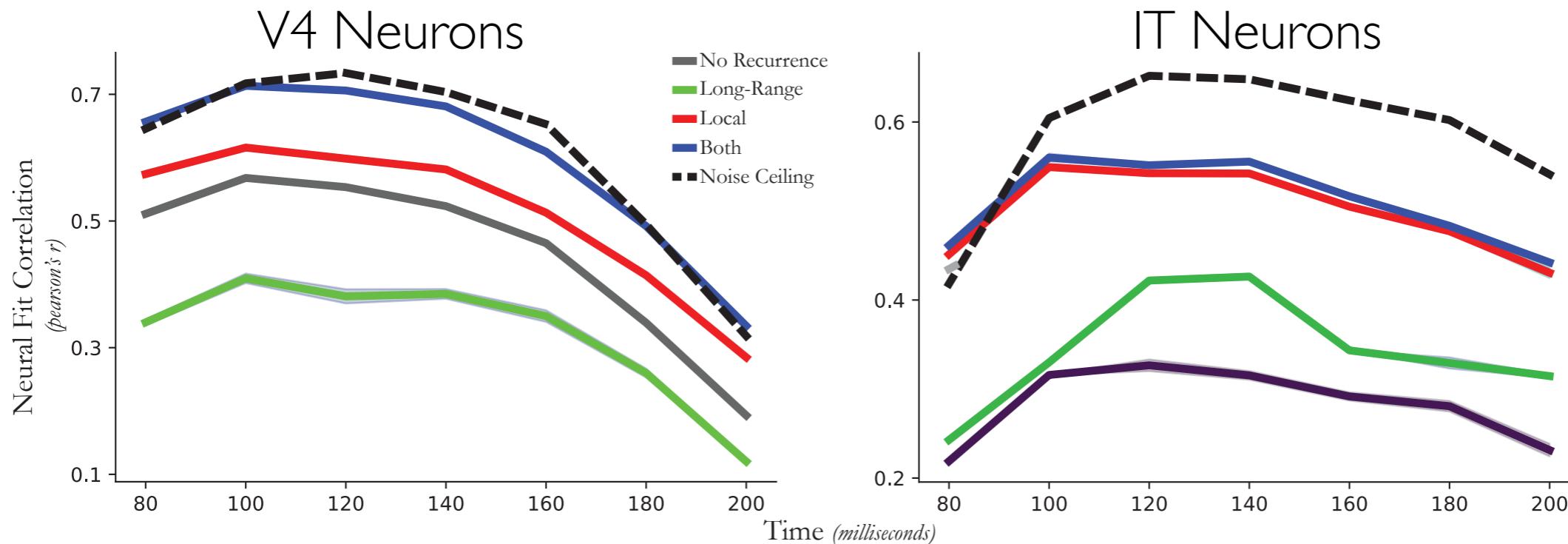
- Local recurrent circuits substantially improves predictions of IT dynamics

Fitting Recurrent Dynamics Directly

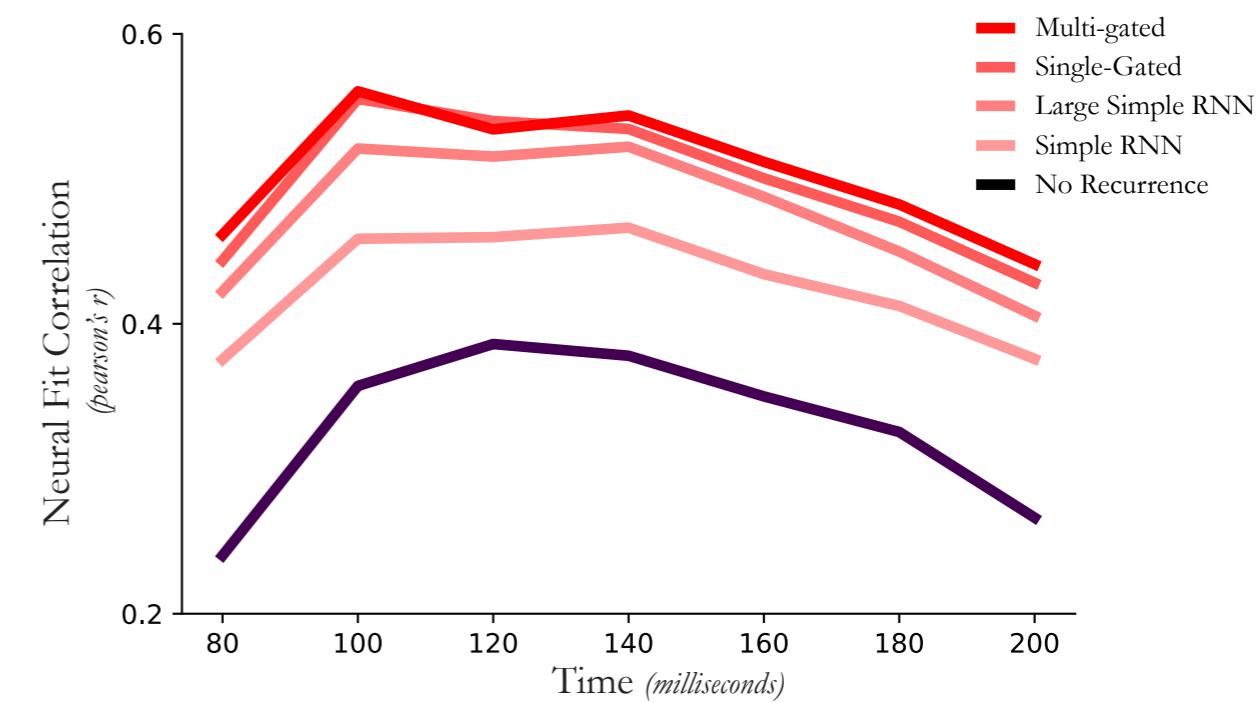


- Local recurrent circuits substantially improves predictions of IT dynamics
- Long-range feedback improves V4 predictions nearly to 100% of noise ceiling.

Fitting Recurrent Dynamics Directly

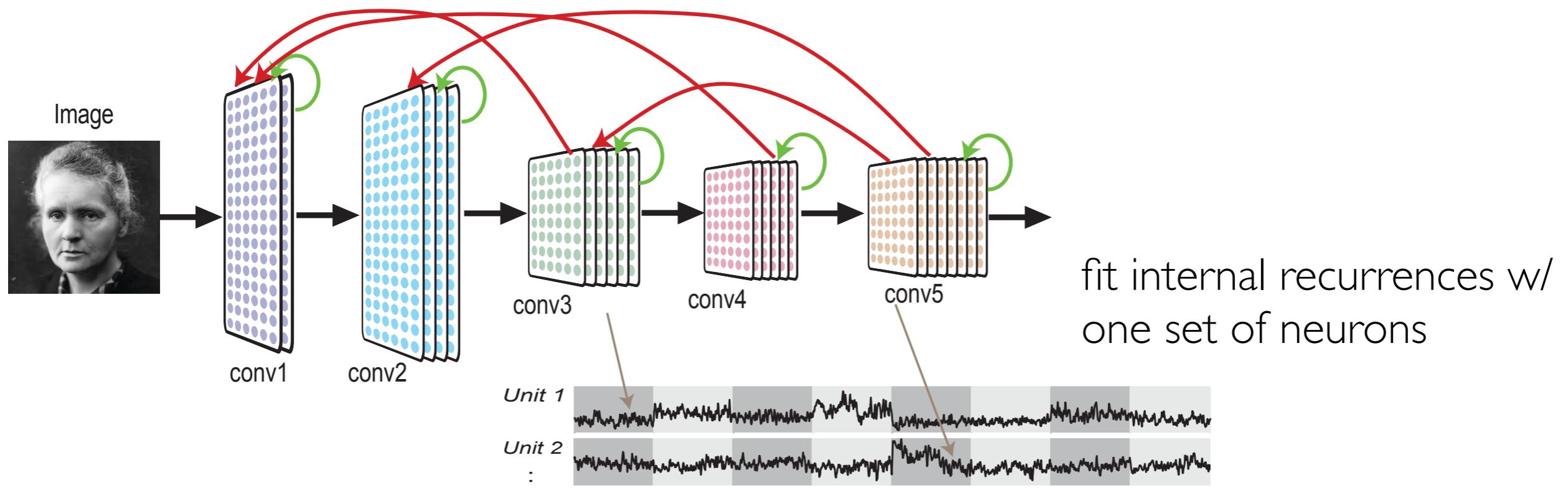


- Local recurrent circuits substantially improves predictions of IT dynamics
- Long-range feedback improves V4 predictions nearly to 100% of noise ceiling.
- Gating important for improved neural fit.



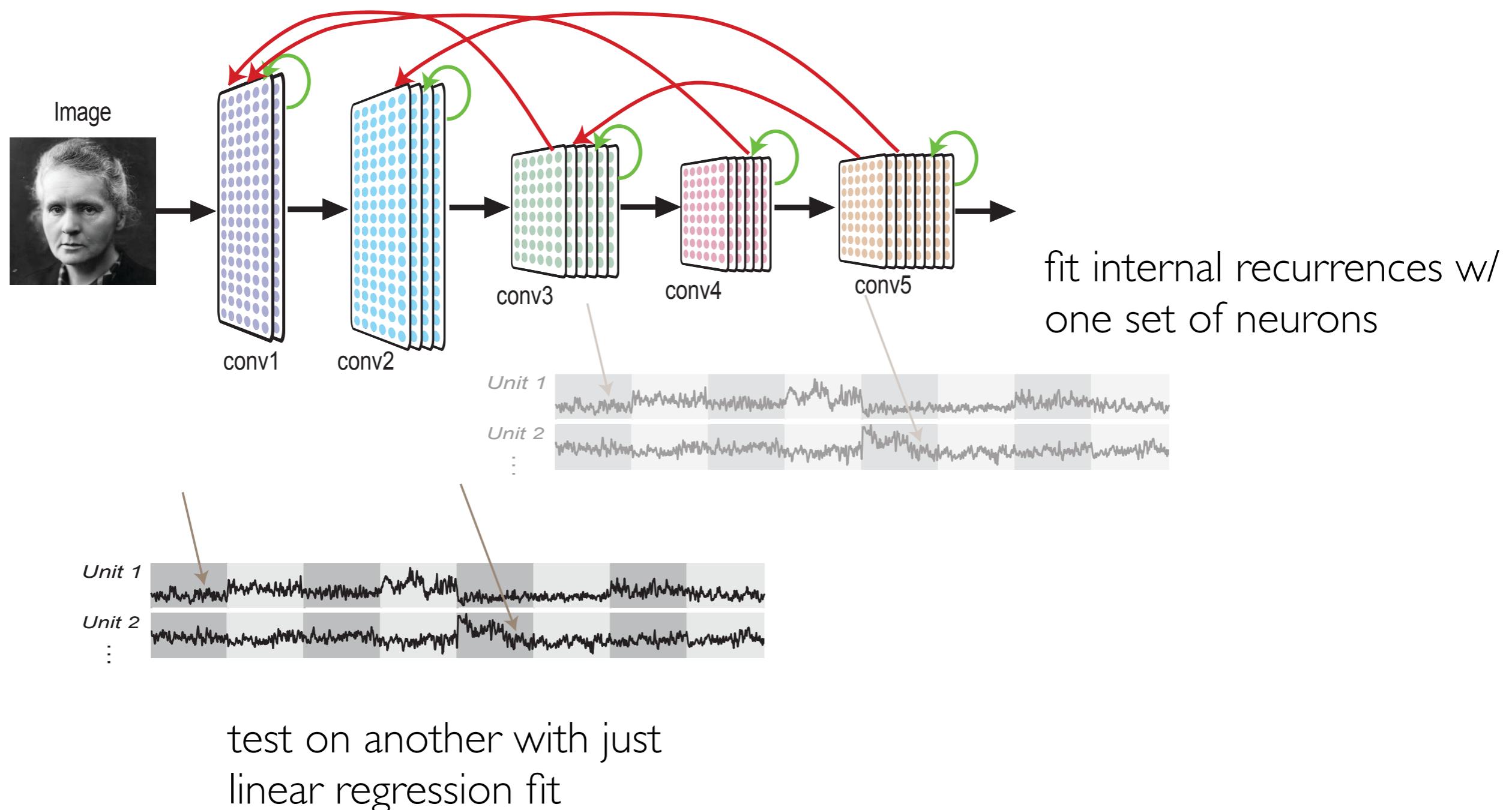
Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)



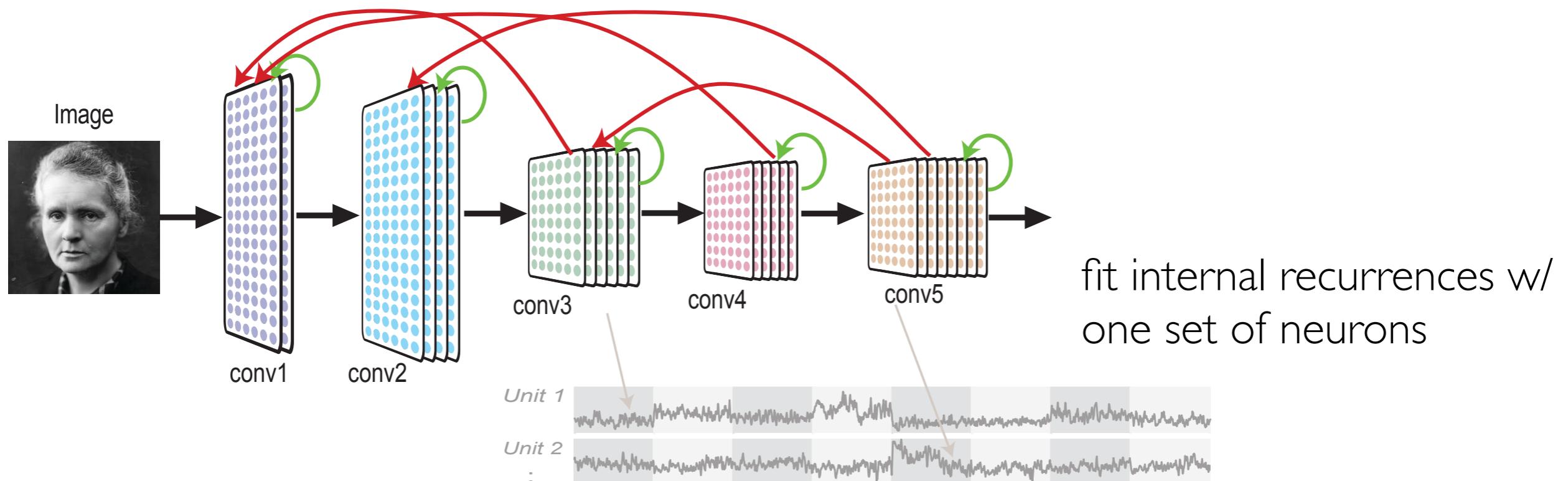
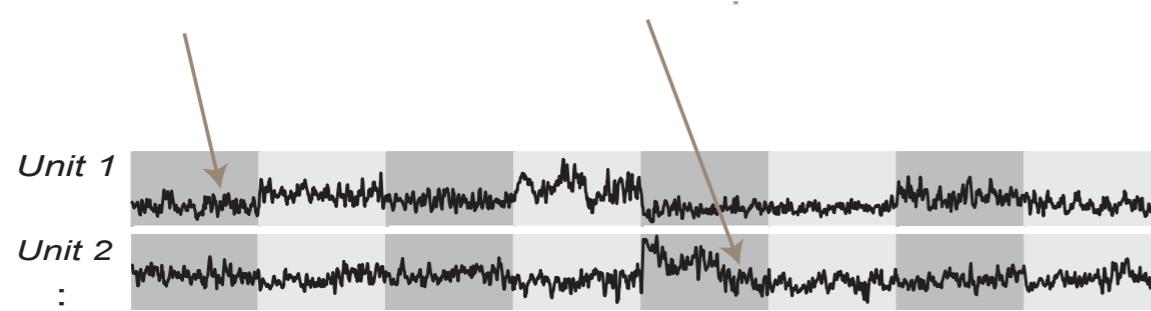
Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)

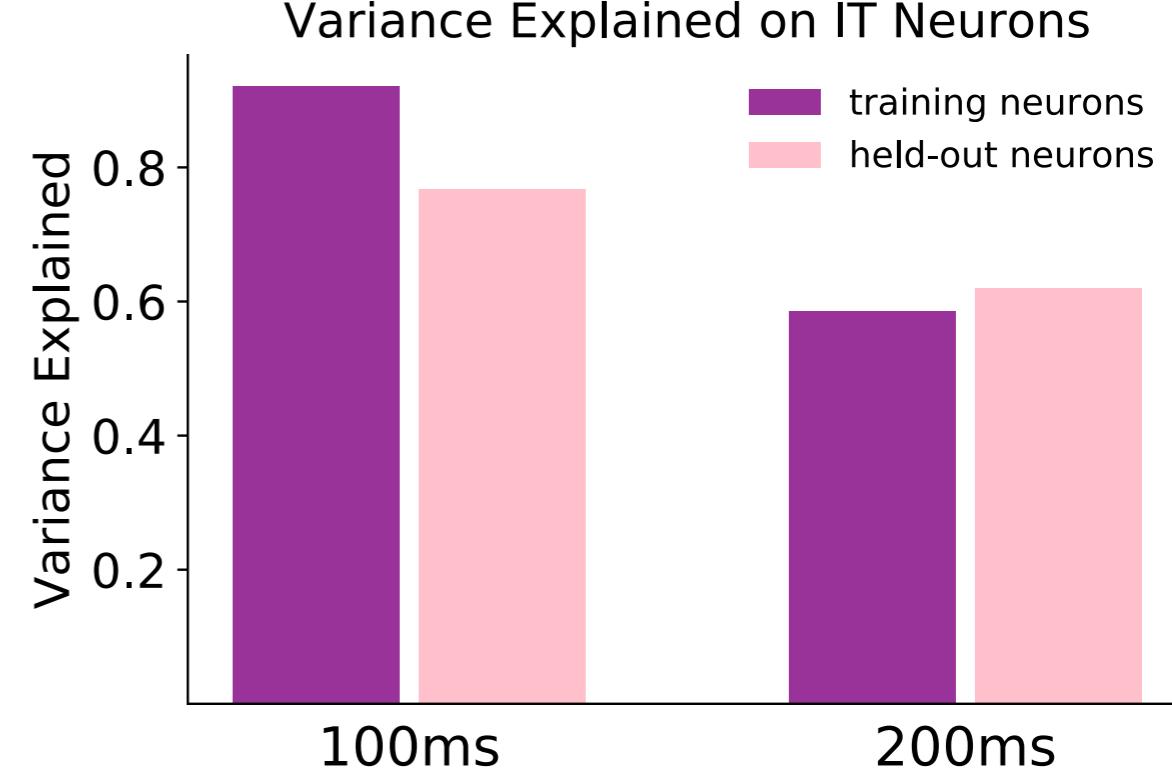


Fitting Recurrent Dynamics Directly

Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)



test on another with just
linear regression fit



Fitting Recurrent Dynamics Directly

1.

