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Going beyond vision



When objects in the world vibrate, they transmit acoustic energy 
through surrounding medium in the form of a wave.
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When objects in the world vibrate, they transmit acoustic energy 
through surrounding medium in the form of a wave.

Audition

The ears measure this sound energy and transmit it to the brain.

The task of the brain is to interpret this signal, and use it to figure 
out what is out there in the world.



Understanding complex, noisy data streams is a critical part of cognition. 
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Understanding complex, noisy data streams is critical part of cognition. 

variation sources:  speaker identity
background noise
reverberation 
 . . . 
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“Hannah is good at compromising.”

Problem:  Entity Extraction



0 dB Threshold of hearing
10 dB Normal breathing

30 dB Soft whisper

50 dB Quiet conversation

70 dB Busy traffic

90 dB Shouting

110 dB     <--- prolonged exposure can cause hearing loss
120 dB  Propeller plane at takeoff

140 dB Jet at takeoff, threshold of pain

160 dB  Instant perforation of eardrum, 1016 times something at 0 dB.

Audition



Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
Woman speaking
Car accelerating
Biting and chewing
Laughing
Typing
Car engine starting
Running water
Breathing
Keys jangling
Dishes clanking
Ringtone
Microwave
Dog barking

Road traffic
Zipper
Cellphone vibrating
Water dripping
Scratching
Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking
Car horn
Writing
Computer startup sound
Background speech
Songbird
Pouring water
Pop song
Water boiling

Guitar
Coughing
Crumpling paper
Siren
Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum
Wind
Boy speaking
Chair rolling
Rock song
Door knocking

.

.

.

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott

Common sounds … 

Audition



The Cocktail Party Problem

Real-world settings often involve concurrent sounds.



What happens to sound in a room:

Audition



•Presence of other speakers 
obscures much structure of 
target utterance, but speech 
remains intelligible.

•Speech recognition algorithms 
circa ~2013 fell apart in such 
circumstances.



Human speech recognition is remarkably invariant:

Dry Reverberant



“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at compromising”
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“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at 
compromising”

Problem:  Entity Extraction



The Auditory System

Kaas & Hackett 2000



The Auditory System



The Cochlea



The Cochlea



Movement of the basilar membrane causes the hair cells to move
against the tectorial membrane, which causes the cilia to bend.

When the cilia bend, the hair cells release neurotransmitter onto
synapses with auditory nerve fibers that send signals to the brain.

The Cochlea



But because only part of the basilar membrane moves for a given frequency of 
sound, each hair cell and auditory nerve fiber signal only particular frequencies 
of sound. 

One example:

The Cochlea



Different auditory nerve fibers encode different frequencies:

The cochlea is doing a frequency analysis of the sound signal!

The Cochlea



21

Characteristic 
Frequency (CF)

Auditory nerve: Frequency map (tonotopy)

Frequency
Selectivity

The Cochlea



Cochleagram representation
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Coarse model of the cochlea 

Waveform representation

The Cochlea



Amplitude spectrum as a function of time is called a spectrogram.

Oboe melody

The Cochlea



“Go ahead … make my day.”

The Cochlea



A shotgun blast

The Cochlea



A pig squealing

The Cochlea



Laaaaaaaaaaa    loooooooooooooh

Cochlear Representation



Cochlear Representation

A little bit of behavior can be explained in this representation. 



Functional schematic of the ear :



The Auditory Midbrain



Penagos et al. 2004

Contrast of Sound vs Silence

Coronal Section
MNI:  y ~ -40

Coronal Section
MNI: y ~ -55

The Auditory Midbrain
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Frequency
bandwidths

Subband Representation



STRF = spectro-
temporal receptive field.

Neuron is responding to changes in amplitude in particular frequency range.

Modulation in Midbrain STRF



As early as the midbrain, 
auditory neurons are tuned 
to particular modulation 
rates.

STRF = spectro-
temporal receptive field.

Modulation in Midbrain STRF



Hierarchical Processing Model

… from cochlea to 
midbrain

McDermott et. al 2011





Auditory Cortex

(early)

How are circuits making sense of complex sound patterns? 



Cortical STRFs are often more complex than those in the midbrain and 
thalamus:

Auditory Cortex



*monkey
*

Tramo et. al, Curr. Opin. Neuro. (1999)

Auditory Cortex



Sweet et al. 2005

Macaque Human

Auditory Cortex
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Primary core area A1 is tonotopic.

