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From Last Time . . . 

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.

*✓ok-ish = harder to reject out of hand
*✓ok = we’ve really nailed it

*bad = obviously deeply wrong

RECURRENCE and FEEDBACK

ConvRNNs

SELF-SUPERVISION WORKS GREAT!

CAN HANDLE REAL VIDEOSTREAMS 
TO *SOME* EXTENT

*✓ok-ish

✓ok

❌bad

❌bad

SOLUTION



Our old friend

The Felleman-vanEssen Diagram



Feedbacks everywhere

Gilbert & Li (2013)



Gilbert & Li (2013)

Long-range connectionsLocal recurrence

Douglas & Martin (2010)

From lower areas

To higher areas

“Real” neural networks are full of feedback



Ventral visual stream

Of course we soft-pedaled them earlier …. 
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Neural data has dynamics

Hierarchical structure can be seen in the dynamics
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Limitations of Feedforward Structures



Neural data has dynamics

IT trajectories fit with feedforward models

Fixed 
Mapping

Time-varying 
mapping

Internal 
Consistency
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“Vision is an active process, where higher order cognitive influences affect the operations 
performed by cortical neurons.”

“Top-down influences include various forms of attention, including spatial, object 
oriented and feature oriented attention.”

“Top-down influences …. [also include] perceptual task, object expectation, scene 
segmentation, efference copy, working memory, and the encoding and recall of 
learned information.”
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Biological views on function

McManus … Gilbert 2011

“ This process suggests that expectation of an object creates a set of filters that are selective for the
object’s components and thus, a role of top-down processes in object recognition. The idea
is further supported by the transfer of perceptual learning between objects with shared
components.”
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Biological views on function

Mixture of memory, task (“executive control”), and 
prediction

“Feedback projections from prefrontal cortex to the posterior 
association cortex appear to serve the executive control of 
voluntary recall.”

Pair associated test indicates prospective information 
from PFC sent to IT.

“Split-brain paradigm” — transection of posterior corpus callosum — IT neurons in one hemisphere are activated by direct 
bottom-up inputs only in the contralateral hemifield, but not when the inputs are in the ipsilateral hemifield. 

Ipsilateral presentation *still* activated IT neurons, but later 
than contralateral.  

Neuron’s pattern of responses across stimuli similar 
regardless of ipsi/contra presentation (r = ~0.8)

No such transfer in *full* split. 



Biological views on function

Attention
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Biological views on function

E = feedforward input
S = suppression
x = position
theta = orientation
A = attention field

R(x, ✓) = ReLuT [
A(x, ✓)E(x, ✓)

Convs(x,✓)[A(x, ✓)E(x, ✓)] + �
]

—> implemented as *equilibrium* of simple recurrent circuit (Heeger 1993)
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Biological views on function

P (Si | E,H) =
P (E | Si, H)P (Si | H)

P (E | H)

E = evidence finished to V1 by retina

S_i = scene i output of  V1 

H = prior information generated by V2

Bayesian interaction of two brain areas

illusory contour 
sensitivity emerges in 
V2 at 65 ms (first 
feedforward wave)
but in V1 at 100ms



Biological views on function

Task Dependence

Efferent Copy

Adaptive Shape processing 

Memory

Generalized Attention

Executive control

Implementing Learning

Bayesian inference



Models

N = number of objects

object encoding O (PFC)

feature encoding F (IT)

location encoding L  (FEF)

joint location/feature map X^i (V4)

feedforward input (V1/V2)

P (O,L,X
1
, . . . , X

N
, I) = P (O)P (L)P (I | X1

, . . . , X
N )

NY

i=1

P (Xi | L,F i)P (F i | O)
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F^i = pools across locations in X^i
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Models

F^i = pools across locations in X^i Spatial attention spotlight X effect read out as P(F^i | I)

L represented in FEF Feature attention makes P(F^i)
high for preferred feature

Location of preferred feature read
out as P(L | I)



Models







Models: RNNs

Simple (unrestricted) RNNs

Unlike feedforward networks, recurrent networks can store 
state.
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Models: RNNs

Long-Short Term Memory (LSTMs)

Jürgen Schmidhuber



Models: RNNs

Long-Short Term Memory (LSTMs)

Gate: 
sigmoid + pointwise 
multiplication
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Long-Short Term Memory (LSTMs)

what to throw away:
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Long-Short Term Memory (LSTMs)

what to store:



Models: RNNs

Long-Short Term Memory (LSTMs)

update old cell state:



Models: RNNs

Long-Short Term Memory (LSTMs)

what to actually output:



Models: RNNs

Gated Recurrent Unit (GRU) combines forget and input gate:



Models



Models



Models

All RNNs executed by unrolling in time
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Models

CIFAR-10 Error
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Models
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Models



> Map to brain data.  
(temporal averages in ventral stream)

Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

> Implement generic 
learning rules  
(gradient descent)

> Formulate 
comprehensive 
model class  
(CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)



> Map to brain data.  
(ventral stream dynamics)

Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

> Implement generic 
learning rules  
(gradient descent)

> Formulate 
comprehensive 
model class  
(ConvRNNs)

> Choose challenging, 
ethologically-valid tasks 
(??)



Temporal Neural Networks (TNN) Library

conv1 conv2

conv3

Image

conv5conv4

http://github.com/neuroailab/tnn
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Temporal Neural Networks (TNN) Library
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Recurrent weights optimized to match neural dynamics in V4 and IT
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Image
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Convolutional RNNs (convRNNs) with local and long-range feedback:

Fitting Recurrent Dynamics Directly
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Feedforward weights 
optimized for 
categorization task

Recurrent weights optimized to match neural dynamics in V4 and IT

conv1 conv2

conv3

Image

conv5conv4

Convolutional RNNs (convRNNs) with local and long-range feedback:

Loss: L2 averaged over 10ms timebins up to 250ms

Fitting Recurrent Dynamics Directly
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Fits hold pretty well even for held-out neuron cross-validation (as well as cross-image)

Unit 1

Unit 2
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Image

conv5conv4
fit internal recurrences w/ 
one set of neurons
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A = architecture class

“task”
1. 2.

CNNs -> RNNs

argmin
a2A

[L(p⇤a)]

where p* is result of

dpa
dt

= ��(t) · hrpaL(x)ix2D

3.

e.g. Gradient Descent via Backprop

backprop

architecture 
search

e.g. Object 
Categorization

Learning Rule

L = loss function          D = dataset

Fitting Recurrent Dynamics Directly



Unit 1

Unit 2

. . 
.

Feedforward weights 
optimized for 
categorization task

Recurrent weights optimized to match neural dynamics in V4 and IT

Not a normative theory — no task. 

Convolutional RNNs with local and long-range feedback:

conv1 conv2

conv3

Image

conv5conv4

Fitting Recurrent Dynamics Directly



“task”
2.

e.g. Object 
Categorization

L = loss function          D = dataset

What task(s) explain recurrences??
conv1 conv2

conv3

Image

conv5conv4

A = architecture class

1.

CNNs -> RNNs

Task-Driven Models?



“task”
2.

e.g. Object 
Categorization

L = loss function          D = dataset

What task(s) explain recurrences??

Time-accuracy tradeoff
(be correct but fast)

conv1 conv2

conv3

Image

conv5conv4

Hard Images
(e.g. heavy occlusion)

Temporal Goal
(e.g. motion-based)

A = architecture class

1.

CNNs -> RNNs

Task-Driven Models?



“task”
2.

e.g. Object 
Categorization

L = loss function          D = dataset

argmin
a2A

[L(p⇤a)]

where p* is result of

dpa
dt

= ��(t) · hrpaL(x)ix2D

3.

backprop

architecture search

Learning Rule

A = architecture class

1.

CNNs -> RNNs

Task-Driven Models?

(possibility: actually, recurrence not used on-line)
(e.g. “just” implementing learning)
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feedforward on imagenet 

recurrent on imagenet 

. . . but performance on Imagenet dramatically worsens. 

⇒ subtle “overfitting” to image-type or animal idiosyncracies  

Re
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cy
🙁

feedforward on neural 

recurrent on neural images 

Performance on recognition task on neural images is improved😀

Basic
categorization

🙁

Task-Driven Models?



0.55

0.65

0.75

Improving ImageNet Performance with ConvRNNs
Ca

te
go

riz
at

io
n 

Ac
cu

ra
cy

Fe
ed

fo
rw

ar
d

Fe
ed

fo
rw

ar
d 

2x
  d

ee
pe

r

R
ec

ip
G

at
ed

U
ni

t 
+ 

Fe
ed

ba
ck

C
on

vL
ST

M

Nayebi et. al. (NeurIPS 2018)



0.55

0.65

0.75

Improving ImageNet Performance with ConvRNNs
You can get better at performance with more layers / parameters,

but that’s not how we think the brain does it. 
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Improving ImageNet Performance with ConvRNNs
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Commonly-used recurrent cells (e.g. LSTMs): 
not especially effective