A = architecture class

CNNs -> RNNs

2.

L = loss function

D = dataset

“task”

e.g. **Object
Categorization**

3. **Learning Rule**

$$\underset{a \in \mathcal{A}}{\operatorname{argmin}} [L(p_a^*)]$$

**architecture
search**

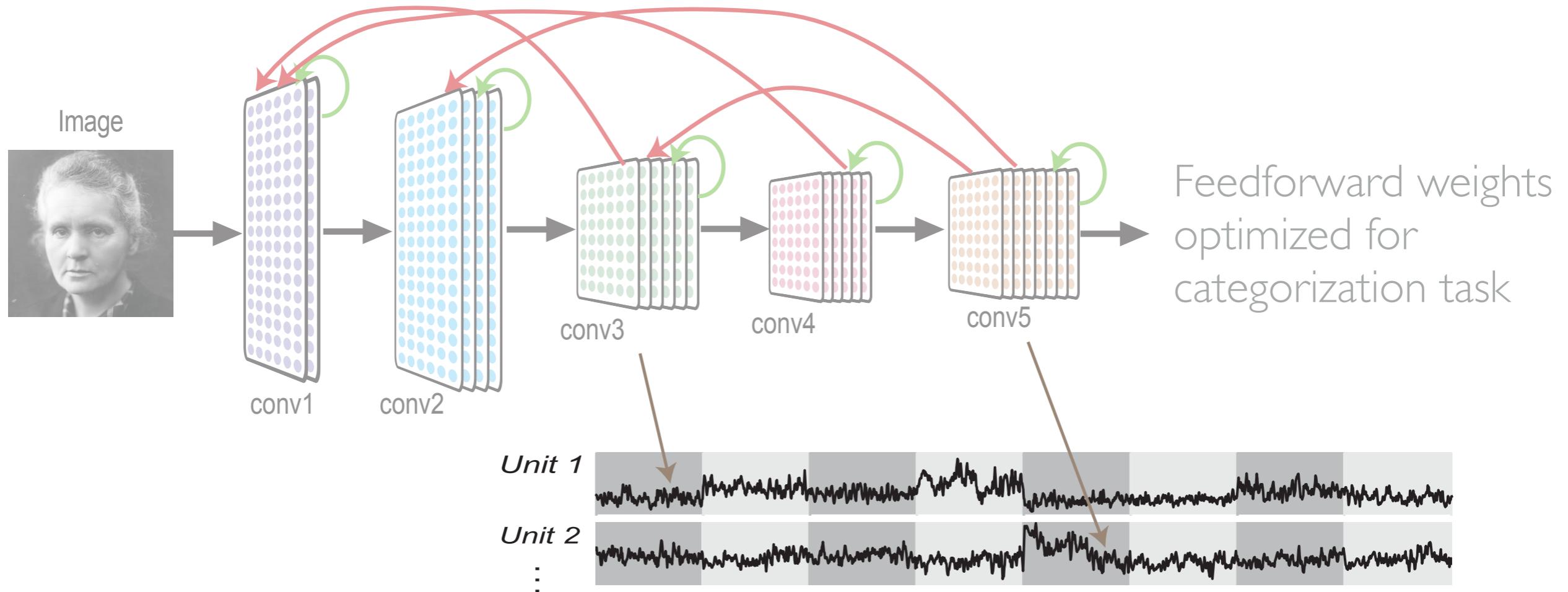
where p^* is result of

$$\frac{dp_a}{dt} = \text{backprop} = -\lambda(t) \cdot \langle \nabla_{p_a} L(x) \rangle_{x \in \mathcal{D}}$$

e.g. **Gradient Descent via Backprop**

Fitting Recurrent Dynamics Directly

Convolutional RNNs with **local** and **long-range** feedback:



Recurrent weights optimized to match neural dynamics in V4 and IT

Not a normative theory — no task.

Task-Driven Models?

1.

A = architecture class

CNNs -> RNNs

2.

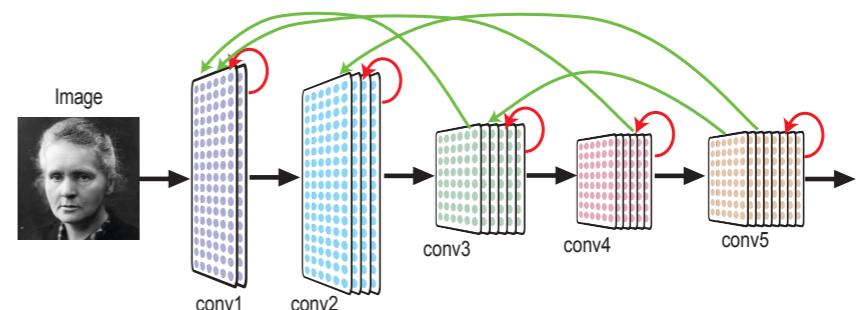
L = loss function

D = dataset

“task”

e.g. **Object
Categorization**

What task(s) explain recurrences??



Task-Driven Models?

1.

\mathbf{A} = architecture class

CNNs -> RNNs

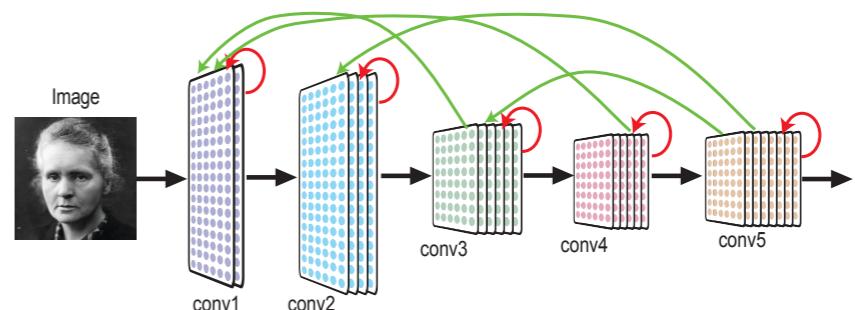
2.

\mathbf{L} = loss function

\mathbf{D} = dataset

e.g. **Object
Categorization**

What task(s) explain recurrences??



Hard Images
(e.g. heavy occlusion)

Time-accuracy tradeoff
(be correct but fast)

Temporal Goal
(e.g. motion-based)

Task-Driven Models?

1.

\mathbf{A} = architecture class

CNNs -> RNNs

2.

\mathbf{L} = loss function

\mathbf{D} = dataset

“task”

e.g. **Object
Categorization**

3.

Learning Rule

$$\underset{a \in \mathcal{A}}{\operatorname{argmin}} [L(p_a^*)]$$

architecture search

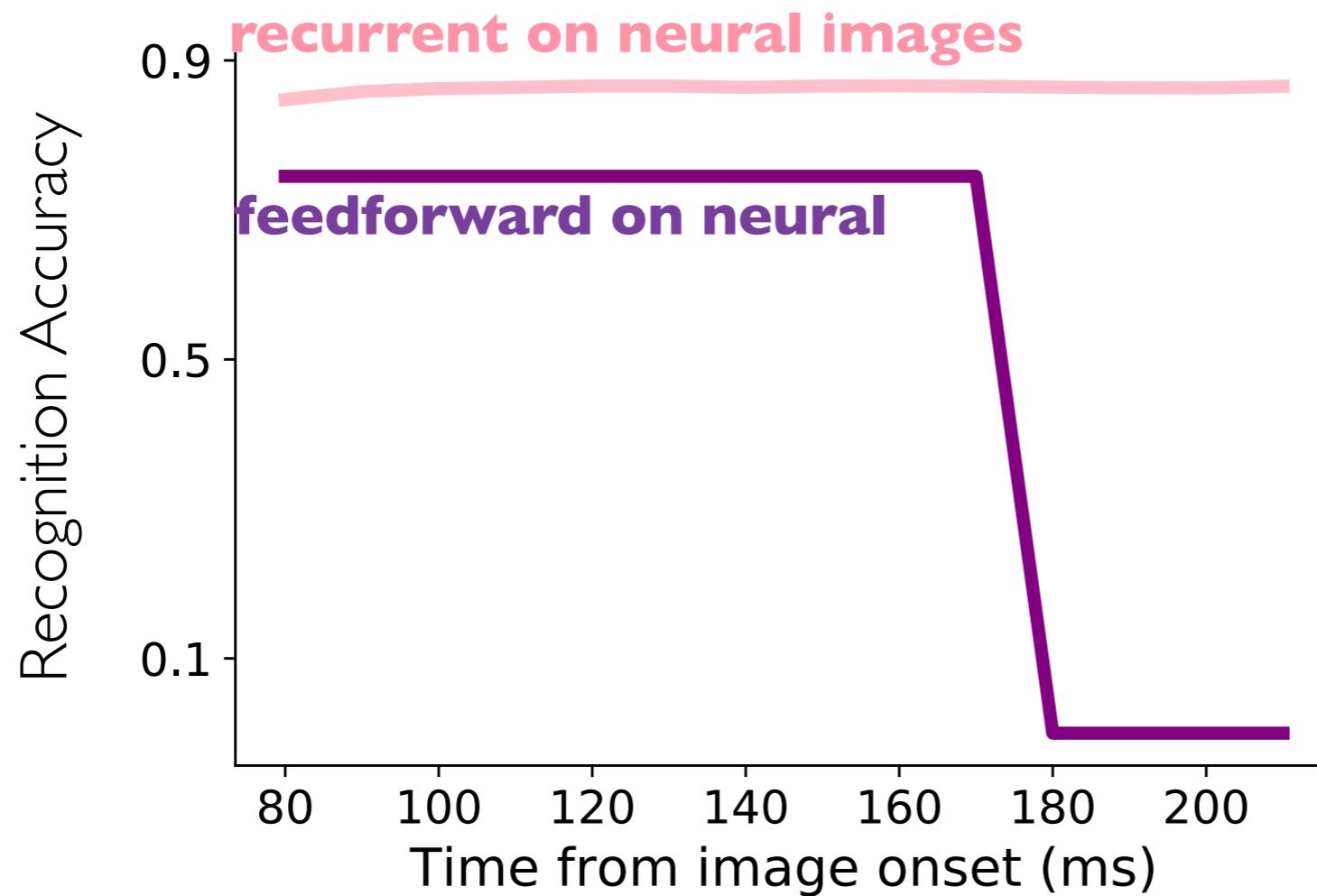
where p^* is result of

$$\frac{dp_a}{dt} \underset{\mathbf{backprop}}{=} -\lambda(t) \cdot \langle \nabla_{p_a} L(x) \rangle_{x \in \mathcal{D}}$$

(possibility: actually, recurrence not used on-line)
(e.g. “just” implementing learning)

Task-Driven Models?

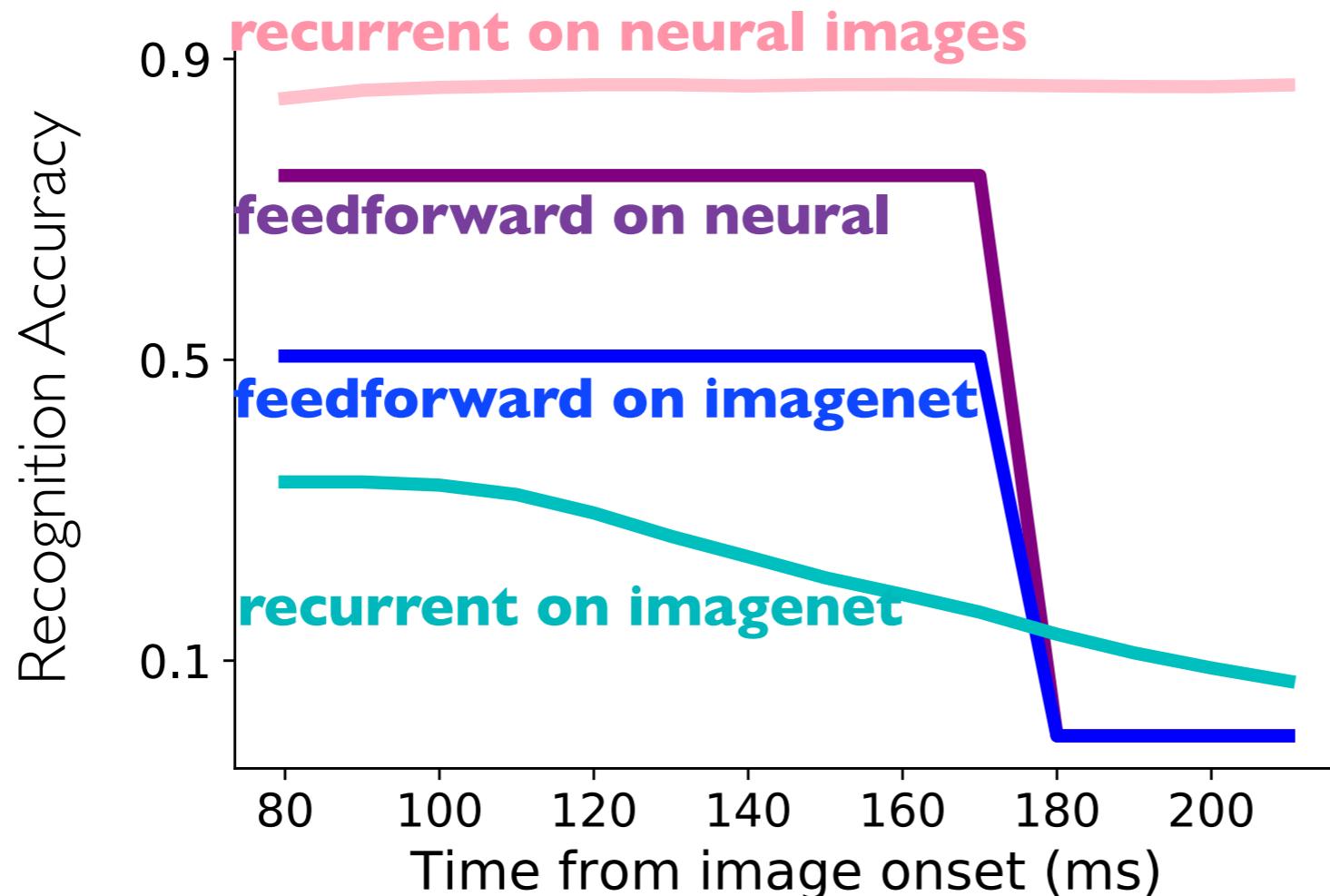
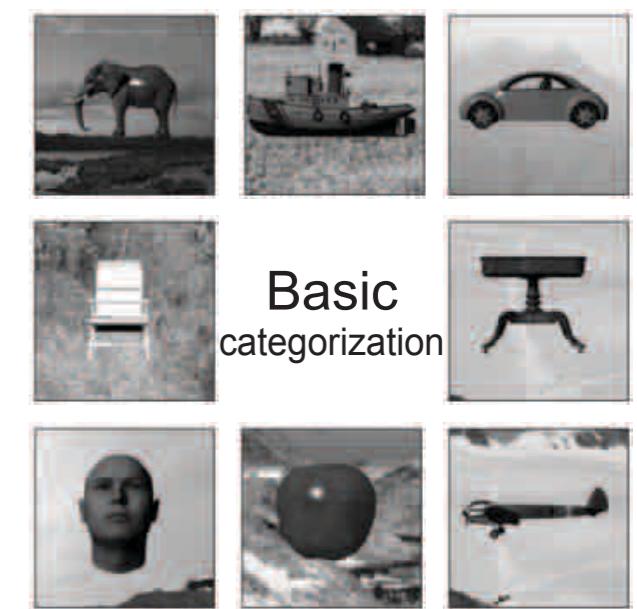
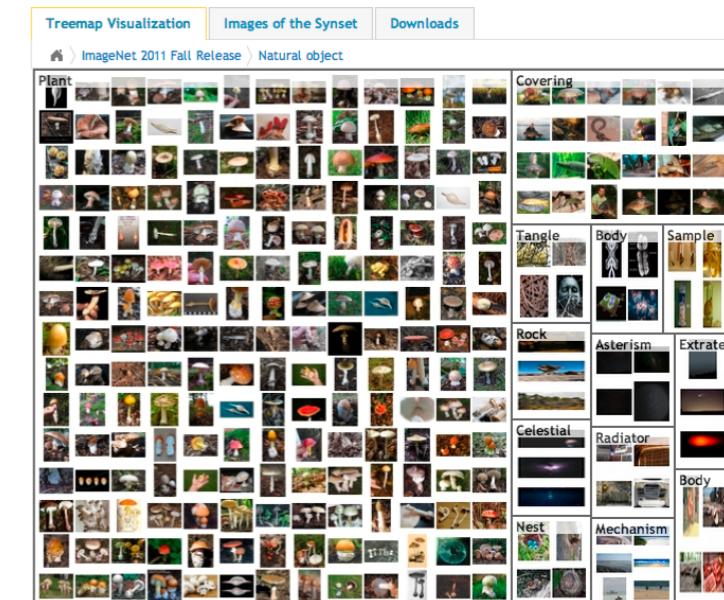
Performance on recognition task on neural images is improved 😊



Task-Driven Models?