Auditory Cortex



...
...

Spectrotemporal model (Shamma, 2005) of early auditory cortex is of this form:

Cochleagram Spectrotemporal 
receptive fields Cortical output
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...
...

Cochleagram Spectrotemporal 
receptive fields Cortical output

Spectrotemporal model (Shamma, 2005) of early auditory cortex is of this form:

Spectrotemporal model



Hierarchical Processing Model

Primary auditory cortex: Shamma 2005

Primary visual cortex:  Wandell 1996

… compare to

...
...



Tramo et. al, Curr. Opin. Neuro. (1999) *monkey
*

Auditory Cortex and Audition
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Tramo et. al, Curr. Opin. Neuro. (1999)

Auditory Cortex and Audition



Spectrotemporal filtering? Shamma, 2005 

*monkey
*

Tramo et. al, Curr. Opin. Neuro. (1999)

Auditory Cortex and Audition



???

???

*monkey
*

Tramo et. al, Curr. Opin. Neuro. (1999)

Auditory Cortex and Audition

Spectrotemporal filtering? Shamma, 2005 



Human auditory cortex 
contains a region that 
responds more to tones 
than noise:

Extends out of tonotopic 
cortex:







Primary 
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Parabelt
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Localization

Model Architecture Class

Deeper networks Categorization

Word recognition
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PITV2

V4V1

CIT
AIT

argmin
a2A

[L(p⇤a)]

where p* is result of

A = architecture class                            L = loss function          D = dataset

dpa
dt

= ��(t) · hrpaL(x)ix2D

“task”

“learning rule”
1. 2.

3.



Core Task-Driven Modeling Idea

Task-Driven Modeling:

1. Optimize for 
performance on a 
challenging auditory 
task, fixing parameters

2. Compare to  neural 
data. 

Apply to auditory tasks, where the regions themselves are less well known. 
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layer 2layer 1
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Core Task-Driven Modeling Idea

Alex Kell Josh McDermott



‣ music clips

‣ speech babble

‣ auditory scenes

600-way word-recognition task assembled by:

•  Recordings from standard speech recognition databases (TIMIT, WSJ) with 
words spoken at least 20 times

•  Combined with significant background noise

“She had your

dark suit in

greasy wash water

all year … ”

‘had’

‘suit’

‘wash’

‘year’

Optimize for Performance:  The Task 



‣ music clips

‣ speech babble

‣ auditory scenes

•  Recordings from standard speech recognition databases (TIMIT, WSJ) with 
words spoken at least 20 times

•  Combined with significant background noise
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Backgrounds → humans not close to ceiling. 

Optimize for Performance:  The Task 

600-way word-recognition task assembled by:



Optimize for Performance:  The Task 

Task: 600-way word-recognition task.

Architecture: Hyperparameter search over 1-D and 2-D convolutional 
structures, with different numbers of layers, kernel sizes, operations, &c. 



Optimize for Performance:  The Task 

Task: 600-way word-recognition task.

Architecture: Hyperparameter search over 1-D and 2-D convolutional 
structures, with different numbers of layers, kernel sizes, operations, &c. 

Crucial fact: use of some order 2 pooling rather than max:
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Performance on 600-way word-recognition task

… for model, measured on held-out data with novel speakers and 
auditory background noise. 

Performance Results



Word recognition in complex backgrounds

Behavioral comparison: 
CNN & humans on same task
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21 conditions:
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4 different background types at 5 SNR levels: 
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Word recognition in complex backgrounds

Behavioral comparison: 
CNN & humans on same task

21 conditions:
dry
 + 

4 different background types at 5 SNR levels: 

Auditory scenes 
Music

Speech babble
Speech-shaped noise

600 
AFC



Behavioral comparison: CNN & humans on same task
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Behavioral comparison: CNN & humans on same task

Music

Speech 
babble

Auditory scenes 
Music

Speech babble
Speech-shaped 

LEGEND

r = 0.97

HUMAN proportion correct
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0.0 0.5 1.0

Human v. model

NB: 
CNN optimized 

for task 
performance
not for human 
behavior match



Does distortion  in a periphery-like representation
explain pattern of performance?

