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Audition

When objects in the world vibrate, they transmit acoustic energy
through surrounding medium In the form of a wave.
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Audition

When objects in the world vibrate, they transmit acoustic energy
through surrounding medium In the form of a wave.

The ears measure this sound energy and transmit it to the brain,

The task of the brain Is to interpret this signal, and use It to figure
out what Is out there in the world.



Problem: Entity Extraction

Understanding complex, noisy data streams is a critical part of cognition.

amplitude

time



Problem: Entity Extraction

Understanding complex, noisy data streams Is critical part of cognition.

amplitude

time

"Hannah I1s good at compromising.”



Problem: Entity Extraction

Understanding complex, noisy data streams Is critical part of cognition.

amplitude

time

"Hannah I1s good at compromising.”

variation sources: speaker identity
background noise

reverberation



Audition

0 dB  Threshold of hearing
|0 dB Normal breathing

30 dB  Soft whisper
50 dB Quiet conversation
/0 dB Busy traffic

90 dB Shouting

|10 dB  <--- prolonged exposure can cause hearing loss
|20 dB Propeller plane at takeoft

|40 dB Jet at takeoft, threshold of pain

|60 dB Instant perforation of eardrum, 10'é times something at O dB.



Audition

Common sounds ...

Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
VWoman speaking
Car accelerating
Biting and chewing
Laughing

Typing

Car engine starting
Running water
Breathing

Keys jangling
Dishes clanking
Ringtone
Microwave

Dog barking

Road traffic

Zipper

Cellphone vibrating
Water dripping
Scratching

Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking

Car horn

Writing

Computer startup sound
Background speech
Songbird

Pouring water

Pop song

Water bolling

Guitar

Coughing
Crumpling paper
Siren

Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum

Wind

Boy speaking
Chair rolling

Rock song

Door knocking

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott



The Cocktail Party Problem

Real-world settings often involve concurrent sounds.




Audition

VWhat happens to sound In a room:




ar— gues with her _sis— ter"

- N
nN N
o O
o O

Frequency (Hz
N
N
o

(o0]
o

ePresence of other speakers
obscures much structure of
target utterance, but speech
remains intelligible.

Frequency (Hz)

Three additional speakers

< 6000} W i

3:; 2700 148

; re00f | M eSpeech recognition algorithms
r 422’ circa ~201 3 fell apart in such

clrcumstances.

' Time (sec)



Human speech recognition is remarkably invariant:
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Problem: Entity Extraction

visual
cortex

audrtory

cortex

l l

"Mercedes behind

Lamborghini, on a field
in front of mountains.”

"Hannah I1s good at compromising”
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Problem: Entity Extraction
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The Auditory System
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The Audritory System
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cortex geniculate
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The Cochlea
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The Cochlea
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The Cochlea

Movement of the basilar membrane causes the hair cells to move
against the tectorial membrane, which causes the cilia to bend.

Inner Basilar Quter
hair cells membrane hair cells

Cochlear
nerve

When the cilia bend, the hair cells release neurotransmitter onto
synapses with auditory nerve fibers that send signals to the brain.



The Cochlea

But because only part of the basilar membrane moves for a given frequency of
sound, each hair cell and auditory nerve fiber signal only particular frequencies
of sound.

One example:

100 £ .

Minimum sound intensity (dBgp, ) needed
to elicit neural response
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frequenc
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Tone frequency (Hz)



The Cochlea

Different auditory nerve fibers encode different frequencies:
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The cochlea Is doing a frequency analysis of the sound signall



The Cochlea

Audrtory nerve: Frequency map (tonotopy)
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The Cochlea

VWaveform representation

Cochleagram representation

Time —

Frequency —

Coarse model of the cochlea




The Cochlea

Amplitude spectrum as a function of time Is called a spectrogram.
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The Cochlea

"Go ahead ... make my day.’
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The Cochlea

A shotgun blast
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A pig squealing

LY T R
'H'rl'.' }'llu} :

i” rﬁ* IH" '1 |

ﬁ}v t .’:‘:.\wv h

Frequency

¥

gl | l"q. o .'f“ \ l “Lf
n li ‘ TN L u\r
A ,‘bﬁﬁ‘hﬂuﬂ "'Jm ‘**"{fj

' ||-'|J l‘x"'n-vlll’ll
' T lad ;

'}J |'

W
|l IIIIIL‘I-II-:II.F LL * h‘.




Cochlear Representation
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1800
0.35
1600
d0.3
1400
1200 10-25
1000 do.2
800
d0.15
600
0.1
400
0.05

200

| aaaaaaaaaaa |0000000000000N



Cochlear Representation

A little bit of behavior can be explained in this representation.

llke‘g

Percent correct discrimination

=)

Frequency

Time

SENSATION & PERCEPTION 3e, Figure 11.13

© 2012 Sinauer Associates, Inc.