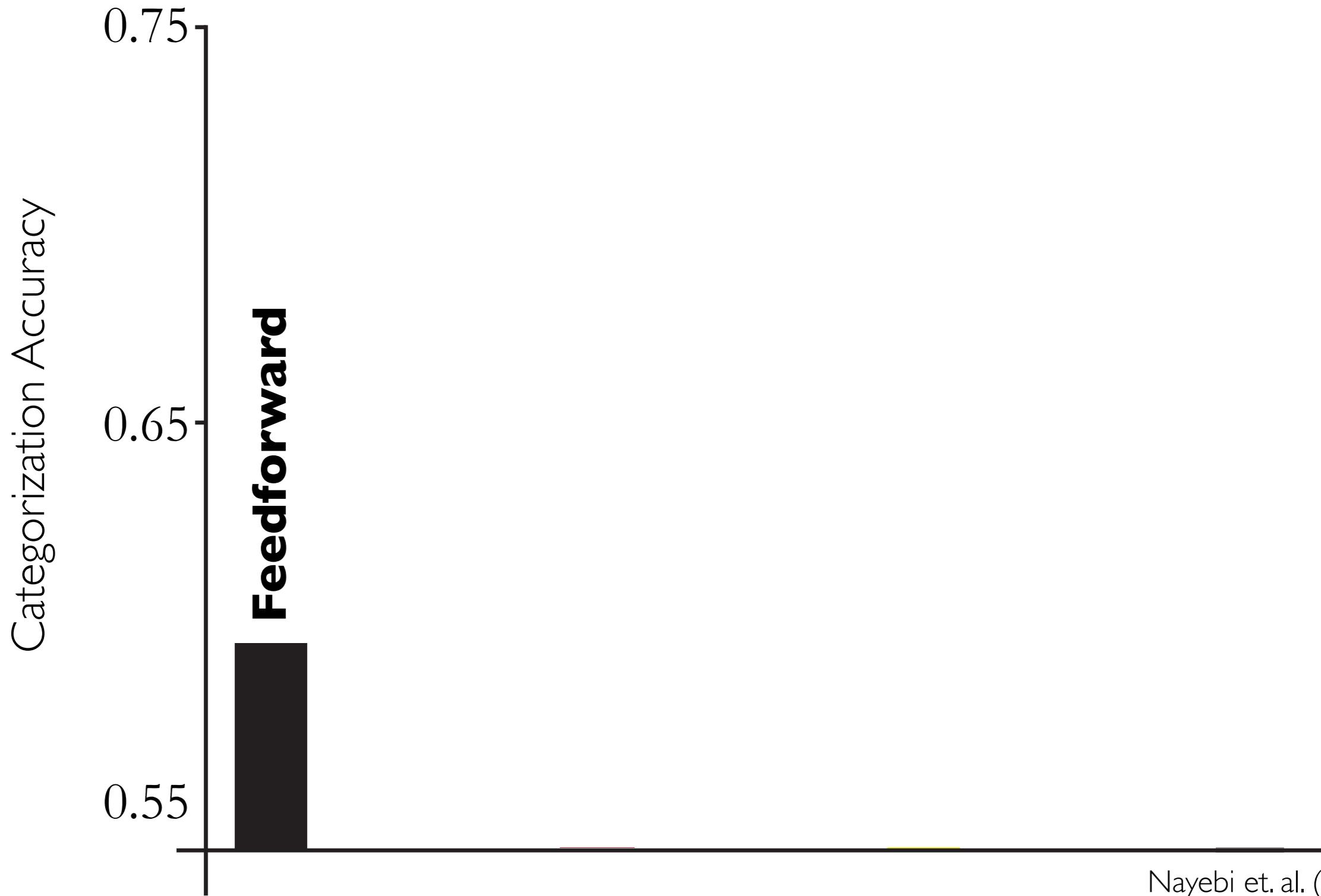
Performance on recognition task on neural images is improved 😊

...but performance on Imagenet dramatically worsens. 😞



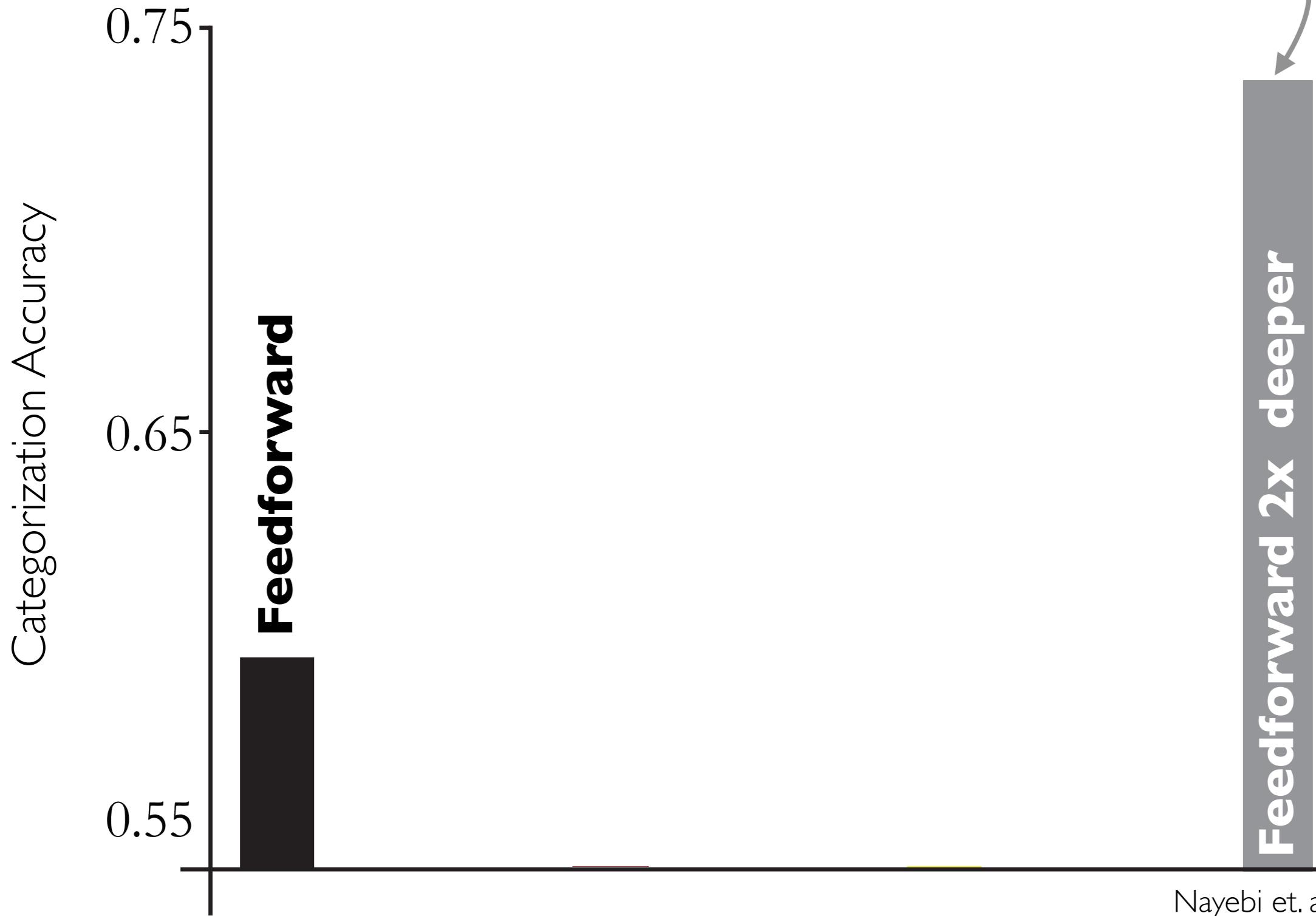
→ subtle “overfitting” to image-type or animal idiosyncrasies

Improving ImageNet Performance with ConvRNNs



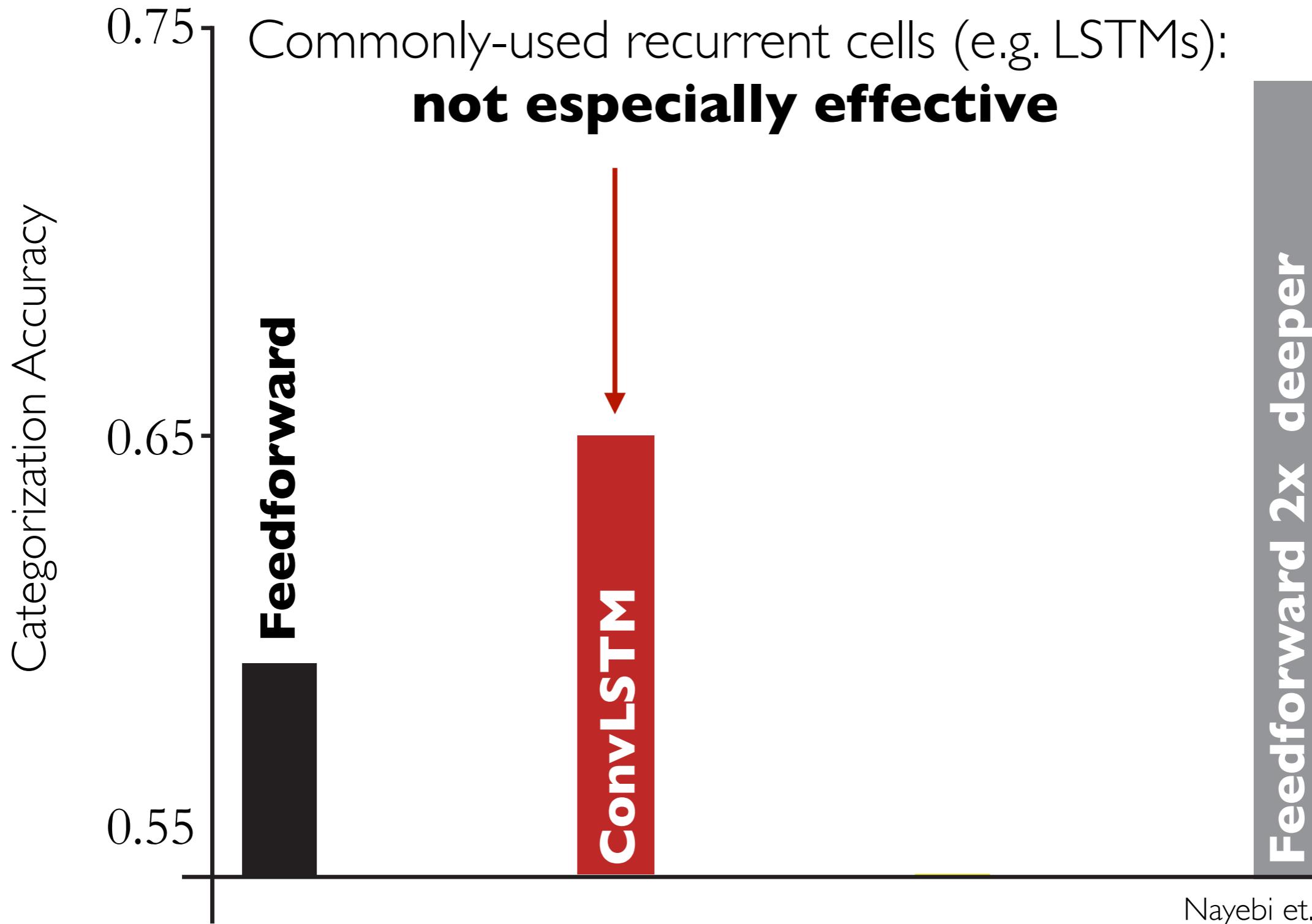
Improving ImageNet Performance with ConvRNNs

You can get better at performance with more layers / parameters,
but that's **not** how we think the brain does it.



Improving ImageNet Performance with ConvRNNs

You can get better at performance with more layers / parameters, but that's **not** how we think the brain does it.



Improving ImageNet Performance with ConvRNNs

With better recurrent cells, substantial performance improvements on ImageNet

Improving ImageNet Performance with ConvRNNs

With better recurrent cells, substantial performance improvements on ImageNet

Two useful principles:

(1) gating = multiplication by input-dependent tensor w/ values in $[0, 1]$

(2) bypassing = when recurrent cell is in 0 state, input is unchanged
("performance preserving")

Improving ImageNet Performance with ConvRNNs

With better recurrent cells, substantial performance improvements on ImageNet

Two useful principles:

(1) gating = multiplication by input-dependent tensor w/ values in $[0, 1]$

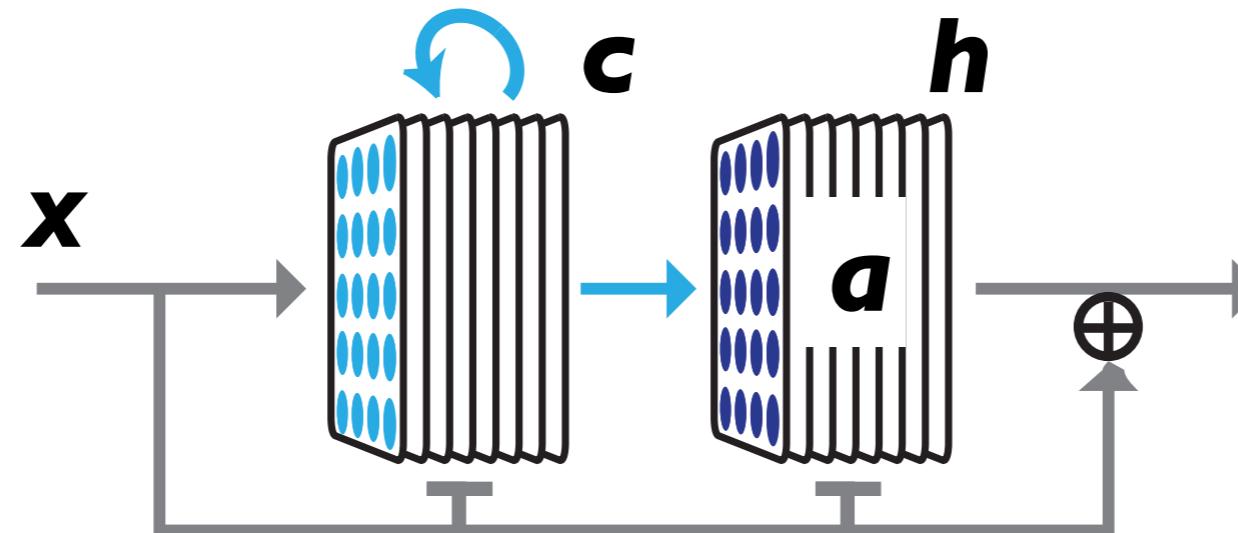
(2) bypassing = when recurrent cell is in 0 state, input is unchanged
("performance preserving")

SimpleRNN has **(2)** but not **(1)**

Standard Long Short-Term Memory (LSTM) has **(1)** but not **(2)**

Improving ImageNet Performance with ConvRNNs

“Resnet-Like” Unit



$$\mathbf{a}^{t+1} = \mathbf{x}^t + \sigma(W_{xh} \circledast \mathbf{x}^t) \mathbf{h}^t + W_{ch} \circledast \mathbf{c}^t$$

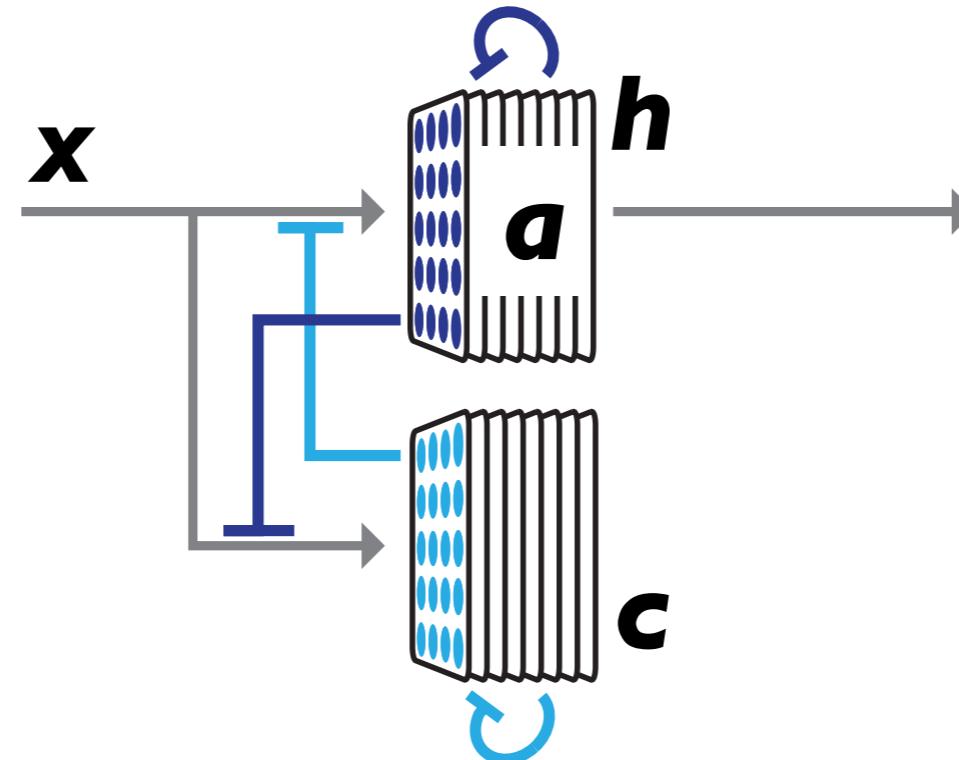
$$\mathbf{h}^t = f[\mathbf{a}^t]$$

$$\tilde{\mathbf{c}}^{t+1} = \sigma(W_{xc} \circledast \mathbf{x}^t) \cdot \mathbf{c}^t + W_{xc} \mathbf{x}^t + W_{cc} \circledast \mathbf{c}^T$$

$$\mathbf{c}^t = f[\tilde{\mathbf{c}}^t]$$

Improving ImageNet Performance with ConvRNNs

“Reciprocal Gated” Unit



$$\mathbf{a}^{t+1} = (1 - \sigma(W_{ch} \circledast \mathbf{c}^t)) \cdot \mathbf{x}^t \quad \text{“gated input”}$$

$$+ (1 - \sigma(W_{hh} \circledast \mathbf{h}^t)) \cdot \mathbf{h}^t \quad \text{“gated memory”}$$