Measure physical distortion of background noise
Dry Wet |Dry - Wet| 

Time
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Distortion in a highly nonlinear feature space 
explains the pattern of performance.

Task-Optimized CNN has discovered proper space.



Imaging Experiment

Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
Woman speaking
Car accelerating
Biting and chewing
Laughing
Typing
Car engine starting
Running water
Breathing
Keys jangling
Dishes clanking
Ringtone
Microwave
Dog barking

Road traffic
Zipper
Cellphone vibrating
Water dripping
Scratching
Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking
Car horn
Writing
Computer startup sound
Background speech
Songbird
Pouring water
Pop song
Water boiling

Guitar
Coughing
Crumpling paper
Siren
Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum
Wind
Boy speaking
Chair rolling
Rock song
Door knocking

.

.

.

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott

fMRI response data collected* on 165 commonly heard natural sound stimuli. 



Methods 
available for 
studying awake 
behaving 
humans

can be used in 
awake behaving 
Macaques

Neuroscience Methods



For each voxel, measured average response to each sound:

Imaging Experiment



Response Magnitude

Imaging Experiment

11065 Voxels

16
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For each voxel, measured average response to each sound:

Data matrix:   voxels  X  sounds. 
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Imaging Experiment

layer N?
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Neural predictivity: the ability of model to predict each individual 
voxel's activity using linear regression. 
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Response Reliability at Voxel Level
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Model Productivity at Best Layer

Example first-layer filters 

...
...
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layer 2layer 1

layer 3

layer 4

(Remember: spectrotemporal model (Shamma, 2005):)



0 10.800.35

Model Productivity at Best Layer

Median Voxel Predictivity 
~80%.

Example first-layer filters 



Comparison to Spectrotemporal Filtering Model

Significant improvement relative to 
existing models,

but especially in non-primary areas.

RH LH
Difference in 
variance explained 0-0.15 0.15 0-0.15 0.15

Spectemp. explains
more variance

Both explain
same amount

Network explains
more variance



Comparison of Predictivity by RoI

Random-filter network (selected architecture, untrained filters)
Random-filter network (unselected architectures, untrained filters)

Our network (selected architecture, trained filters)
Spectrotemporal model 
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Median Predictivity as a Function of Model Layer

Median variance explained across all of auditory cortex

co
nv

1
no

rm
1

po
ol1

co
nv

2
no

rm
2

po
ol2

co
nv

3
co

nv
4

co
nv

5
po

ol5 fc6
fc_

top
0.0

0.2

0.4

0.6

0.8

Va
ria

nc
e 

ex
pl

ai
ne

d

Spectrotemporal
model

Word branch
Genre branch

Random-filter
network

Our trained
network



Predictivity Difference Between High and Low Model Layers

RH LH

c.

Difference in variance explained
-0.15 0 0.15-0.15 0 0.15

Lower layer 
explains

more variance
Higher layer 

explains
more variance

Early layers better explanation of 
primary cortex, higher layers better 
explanation of non-primary cortex.



Tonotopic 
(⊂ Primary)

Differentiation by Region of Interest



Tonotopic 
(⊂ Primary)

Speech-selective
(⊂ Non-primary)

Differentiation by Region of Interest



Differentiation by Region of Interest

Random-filter network (selected architecture, untrained filters)
Random-filter network (unselected architectures, untrained filters)

Our network (selected architecture, trained filters)
Spectrotemporal model 

Va
ria

nc
e

 e
xp

la
in

ed

Frequency-
selective

0.0

0.4

0.8

Pitch-
selective

Music- 
selective

Speech-
selective

Region
of

interest

Frequency-selective 
voxels

Pitch-selective 
voxels

Music-selective 
voxels

Speech-selective 
voxels

Va
ria

nc
e 

ex
pl

ai
ne

d 

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

co
nv

2
no

rm
2

po
ol2

co
nv

3
co

nv
4
co

nv
5

po
ol5

0.1

0.5

0.9



primary auditory cortex

. . .

Word Recognition

Music Genre 
Identification

Ongoing: Functionality Organization by Task



primary auditory cortex

. . .

Word Recognition

Music Genre 
Identification

Ongoing: Functionality Organization by Task



primary auditory cortex

. . .