Functional schematic of the ear:

Ear

Pinna and
eardrum

Middle
ear

Inner
ear

Directional
microphone

:

Impedance matching
and overload protection

:

Frequency analysis




The Auditory Midbrain

Auditory
cortex

Medial
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nucleus
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The Auditory Midbrain

Contrast of Sound vs Silence

Right Left Right Left

Coronal Section
MNIy ~ -55

Coronal Section
MNI: y ~-40

Cochlear Nuclei Inferior Colliculi
108 10-3 103
B | | |
p-value

Penagos et al. 2004



Subband Representation
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Subband Representation
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Subband Representation
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Subband Representation
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Modulation in Midbrain STRF

Example STRF - Inferior Colliculus
20
STRF = spectro-

temporal receptive field.

Frequency (kHz)
S
&)

4 6 8 10
Time Preceding Spike (ms)

Neuron is responding to changes in amplitude in particular frequency range.



Modulation in Midbrain STRF

STRF = spectro-
temporal receptive field.

As early as the midbrain,
audrtory neurons are tuned
to particular modulation
rates.

Example STRF - Inferior Colliculus
20 :
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Hierarchical Processing Model

WMWMW% ... from cochlea to

midbrain

Cochlear
fllterlng

Envelope &
compressive
nonlinearity

Modulation
filtering \)/

S ; McDermott et. al 201 |
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Auditory Cortex

Auditory
cortex

Left cochlea

Auditory nerve

Medial
geniculate
nucleus

Inferior
colliculus

Superior
olivary
nucleus

Cochlear
nucleus

auditory
cortex

How are circurts making sense of complex sound patterns!



Auditory Cortex

Cortical STRFs are often more complex than those in the midbrain and
thalamus:

C Example STRFs - Cortex

Frequency (kHz)

Time Preceding Spike (ms)



Auditory Cortex

Core area

*monkey
*

Tramo et. al, Curr. Opin. Neuro. (1999)



Auditory Cortex

Macaque

Fig. 1. Lateral view of the left hemisphere in macaque (A) and
human (B). The STG is shaded in both species. In A, open arrowhead
indicates approximate level of sections shown in Figure 3 and closed
arrowhead indicates approximate level of sections shown in Figure 4.

In B, dashed lines indicate approximate rostral and caudal bound-
aries of existing coronal blocks containing the entire superior tempo-
ral gyrus (STG) in human subjects. LS, lateral sulcus; ST, superior
temporal sulcus; SF, sylvian fissure.

Sweet et al. 2005



Auditory Cortex

Primary core area Al Is tonotopic.

A

1011011111
_—
Os 32s Cont.

low tones high tones

right hemisphere left hemisphee

Da Costa et al. 201 |



Spectrotemporal model

Spectrotemporal model (Shamma, 2005) of early auditory cortex is of this form:

Spectrotemporal
receptive fields

Cochleagram Cortical output

Frequency —




Spectrotemporal model

Spectrotemporal model (Shamma, 2005) of early auditory cortex is of this form:

Spectrotemporal
receptive fields

Cochleagram

Cortical output
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Hierarchical Processing Model

Primary auditory cortex: Shamma 2005
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Auditory Cortex and Audition

Core area Belt area

Tramo et. al, Curr. Opin. Neuro. (1999) , %monkey

Parabelt area *



Auditory Cortex and Audition

Core area Belt area

Tramo et. al, Curr. Opin. Neuro. (1999) , %monkey

Parabelt area *



Auditory Cortex and Audition

Spectrotemporal filtering? Shamma, 2005
Core area Belt area

Tramo et. al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *



Auditory Cortex and Audition

Spectrotemporal filtering? Shamma, 2005 177
Core area Belt area

Tramo et. al, Curr. Opin. Neuro. (1999) %monkey

Parabelt area *

!



A Pitch-Sensitive Voxels
Right Left N=12

Human auditory cortex
contains a region that
responds more to tones
than noise;

25%

HE | 50%
% of Subjects with a Pitch Response at Each Voxel

Pitch Response: Resolved Harmonics > Noise

B Best-Frequency

Extends out of tonotopic
cortex:

0.2kHz ETTTTT 6.4 kHz
Frequency of Maximum Response

—— Qutline of Pitch-Sensitive Voxels



Brain (2000), 123, 2400-2406

Identification of a pathway for intelligible speech
in the left temporal lobe

Sophie K. Scott,! C. Catrin Blank,> Stuart Rosen? and Richard J. S. Wise?



2402 S. K. Scott et al.
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Fig. 1 Spectrograms of ‘They’re buying some bread’. Time is represented on the abscissa (0.0-1.43 s) and frequency on the ordinate
(0.04.4 kHz). The darkness of the trace in each time/frequency region is controlled by the amount of energy in the signal at that
particular frequency and time. (A) Normal speech (Sp) is intelligible with clear intonation. (B) Spectrally rotated speech (RSp) is not
intelligible without extensive training, though some phonetic features and some of the original intonation are preserved. (C) Noise-
vocoded speech (VCo) is intelligible, has very weak intonation and a rough sound quality. (D) Spectrally rotated noise-vocoded speech
(RVCo) is completely unintelligible and does not sound like a voice.