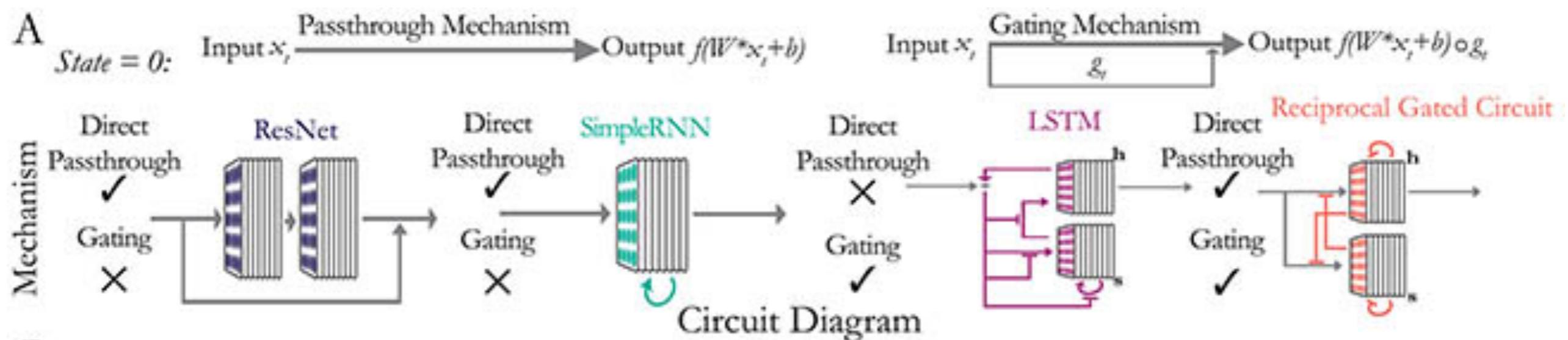
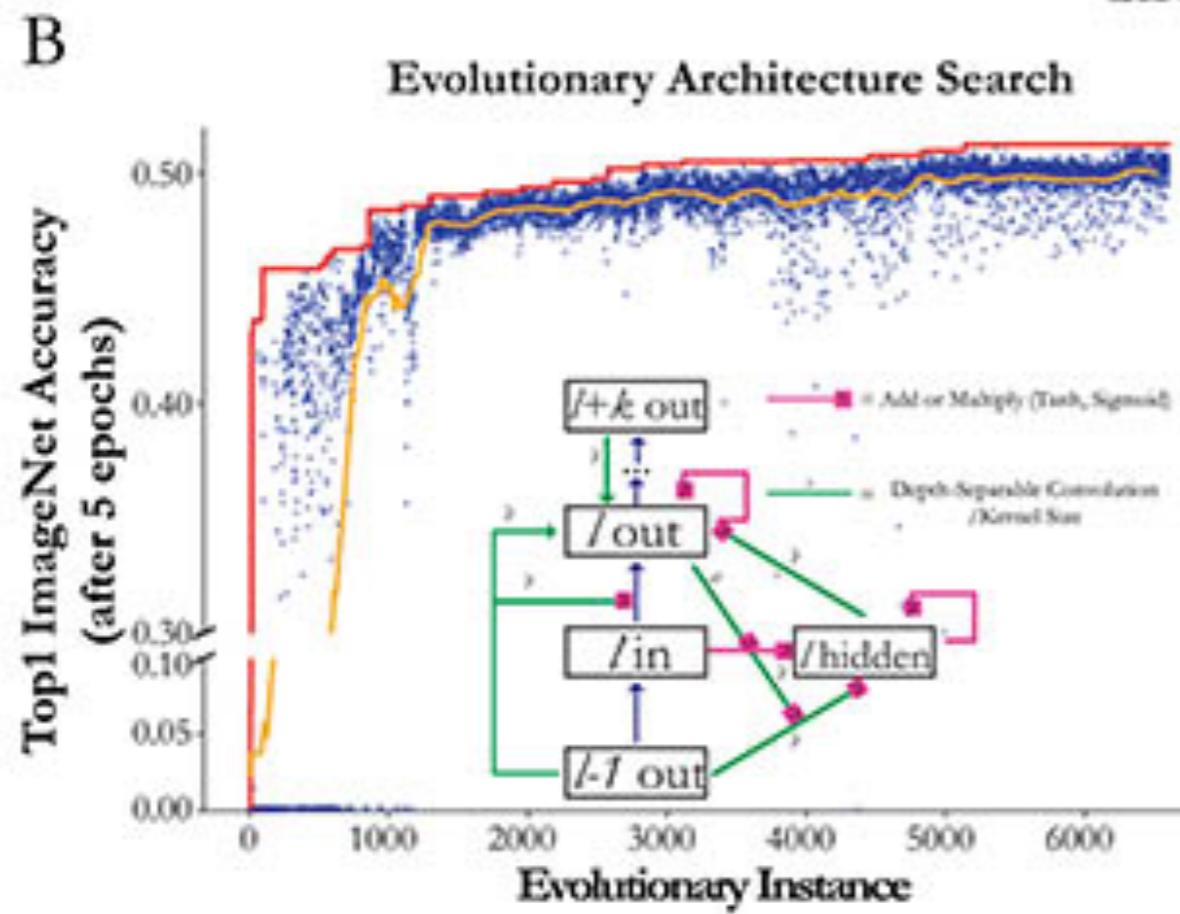
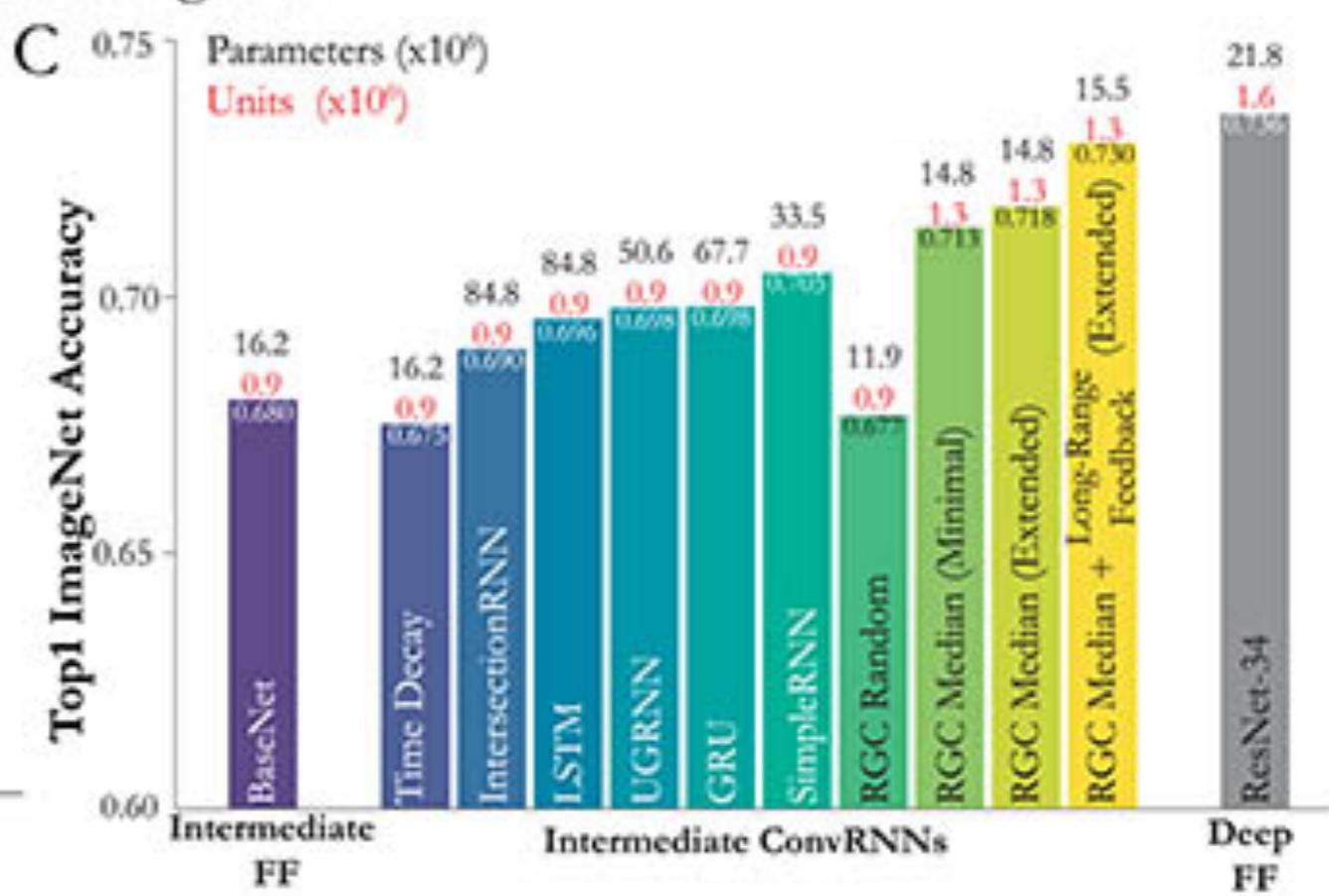
$$\mathbf{h}^t = f[\mathbf{a}^t]$$

$$\tilde{\mathbf{c}}^{t+1} = (1 - \sigma(W_{hc} \circledast \tilde{\mathbf{c}}^t)) \cdot \mathbf{x}^t \quad \text{reciprocal structure}$$

$$+ (1 - \sigma(W_{cc} \circledast \mathbf{c}^t)) \cdot \mathbf{c}^t$$

$$\mathbf{c}^t = f[\tilde{\mathbf{c}}^t]$$

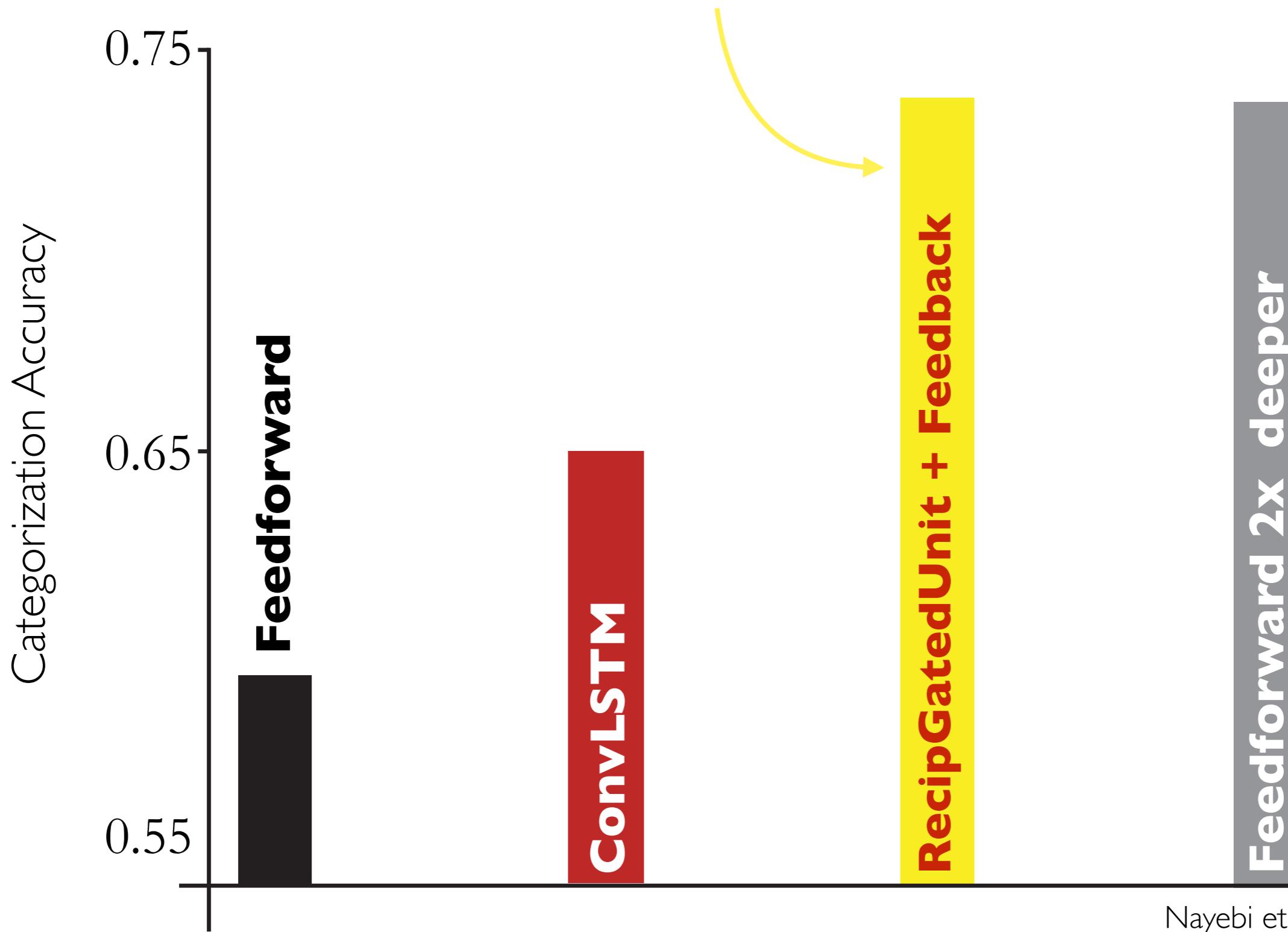
Improving ImageNet Performance with ConvRNNs



Improving ImageNet Performance with ConvRNNs

ConvRNNs, with correct local recurrence & long-range feedback

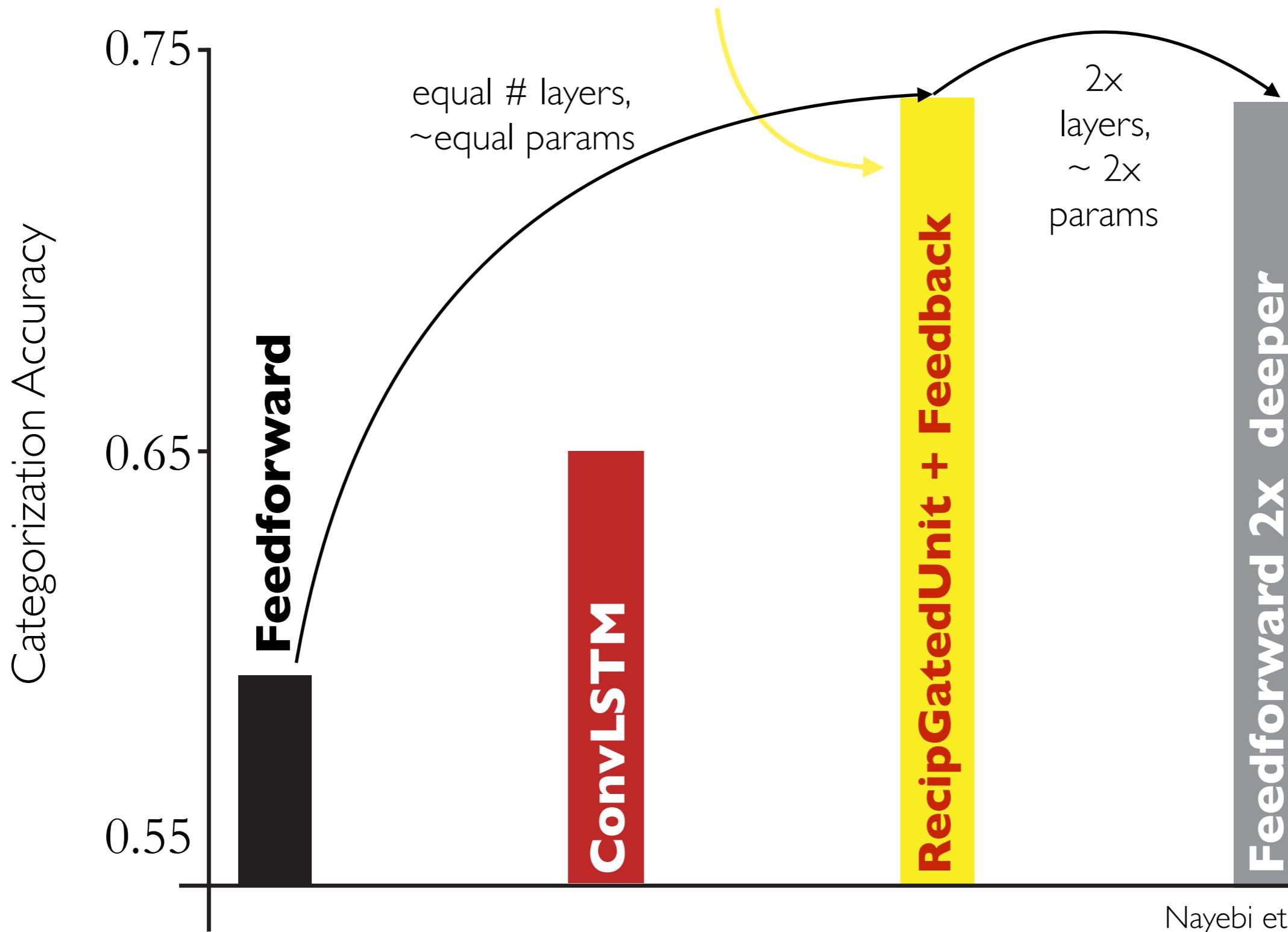
can effectively convert “space” into “time”