Word Recognition

Music Genre 
Identification

Ongoing: Functionality Organization by Task



Ongoing: Functionality Organization by Task

Variety of architectures with different stream branching points:



Ongoing: Functionality Organization by Task

Variety of architectures with different stream branching points:

Architectural meta-parameter optimization yields specific branched model:



Analysis of Model Architectures
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Differentiation of processing streams into different subsets of brain voxels:



… interesting contrast to ventral stream, many 
different visual tasks supported by single stream…
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Auditory & Visual Cortex: 

similar but different
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Finer structure: phoneme, 
biphone, triphone hierarchy?
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High-variation task performance vs:
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Rodent Somatosensory Cortex

Petersen, 2007

✴ Spatiotopic sensor

✴ Potentially hierarchical structure

✴ Spatially-structured input data

✴ Poorly understood higher 
cortical areas

Chengxu
Zhuang

Mitra Hartmann 
& Lab



Rodent Somatosensory Cortex
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& Lab
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Shape Category
Recognition

Output
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Neural Network
Architecture(s)

?? ??

??

Matched to real
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a) Cortex

Hypothesis: can get a model for this cortical cascade by 
optimizing properly-sized CNN with whisker-like sensor input

for some ethologically relevant somatosensory task. 
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Rodent Somatosensory Cortex
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Exactly the “right” case for a deep cortical cascade …. 
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Four distinct architecture families with different hypotheses about how temporal 
and spatial information is integrated. 

Optimization goal:  object shape recognition.   
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✴ Most specific networks don’t work, but within 
each family, some much better than others

✴ Filter training and depth very important factors, but number of parameters less so

✴ Recurrent networks with long-range feedbacks achieve highest performance with 
comparatively few parameters and small (neurally reasonable) numbers of units 
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Rodent Somatosensory Cortex

0.00 0.16 0.00 0.48 0.00 1.35

Early Layer               .   .   .                 Middle Layer             .   .   .                Late Layer 

Representational Dissimilarity Matrices (RDMs) capture signatures of different 
stages of the computation

RDM[i, j] = corr(v_i, v_j)
v_i = vector of responses to i-th stimuli

RDMs have been successfully used to compare models to real neural data in 
visual cortex (Kriegeskorte)



Rodent Somatosensory Cortex

Principle Axis 2

 P
rin

ci
pl

e 
Ax

is 
1

Feedback RNN

Dimension reduction on RDMs can be used to “visualize” model differences. 

different initial conditions 
of  parameters

Principal Axis 1

Pr
inc

ip
al 

Ax
is 

2



Rodent Somatosensory Cortex

Dimension reduction on RDMs can be used to “visualize” model differences. 

different initial conditions 
of  parameters

Principle Axis 2

 P
rin

ci
pl

e 
Ax

is 
1

Temporal-Spatial

Feedback RNN

inter-model
distance

within-model
variability

Principal Axis 1

Pr
inc

ip
al 

Ax
is 

2



Rodent Somatosensory Cortex

Dimension reduction on RDMs can be used to “visualize” model differences. 

different initial conditions 
of  parameters
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Temporal-Spatial

Feedback RNN

inter-model
distance

within-model
variability

(i) collect neural responses in an intermediate area S1
(ii) compute RDMs, 
(iii) compare to model families

hypothetical 
neural data

Mitra Hartmann 
& Lab
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Where it might work . . . 

somatosensation

vision

audition
Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...
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...

...

...

...

...

??
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V4V1
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If successful:



Unlikely to yield to this form of analysis:

Olfaction (smell)

Gustation (taste)

Where it might NOT work . . . 



So, recall, in vision:

layer N?

LN

LN

...
LN

LN

...

LN

LN

LN

...

LN

...

LN

LN

at sensor:
‣wide spatial layout
‣ few channels (RGB = 3 

channels)

<— many subcortical
and cortical processing layers —>

at higher sensory cortex:
‣ less spatiotopy
‣many channels (~1000)

audition:  
spectrotemporal layout, 1 channel

somatosensation:  
spectrotemporal layout, ~6 channels . . . so there’s something to explain. 

Where it might NOT work . . . 
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Olfaction (smell)

Thousands of (genetically encoded) 
input channels … no obvious spatial 
structuring . . . simple behaviors . . . 

… so no need for deep networks.

Two layer random association model of piriform cortex.  
(Stettler & Axel 2009)

Where it might NOT work . . . 

Can task-trained model beat this—>
???  maybe not … 



But see… 