You can get better at performance with more layers / parameters,
but that’s not how we think the brain does it. 
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(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“performance preserving”)



With better recurrent cells, substantial performance improvements on ImageNet

(1) gating = multiplication by input-dependent tensor w/ values in [0, 1]

(2) bypassing = when recurrent cell is in 0 state, input is unchanged 
(“performance preserving”)

Improving ImageNet Performance with ConvRNNs

Two useful principles:

SimpleRNN has (2) but not (1)

Standard Long Short-Term Memory (LSTM) has (1) but not (2)



at+1 = xt + �(Wxh ~ xt)ht +Wch ~ ct

ht = f [at]

ct = f [c̃t]
c̃t+1 = �(Wxc ~ xt) · ct +Wxcx

t +Wcc ~ cT

hc
x

a

Improving ImageNet Performance with ConvRNNs

“Resnet-Like” Unit



ht = f [at]

ct = f [c̃t]

“gated input”

“gated memory”

reciprocal structurec̃t+1 =(1� �(Whc ~ c̃t)) · xt

+ (1� �(Wcc ~ ct)) · ct

at+1 =(1� �(Wch ~ ct)) · xt

+ (1� �(Whh ~ ht)) · ht

“Reciprocal Gated” Unit
h

c

x
a

Improving ImageNet Performance with ConvRNNs
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Improving ImageNet Performance with ConvRNNs

Nayebi et. al. (NeurIPS 2018)

ConvRNNs, with correct local recurrence & long-range feedback
can effectively convert “space” into “time”
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Improving ImageNet Performance with ConvRNNs

Nayebi et. al. (NeurIPS 2018)

ConvRNNs, with correct local recurrence & long-range feedback
can effectively convert “space” into “time”
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Not LSTMs!

1) improved ImageNet performance

ConvRNNs as Models of Neural Dynamics
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1) improved ImageNet performance

Nayebi et. al.  Task-Driven Convolutional Recurrent Models of the Visual System. 
(NeurIPS 2018)

2) predictions of neural dynamics in visual system?

Not LSTMs!

ConvRNNs as Models of Neural Dynamics
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IT population dynamics reveal that each image is 
solved at a (slightly) different time

Hard images best decoded in
late dynamics 
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~20 ms  

Kar et. al. (2017)

ControlChallenge

primate 
accuracyConvRNN models make predictions about when 

each image is “solved” — how well do the temporal 
dynamics match between models and monkeys?



ConvRNNs as Models of Neural Dynamics

Deep Feedforward Models

Wrong recurrent circuit
ConvRNNs

10L BaseNet

Shallow Feedforward
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Nayebi et. al. (in prep)
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ConvRNNs

Indicated hypothesis:
Recurrence achieves good tradeoff 
between performance and size

Deep FF 
Models

Shallow FF Models

Nayebi et. al. (in prep)
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“task”
2.

e.g. Object 
Categorization

L = loss function          D = dataset

What task(s) explain recurrences??

Time-accuracy tradeoff
(be correct but fast)

conv1 conv2
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Image

conv5conv4

Hard Images
(e.g. heavy occlusion)

Temporal Goal
(e.g. motion-based)

A = architecture class

1.

CNNs -> RNNs

Task-Driven Models?



A = architecture class

“task”
1. 2.

CNNs -> RNNs e.g. Object 
Categorization

L = loss function          D = dataset

What task(s) explain recurrences??

Time-accuracy tradeoff
(be correct but fast)

conv1 conv2

conv3

Image

conv5conv4

Hard Images
(e.g. heavy occlusion)

Temporal Goal
(e.g. motion-based)

very different possibility: actually, recurrence not used on-line, 
instead: “just” implementing learning

Task-Driven Models?



Biological learning
Implementing Learning
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❌bad
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SOLUTION
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e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.
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*✓ok-ish = harder to reject out of hand
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*bad = obviously deeply wrong
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Big Problems in Each Area

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

e.g. Object Categorization

e.g. ImageNet

e.g. Arch. Srch. + Grad. Desc.

SOLUTION*✓ok-ish

*✓ok-ish = harder to reject out of hand
*✓ok = we’ve really nailed it

*bad = obviously deeply wrong

RECURRENCE and FEEDBACK

ConvRNNs

SELF-SUPERVISION WORKS GREAT!

CAN HANDLE REAL VIDEOSTREAMS 
TO *SOME* EXTENT

*✓ok-ish

✓ok

❌bad