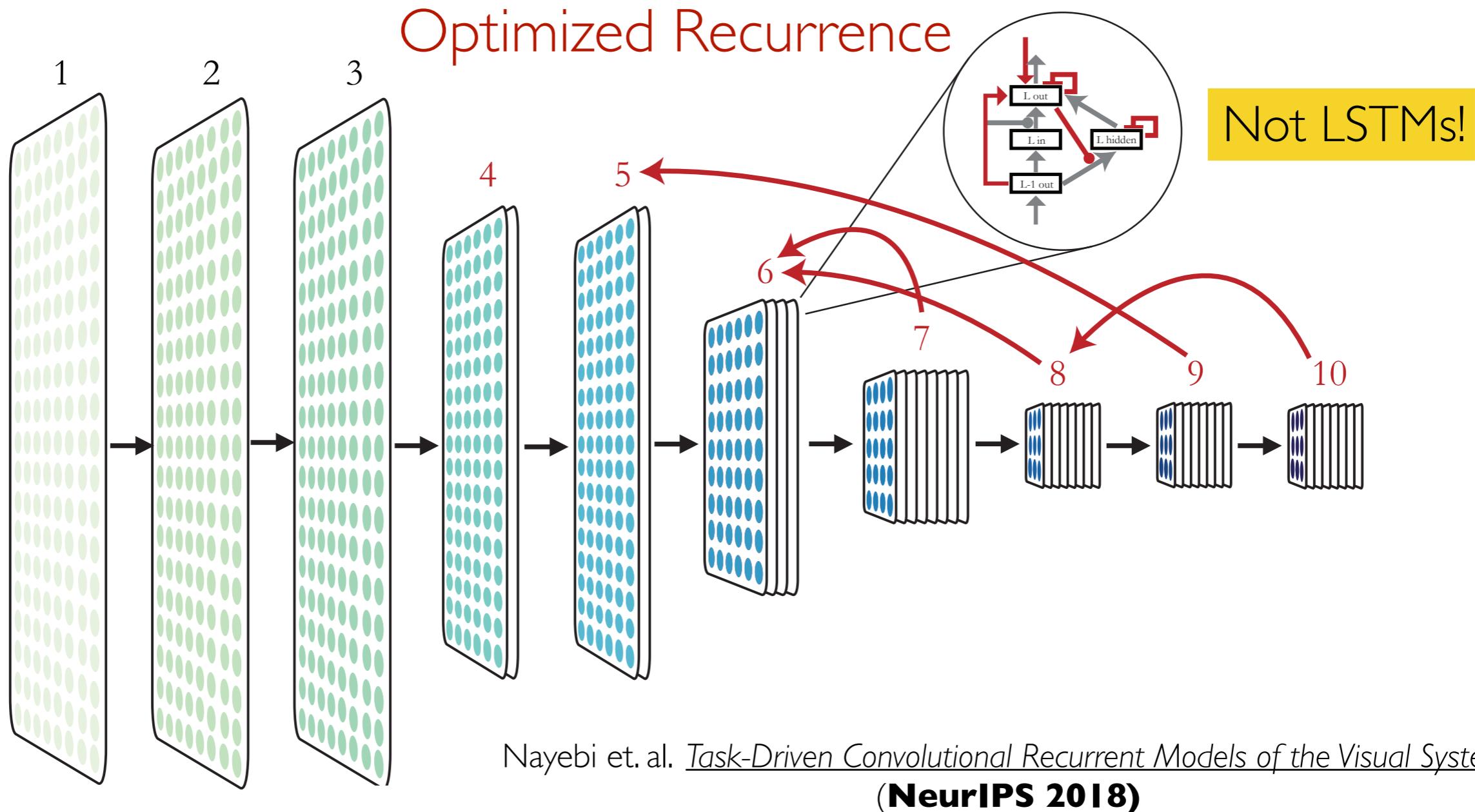
Improving ImageNet Performance with ConvRNNs

ConvRNNs, with correct local recurrence & long-range feedback

can effectively convert “space” into “time”

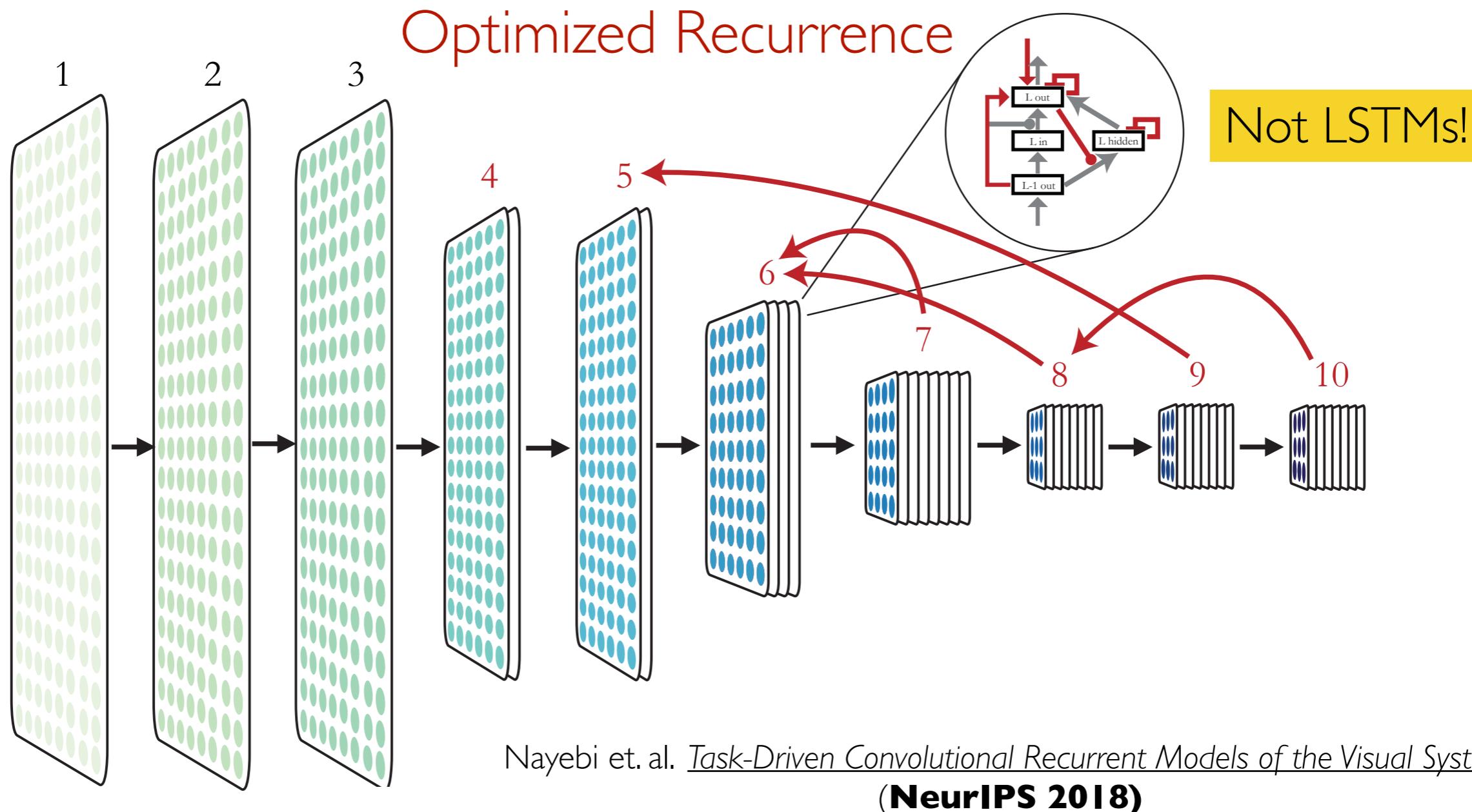


ConvRNNs as Models of Neural Dynamics



I) improved ImageNet performance

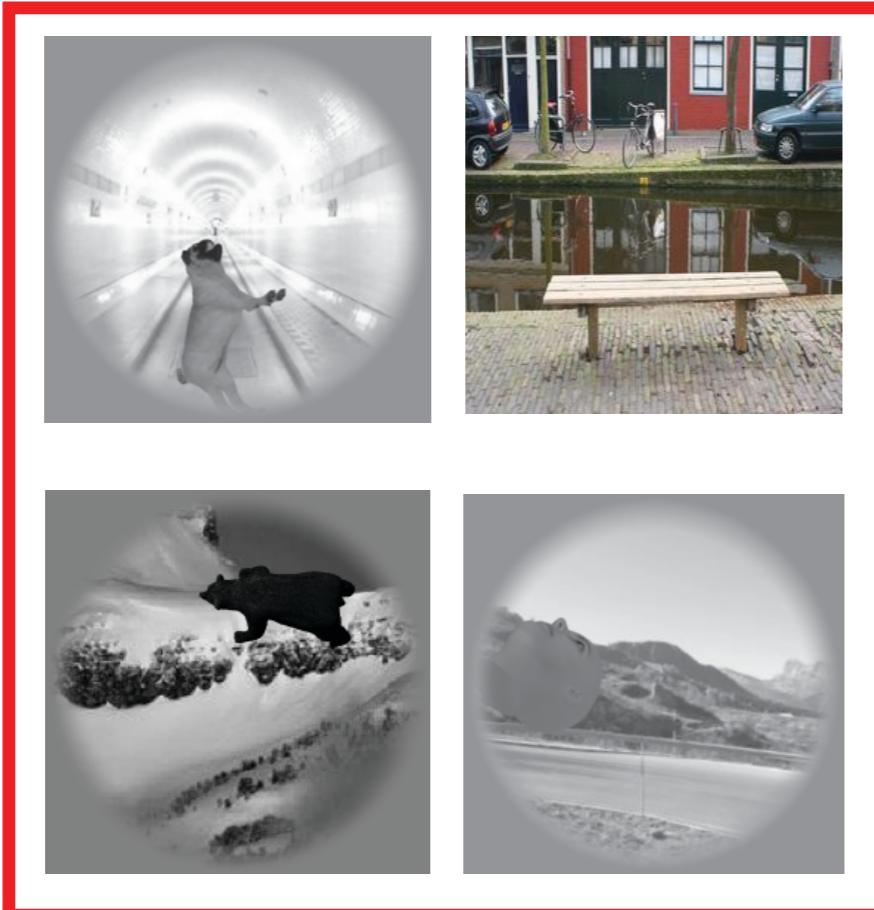
ConvRNNs as Models of Neural Dynamics



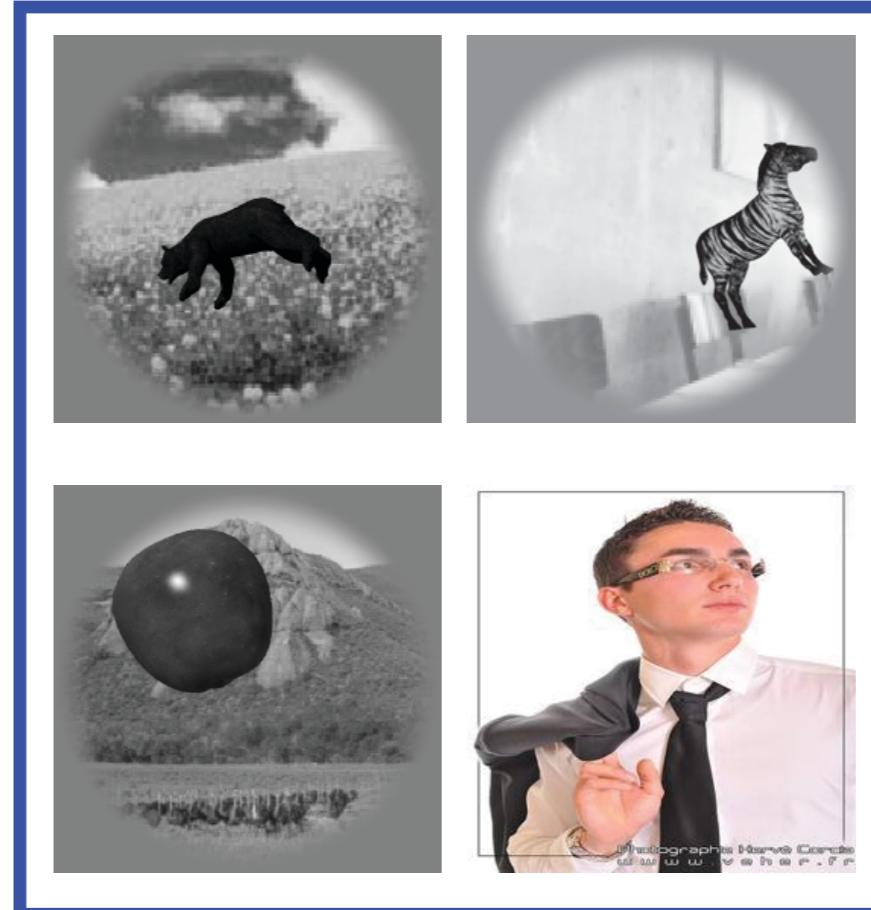
1) improved ImageNet performance

2) predictions of ***neural dynamics*** in visual system?

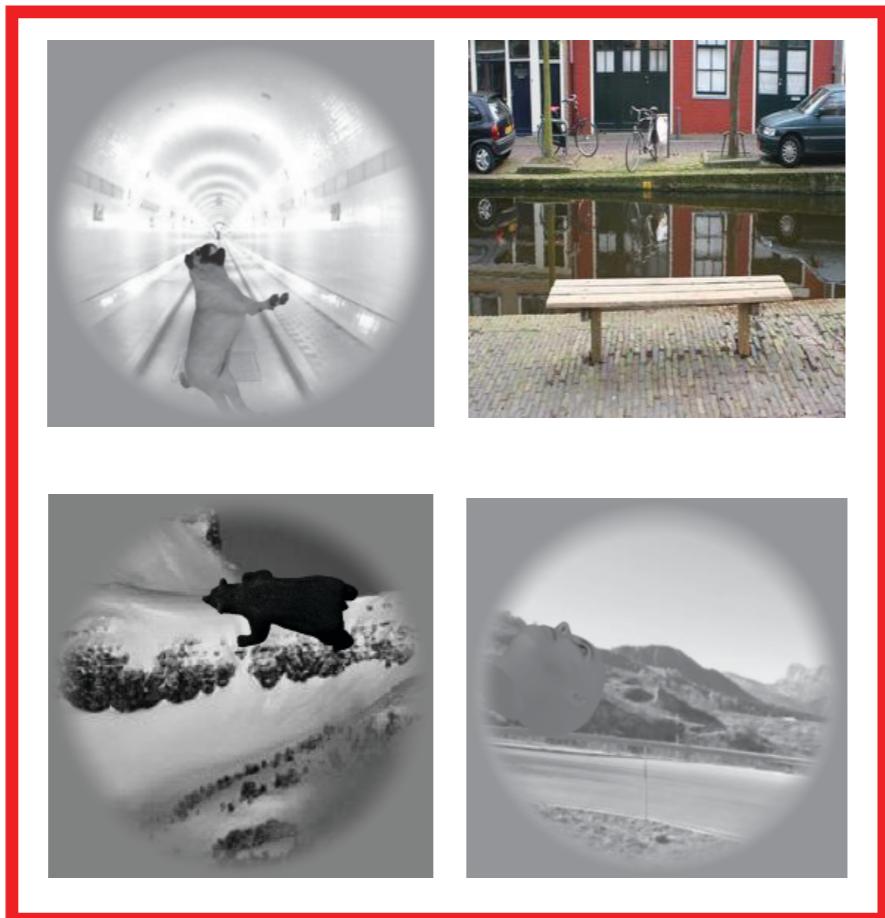
Challenge Images



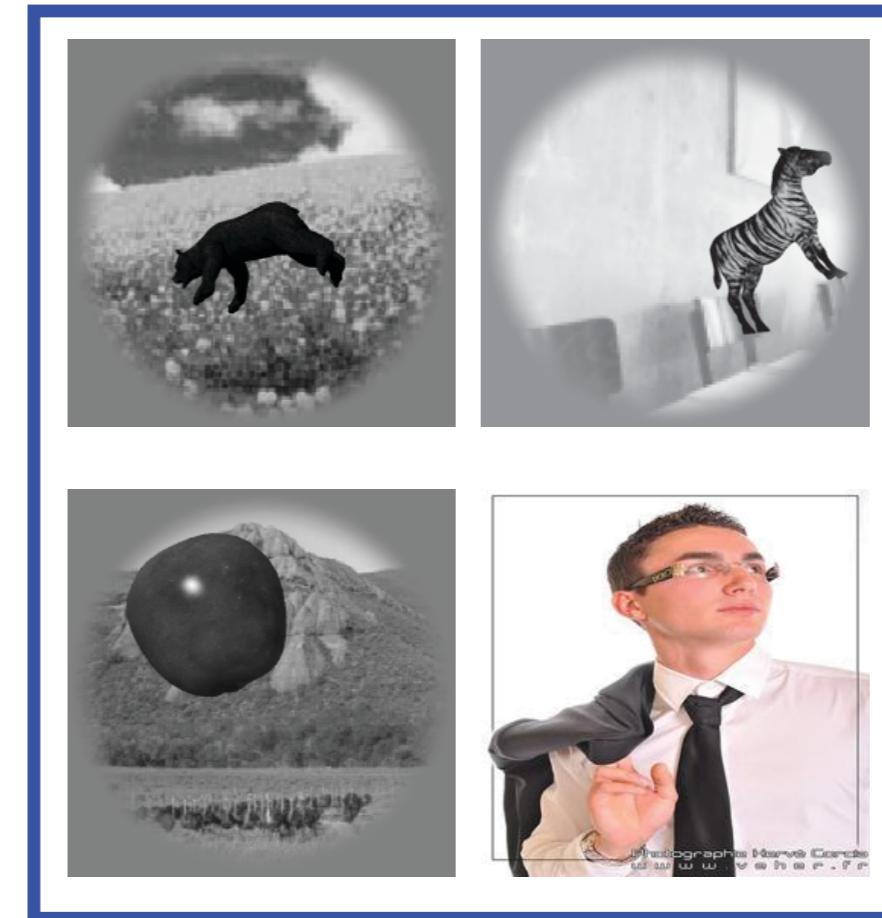
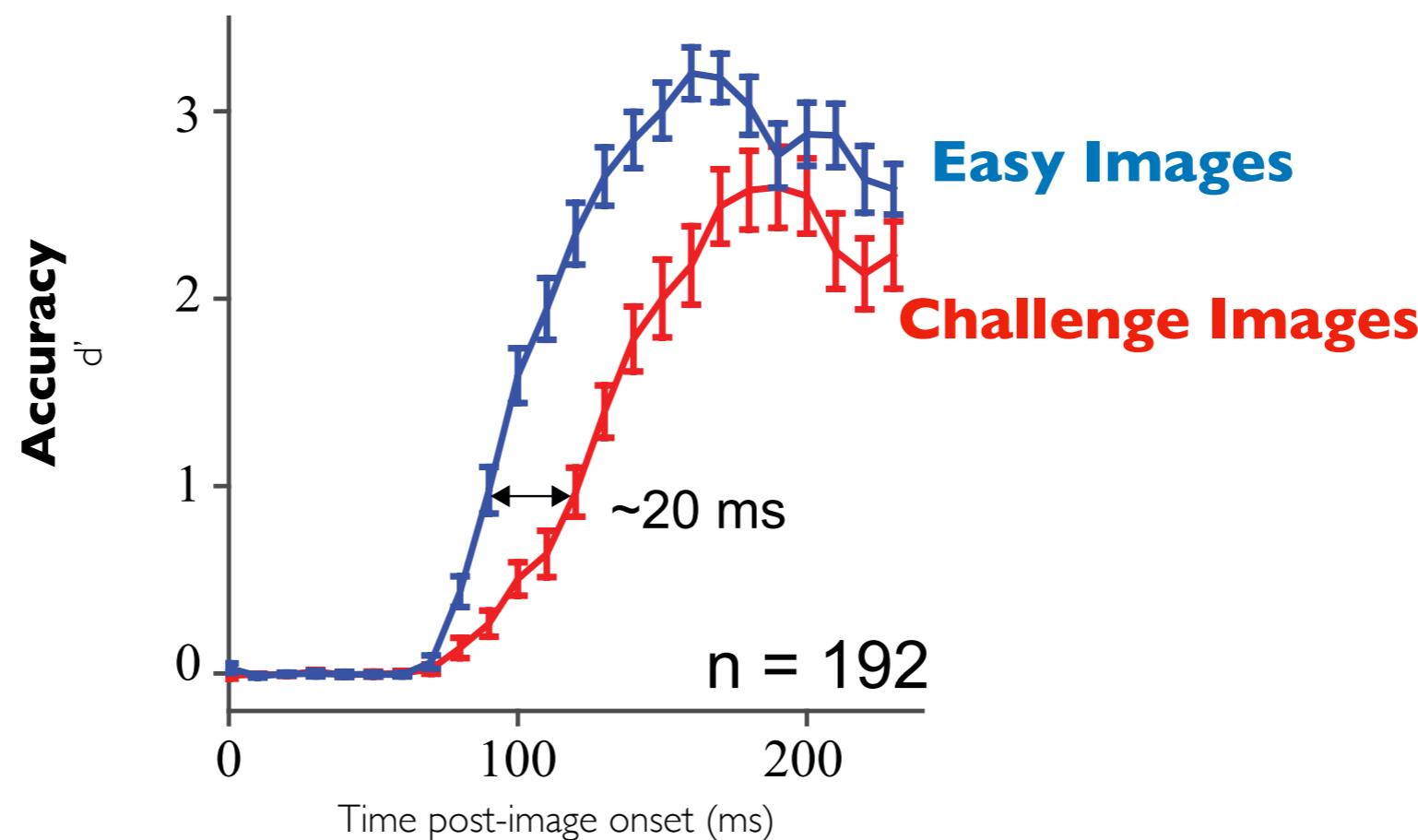
Easy Images



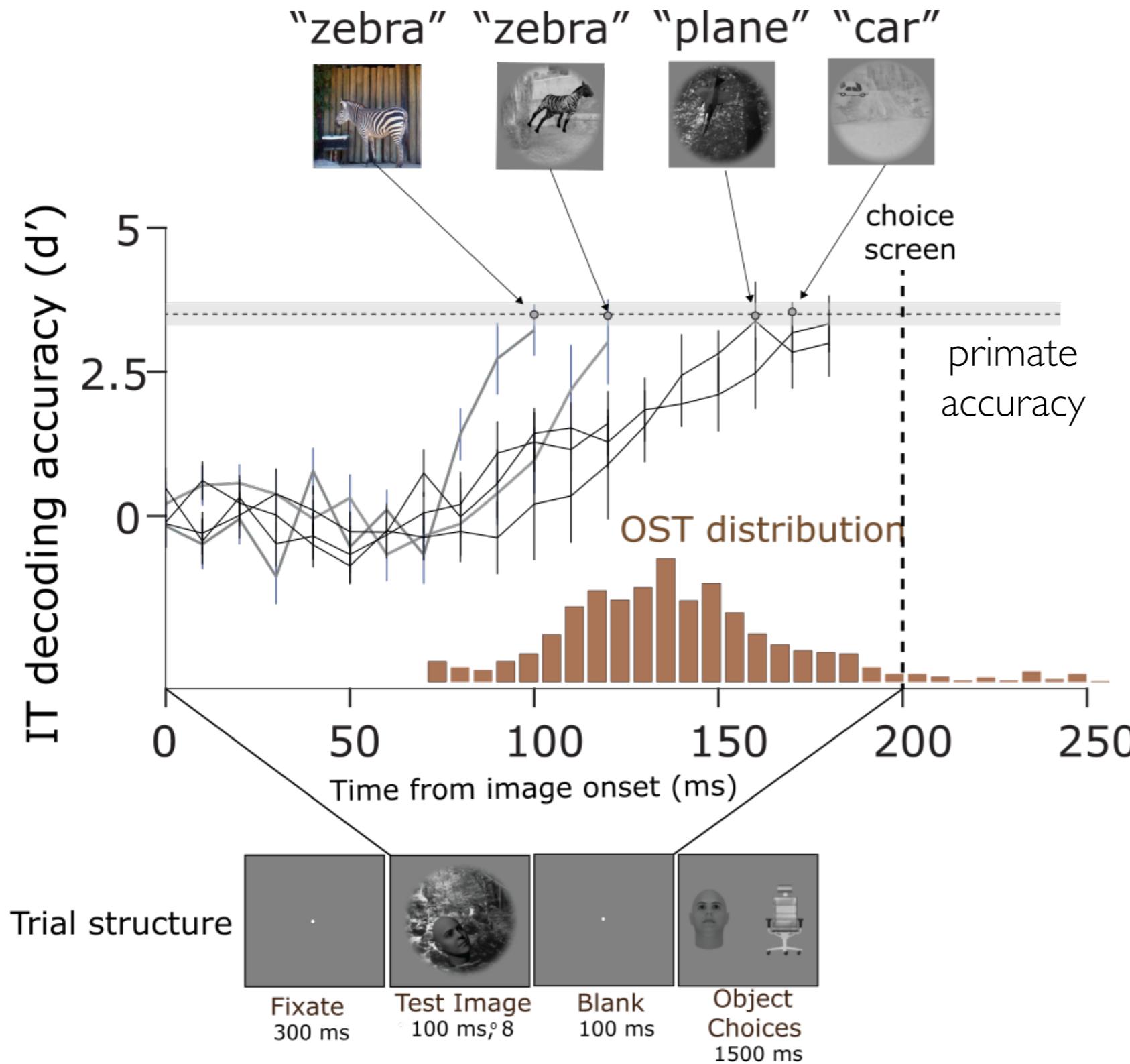
Challenge Images



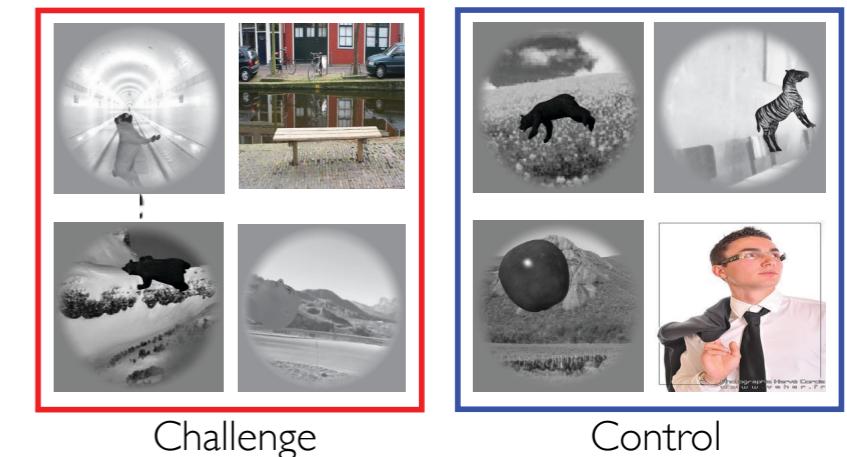
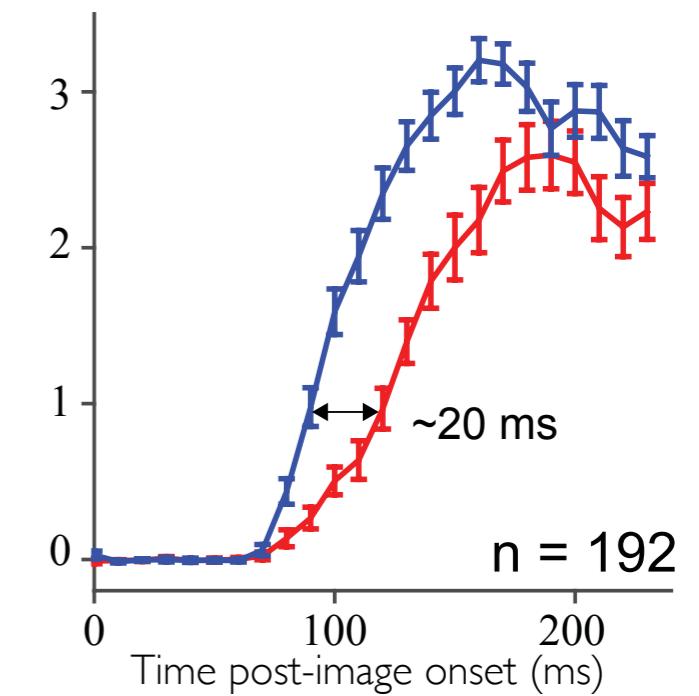
Easy Images



IT population dynamics reveal that each image is solved at a (slightly) different time

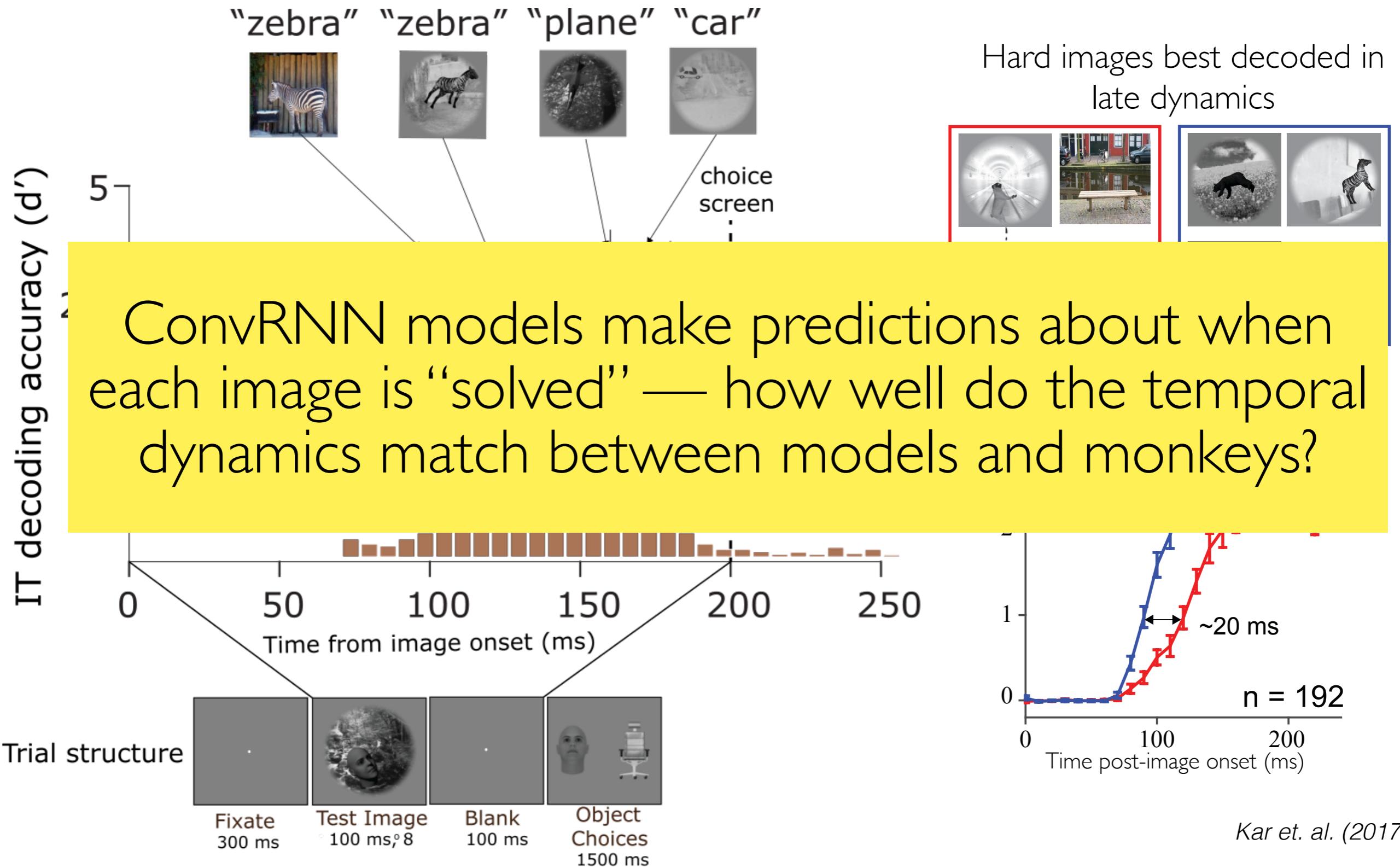


Hard images best decoded in late dynamics

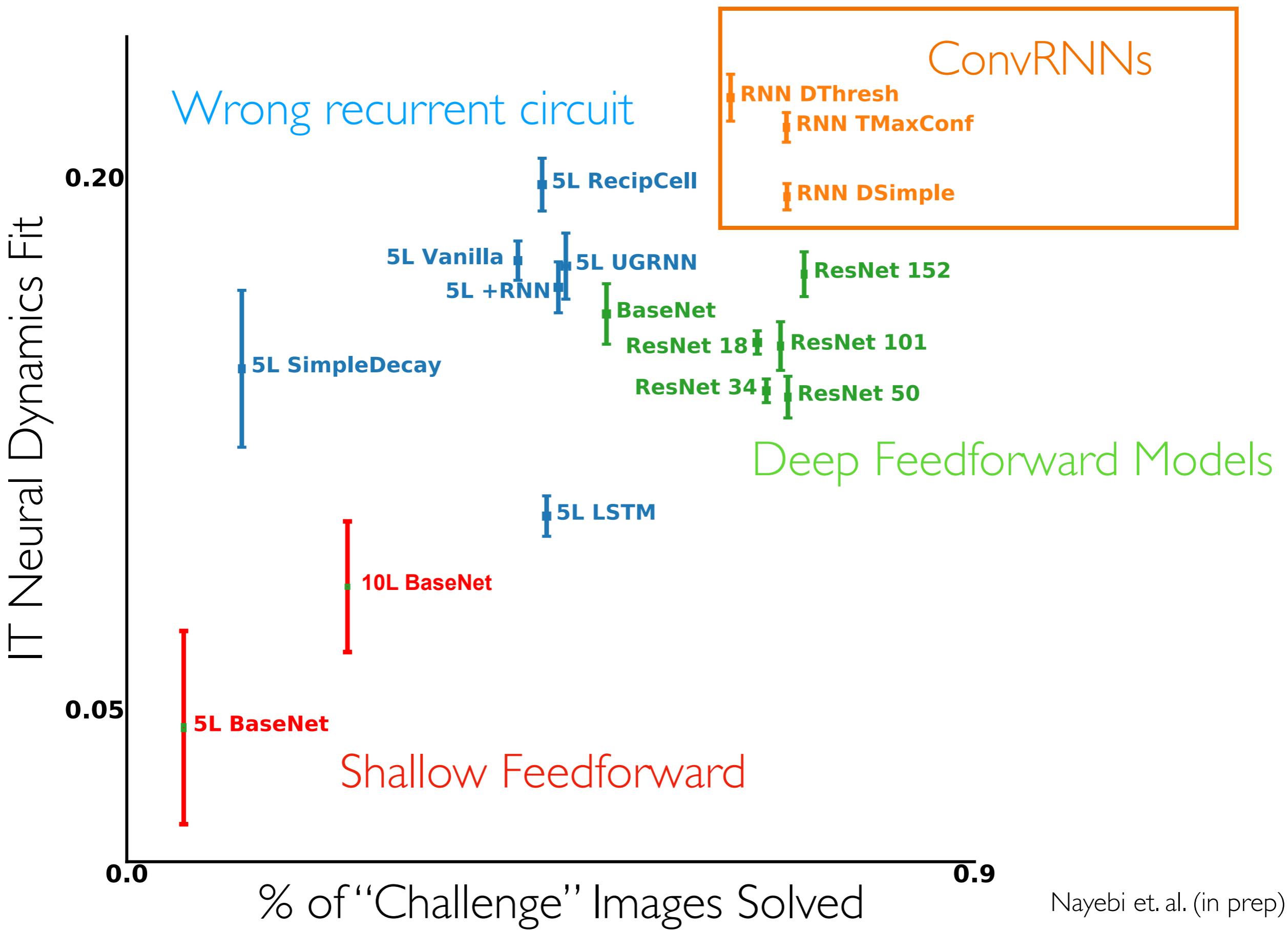


Kar et. al. (2017)

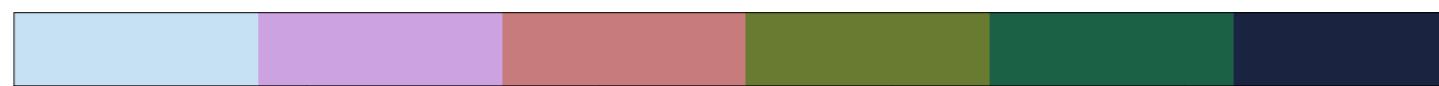
IT population dynamics reveal that each image is solved at a (slightly) different time



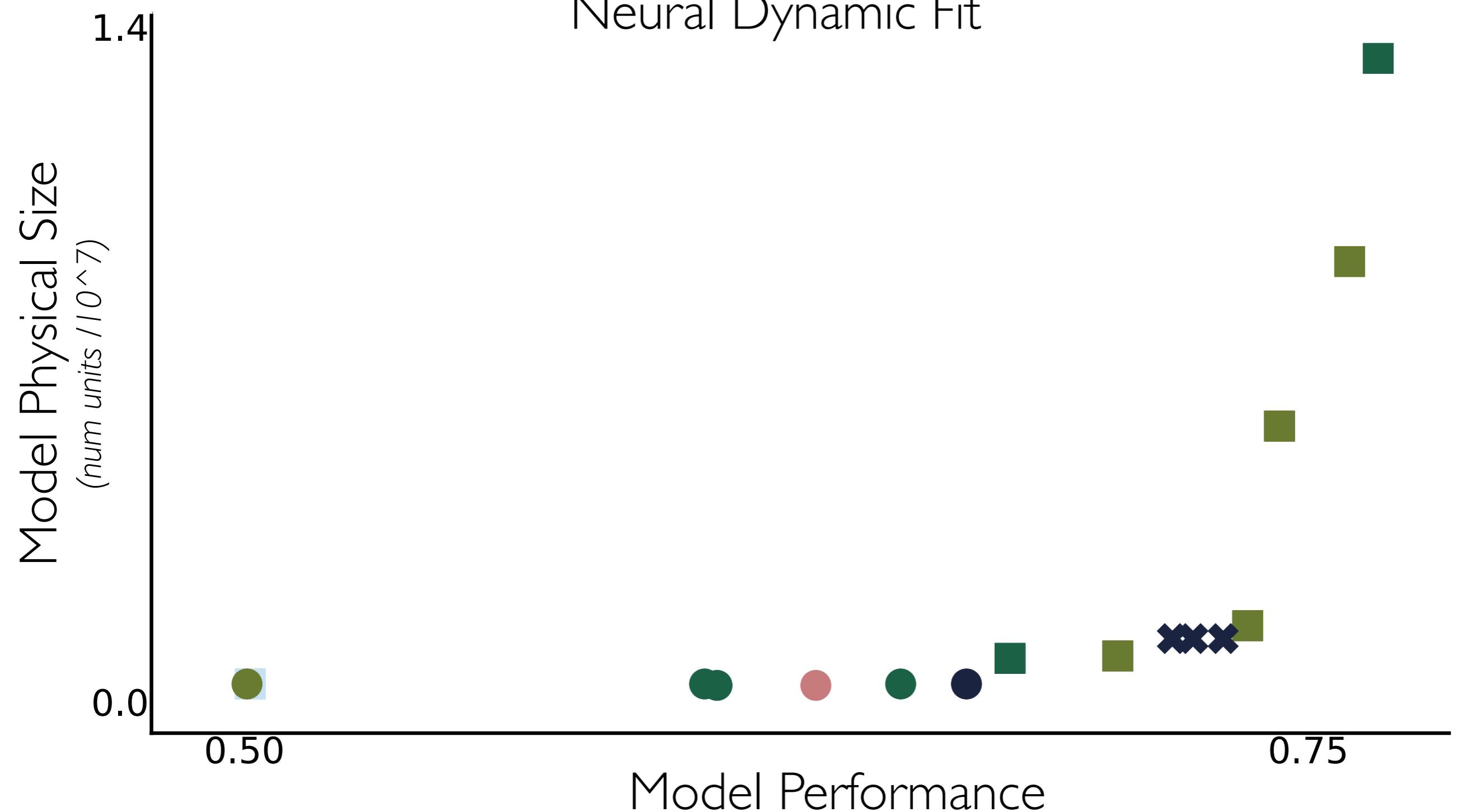
ConvRNNs as Models of Neural Dynamics



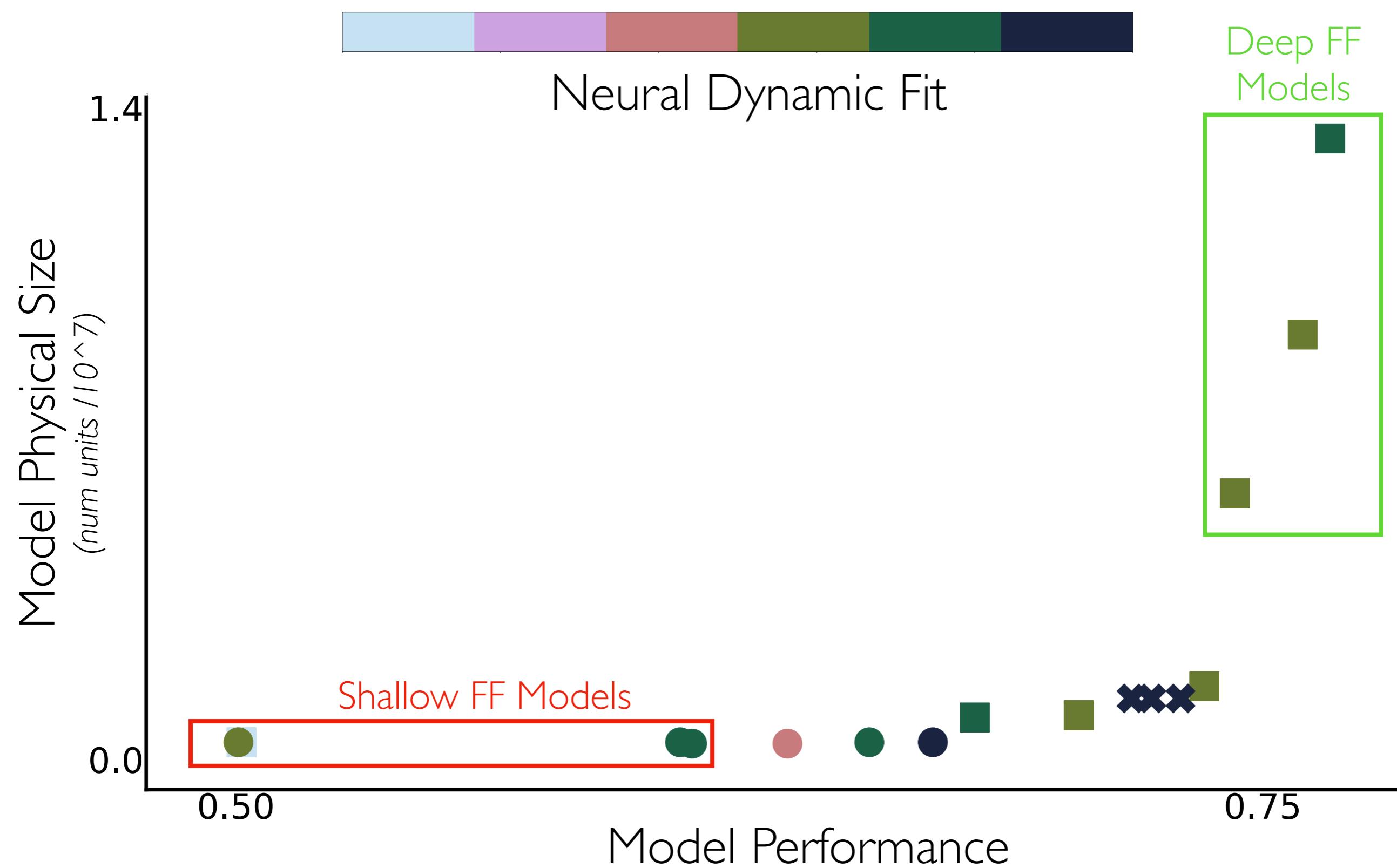
ConvRNNs as Models of Neural Dynamics



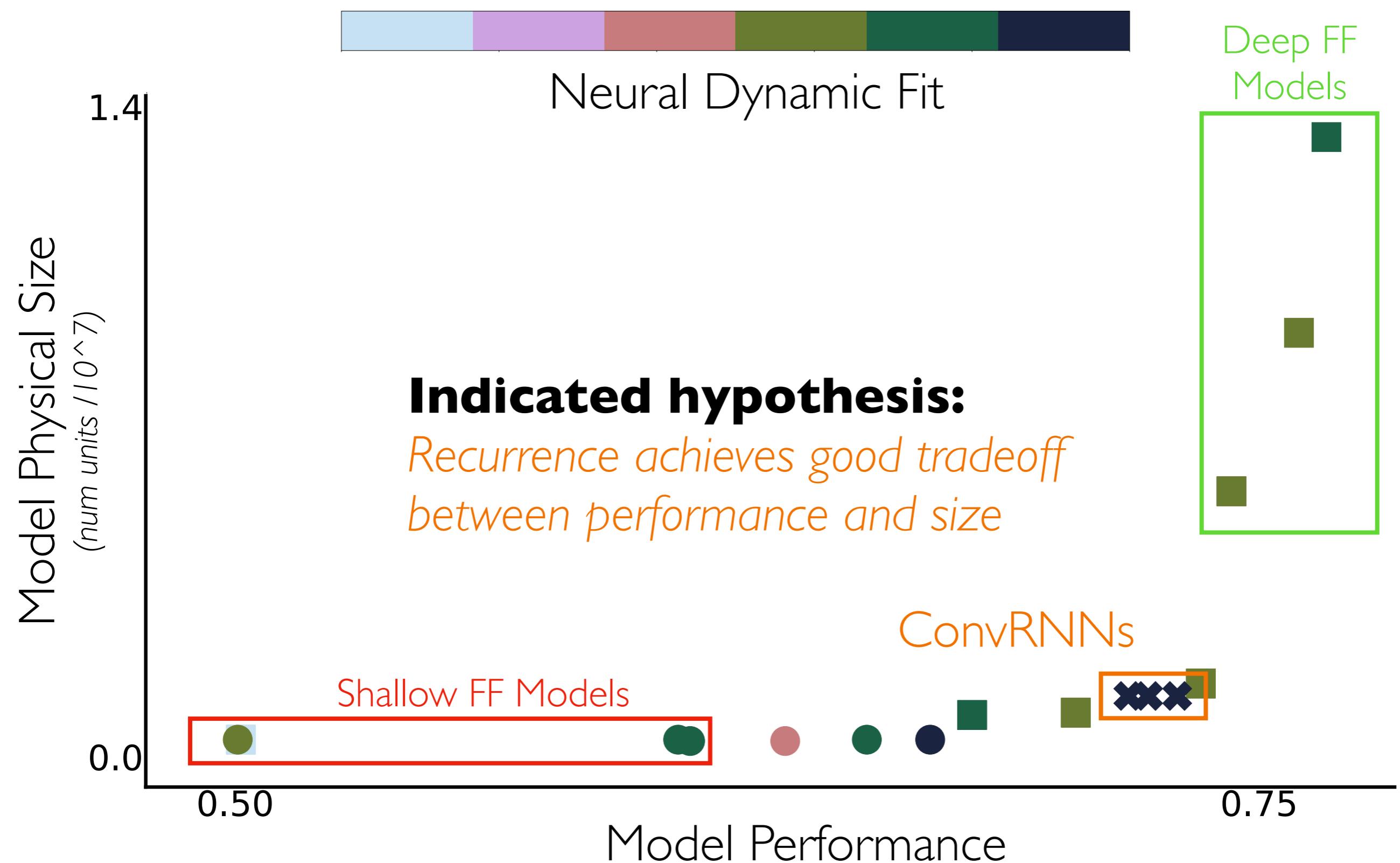
Neural Dynamic Fit



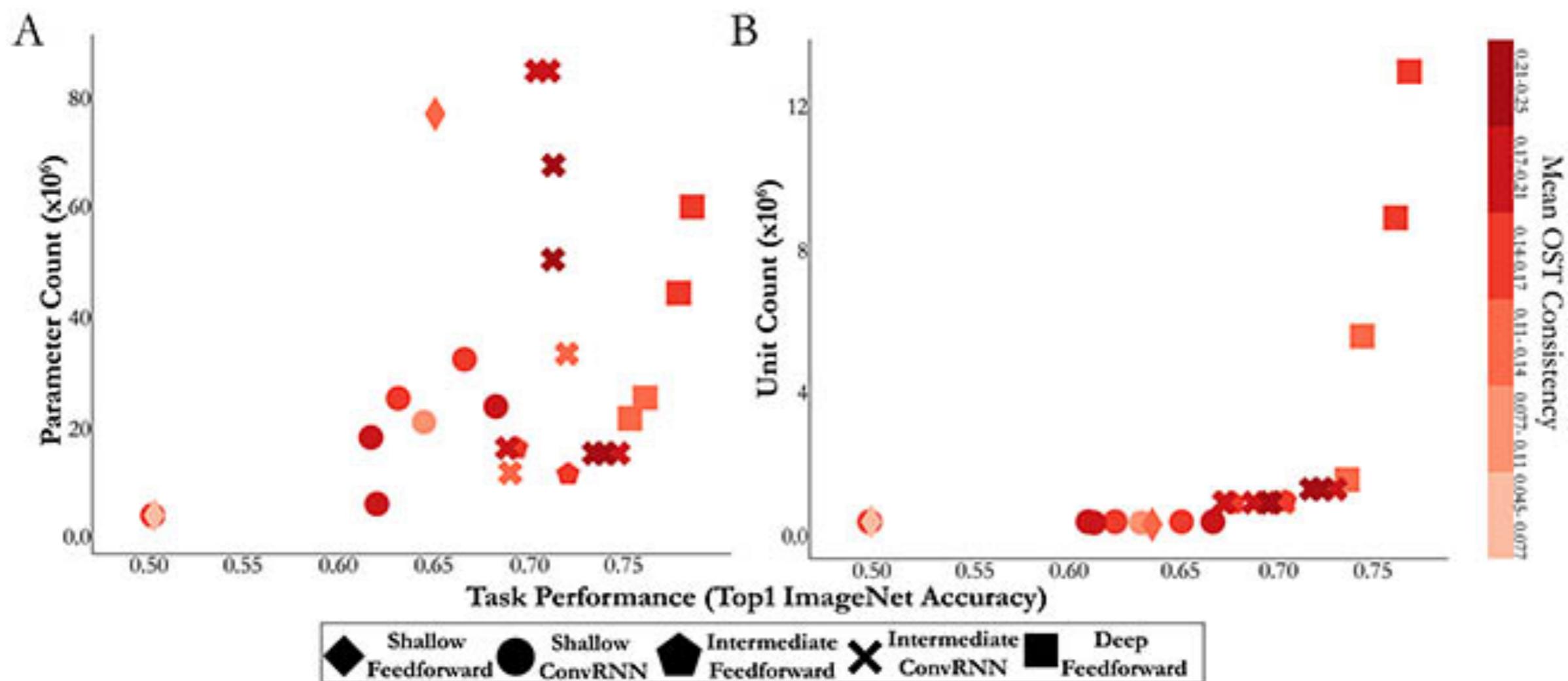
ConvRNNs as Models of Neural Dynamics



ConvRNNs as Models of Neural Dynamics



ConvRNNs as Models of Neural Dynamics



ATTENTION FOR FINE-GRAINED CATEGORIZATION

Pierre Sermanet, Andrea Frome, Esteban Real
Google, Inc.
`{sermanet, afrome, ereal, }@google.com`

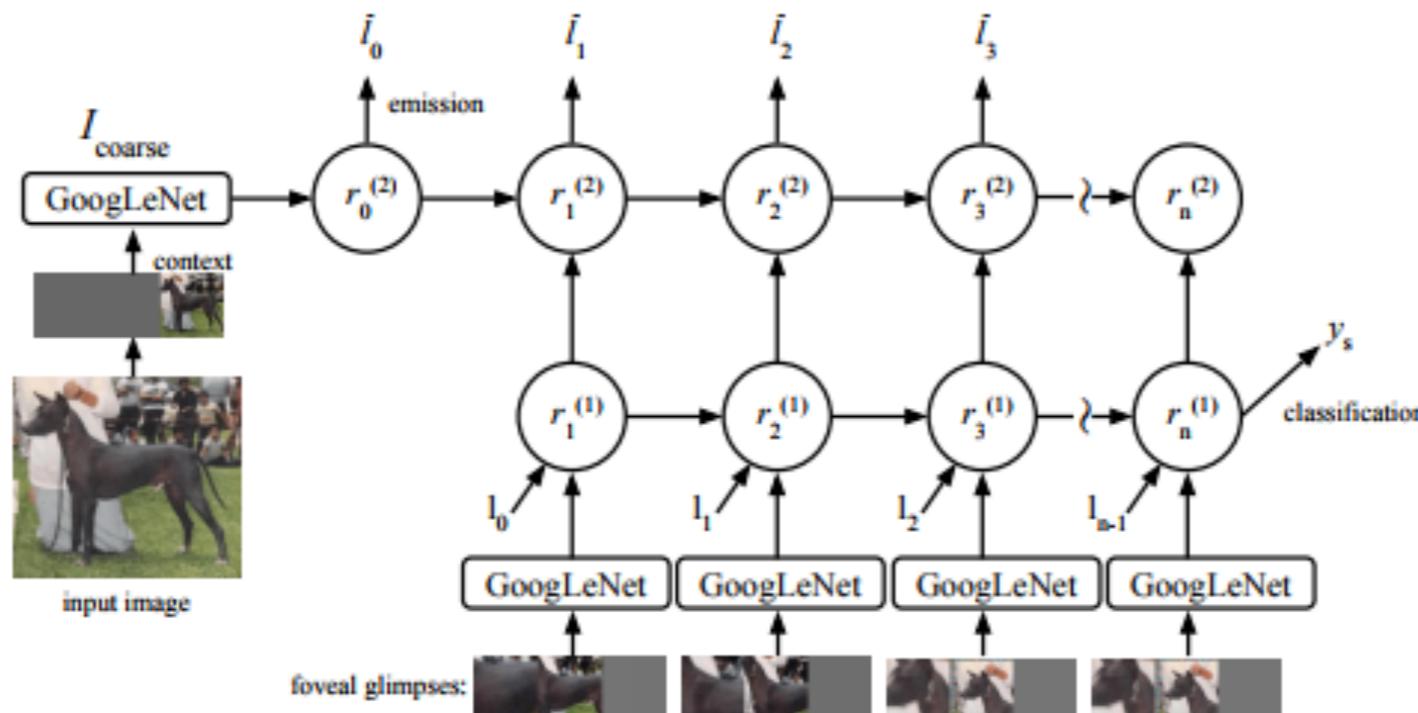


Figure 2: Diagram of the model. The grayed-out boxes denote resolutions not in use; in our experiments the context is always a low-resolution patch, while each glimpse can be any combination of the low-, medium-, and high-resolution patches.

ATTENTION FOR FINE-GRAINED CATEGORIZATION

Pierre Sermanet, Andrea Frome, Esteban Real

Google, Inc.

{sermanet, afrome, ereal, }@google.com

Table 1: Results on Stanford Dogs for (a) our RNN model and (b) our GoogLeNet baselines and previous state-of-the-art results, measured by mean accuracy percentage (mA) as described in Chai et al. (2013). The GoogLeNet baseline models were pre-trained on the de-duped ILSVRC 2012 training set and fine-tuned with the Stanford Dogs training set. Results marked with a star indicate use of tight ground truth bounding boxes around the dogs in training and testing.

# glimpses	1	2	3		
high res only	43.5	48.3	49.6	Yang et al. (2012)*	38.0
medium res only	70.1	72.3	72.8	Chai et al. (2013)*	45.6
low res only	70.3	70.1	70.7	Gavves et al. (2013)*	50.1
high+medium res	70.7	72.6	72.7	GoogLeNet 96×96	58.8
3-resolution	76.3	76.5	76.8	GoogLeNet 224×224	75.5

(a)

(b)

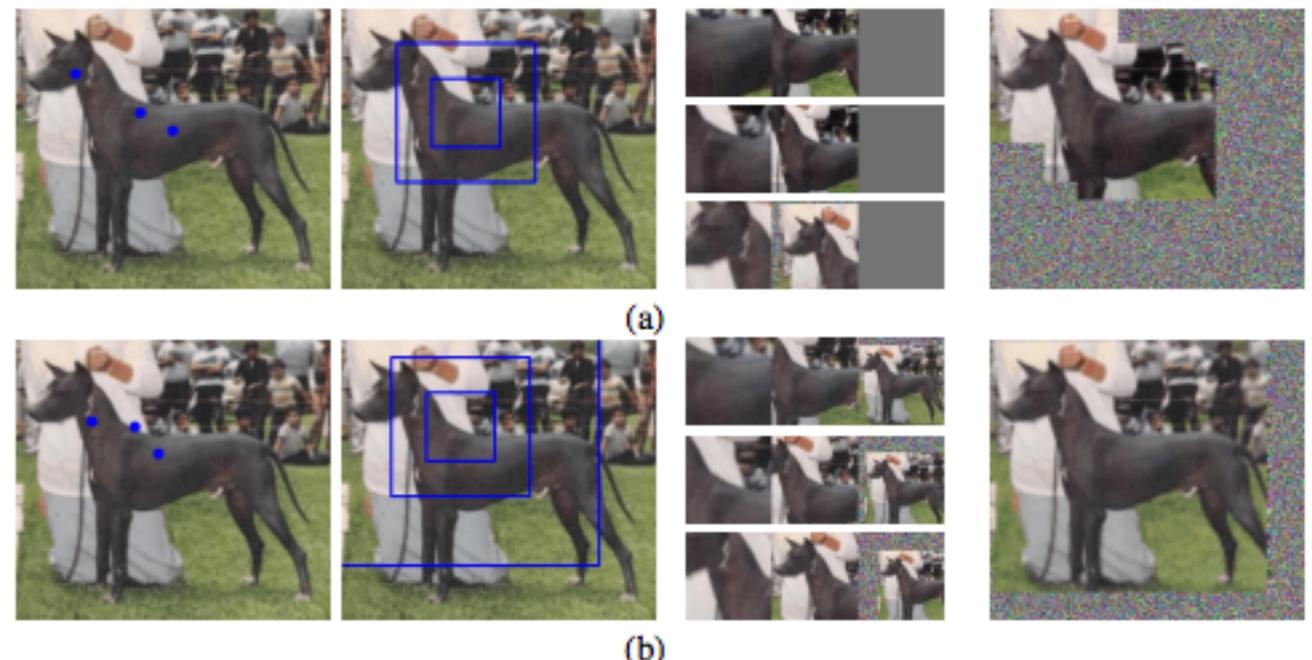


Figure 3: Visualizations of 2-resolution (a) and 3-resolution (b) glimpses on an image from our validation set, with learned fixation points. For each the glimpse images are in order, from top to bottom, and the box diagram corresponds to the second glimpse. The composite image is created from all three glimpses. The context image is not shown but is always the same resolution and size as the low-resolution glimpse patches shown in (b).

Task-Driven Models?

1.

\mathbf{A} = architecture class

CNNs -> RNNs

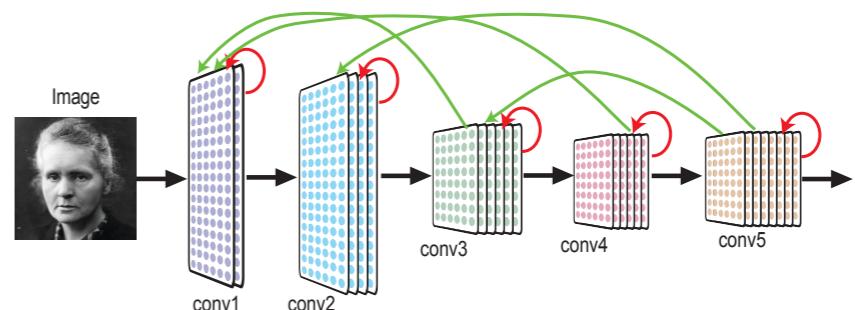
2.

\mathbf{L} = loss function

\mathbf{D} = dataset

e.g. **Object
Categorization**

What task(s) explain recurrences??



Hard Images
(e.g. heavy occlusion)

Time-accuracy tradeoff
(be correct but fast)

Temporal Goal
(e.g. motion-based)

Task-Driven Models?

1.

A = architecture class

CNNs -> RNNs

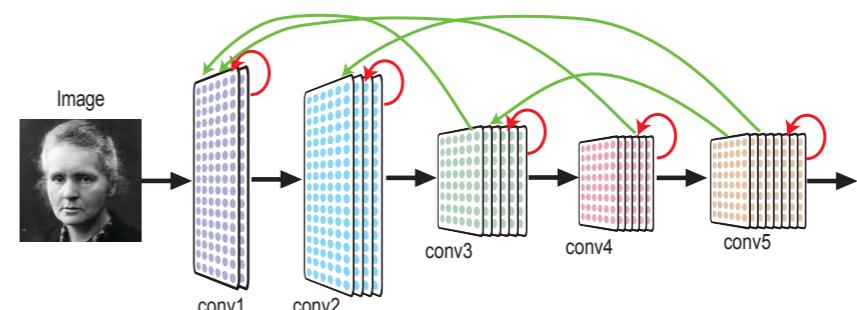
2.

L = loss function

D = dataset

e.g. **Object
Categorization**

What task(s) explain recurrences??



Hard Images
(e.g. heavy occlusion)

Time-accuracy tradeoff
(be correct but fast)

Temporal Goal
(e.g. motion-based)

very different possibility: actually, recurrence not used on-line,
instead: “just” implementing learning

Biological learning

Implementing Learning

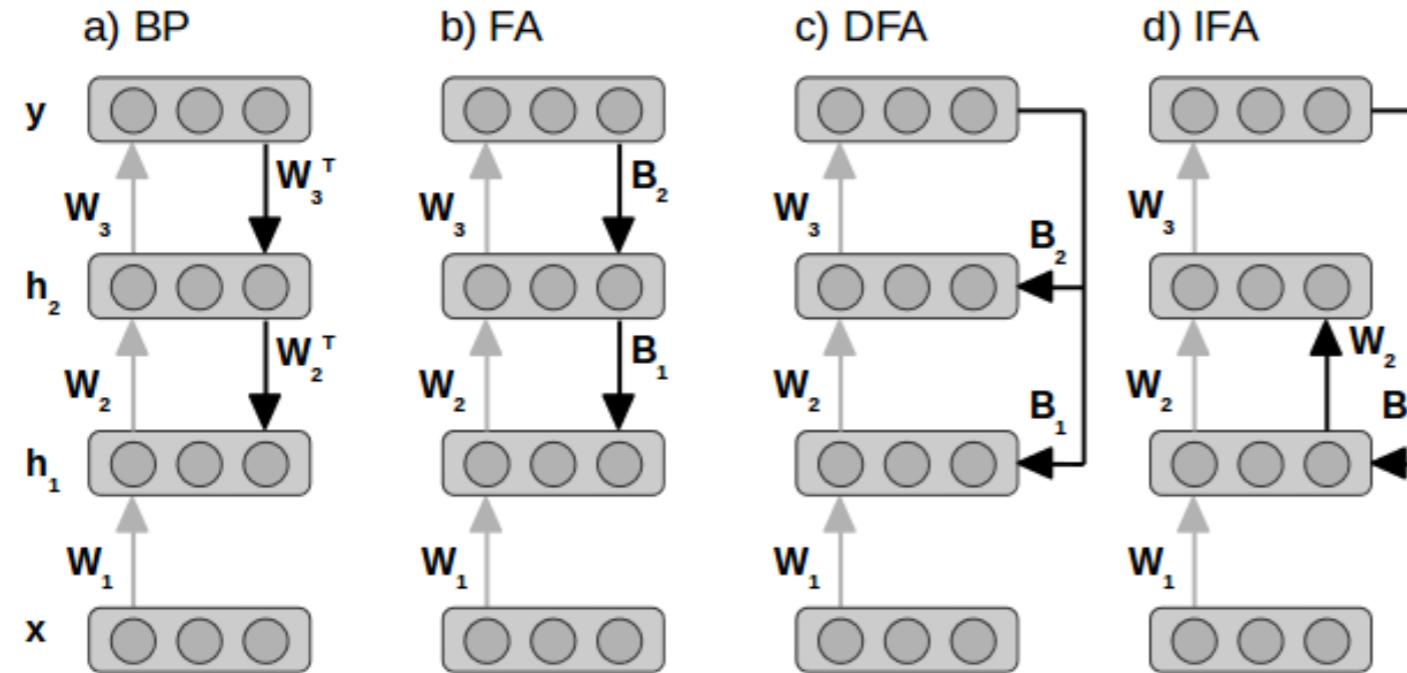
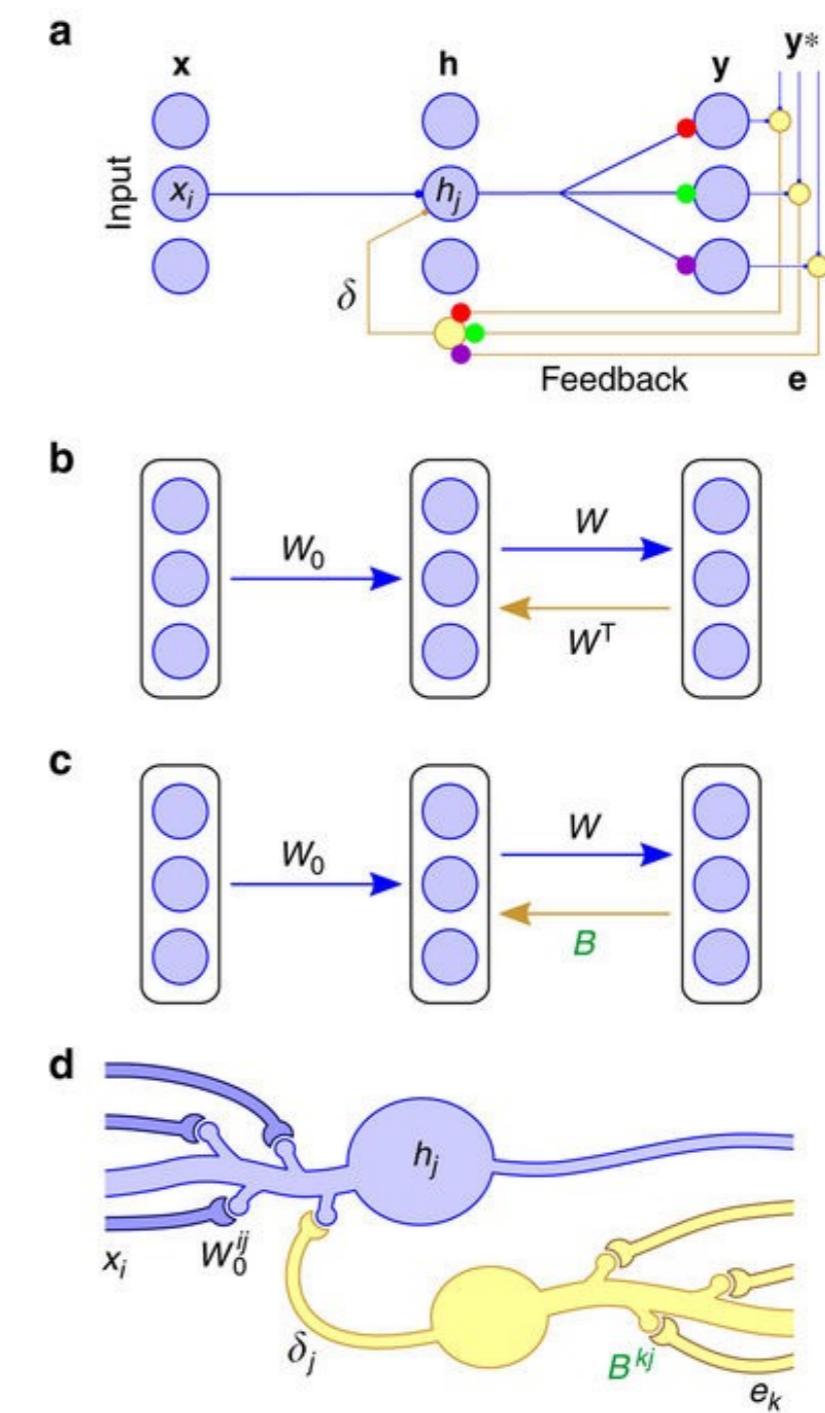
Direct Feedback Alignment Provides Learning in Deep Neural Networks

Arild Nøkland

(Submitted on 6 Sep 2016 (v1), last revised 21 Dec 2016 (this version, v5))

Random synaptic feedback weights support error backpropagation for deep learning

Timothy P. Lillicrap , Daniel Cownden, Douglas B. Tweed & Colin J. Akerman



Big Problems in Each Area

***bad** = obviously deeply wrong as model of the brain or behavior

1. **Xbad**

A = architecture class

ConvRNNs

2.

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

SOLUTION

RECURRENTNESS and FEEDBACK

Big Problems in Each Area

***ok** = we've really nailed it

***bad** = obviously deeply wrong

1.

~~***ok**~~

A = architecture class

ConvRNNs

2.

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

SOLUTION

RECURRENTNESS and FEEDBACK

Big Problems in Each Area

***ok** = we've really nailed it

***ok-ish** = harder to reject out of hand

***bad** = obviously deeply wrong

1. ***ok-ish**

A = architecture class

ConvRNNs

2.

T = task/objective

e.g. **Object Categorization**

3.

D = dataset

e.g. **ImageNet**

4.

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

SOLUTION

RECURRENTNESS and FEEDBACK

Big Problems in Each Area

***ok** = we've really nailed it

***ok-ish** = harder to reject out of hand

bad = obviously deeply wrong

1. ***ok-ish**

A = architecture class

ConvRNNs

2. **ok**

T = task/objective

e.g. **Object Categorization**

3. ***ok-ish**

D = dataset

e.g. **ImageNet**

4. **Xbad**

L = learning rule

e.g. **Arch. Srch. + Grad. Desc.**

SOLUTION

RECURRENTNESS and FEEDBACK

SELF-SUPERVISION WORKS GREAT!

**CAN HANDLE REAL VIDEOSTREAMS
TO *SOME* EXTENT**