Model Architecture Class

-\g;calization

A = architecture class

dpq
dt

argmin|L(p,,)]
acA

where p* is result of

—A(t) - (Vp, L(2))zeD

“learning rule”

L = loss function D = dataset

l
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Core Task-Driven Modeling |dea
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Task-Driven Modeling:

WW“ layer 2 layer 3
|, Optimize for
performance on a

challenging audrtory

task, fixing parameters b

2. Compare to neural
data.

\
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Apply to auditory tasks, where the regions themselves are less well known.



Core Task-Driven Modeling |dea

Alex Kell Josh McDermott



Optimize for Performance: The Task

600-way word-recognition task assembled by:

Recordings from standard speech recognition databases (TIMIT, W5S)) with
words spoken at least 20 times

Combined with significant background noise

p auditory scenes “She had your had’
» speech babble dark suit in suit
greasy wash water ‘wash’

» music clips
al year ... " vear



Optimize for Performance: The Task

600-way word-recognition task assembled by:

Recordings from standard speech recognition databases (TIMIT, W5S)) with
words spoken at least 20 times

Combined with significant background noise

oo
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c X
O ~

c S 60
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h babbl 5

» speech babble $E a0
c ©O
S %

. S £ 20
» music clips S
5 L

¥ 0

Backgrounds — humans not close to celling.



Optimize for Performance: The Task

Task: 600-way word-recognition task.

Architecture: Hyperparameter search over |-D and 2-D convolutional
structures, with different numbers of layers, kernel sizes, operations, &c.




Optimize for Performance: The Task

Task: 600-way word-recognition task.

Architecture: Hyperparameter search over |-D and 2-D convolutional
structures, with different numbers of layers, kernel sizes, operations, &c.
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Performance Results

Performance on 600-way word-recognition task
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... for model, measured on held-out data with novel speakers and
audrtory background noise.



3ehavioral comparison:
CNN & humans on same task

VWord recognition in complex backgrounds
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3ehavioral comparison:
CNN & humans on same task

VWord recognition in complex backgrounds

2| conditions: 600
dry AFC

4 different background types at 5 SNR levels:
Auditory scenes  Speech babble



Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14)
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14)
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
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Behavioral comparison: CNN & humans on same task

Human Proportion Correct (n=14) Model Proportion Correct
- 1.0 MUSiC — 1.0 /—-_; ¢
7 i @
: 08 )\/ : 0.8
o o
O o
c 0.6 / c 0.6
2 0
504 504
o \ o
2 / Speech <
a 0.2 a 0.2

babble
00 === =3 . 00 === =
Background SNR (dB) Background SNR (dB)
Human v. model

1.0
o
o ©

NB:

CNN optimized
for task

LEGEND
- Music

= Auditory scenes 0.5

— Speech babble performance

not for human
behavior match

MODEL proportion correct

0.0 0.5 1.0
HUMAN proportion correct



Does distortion In a periphery-like representation
explain pattern of performance!

Measure physical distortion of background noise
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram .d.istortion
1.0 by condition
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Coc:hlgagranrgj distortion
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human

1.0 by condition performance
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 by condition performance
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Proportion correct

Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 : by condition performance
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
100 \ 14 ai by condition performance

@ . .

E Does distortion

[ Bad N a periphery-like representation

LE explain pattern of performance!’

o

o 0.2

+3_nf. -t Cochleagram

tion

-9 -6 -3 O

Background SNR (dB)

l ®\/usic @®Auditory sc

—
(=]
(e=]

iscrimination

Percent correct d

(=]

Frequency

Time

SENSATION & PERCEPTION 3e, Figure 11.13
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 : by condition performance
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
100 \ 14 ai by condition performance
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
100 \ 14 ai by condition performance
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Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
100 \ 14 ai by condition performance
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E Does distortion

[ Bad N a periphery-like representation

LE explain pattern of performance!’
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Proportion correct

Distortion and pattern of performance.

Human Proportion Correct (n=14) Cochleagram distortion Cochleagram distortion v. human
1.0 : by condition performance
Musi
o Does distortion
& N a periphery-like representation
X explain pattern of performance!
0.2

o
o

6 -3 0 +3 Inf. 9 -6 -3 0 +3
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Distortion in a highly nonlinear feature space
explains the pattern of performance.
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Imaging Experiment

MRl response data collected™ on 165 commonly heard natural sound stimul.

Man speaking
Flushing toilet
Pouring liquid
Tooth-brushing
VWoman speaking
Car accelerating
Biting and chewing
Laughing

Typing

Car engine starting
Running water
Breathing

Keys jangling
Dishes clanking
Ringtone
Microwave

Dog barking

Road traffic

Zipper

Cellphone vibrating
Water dripping
Scratching

Car windows
Telephone ringing
Chopping food
Telephone dialing
Girl speaking

Car horn

Writing

Computer startup sound
Background speech
Songbird

Pouring water

Pop song

Water bolling

Guitar

Coughing
Crumpling paper
Siren

Splashing water
Computer speech
Alarm clock
Walking with heels
Vacuum

Wind

Boy speaking
Chair rolling

Rock song

Door knocking

*Sam Norman-Haignere, Nancy Kanwisher, and Josh McDermott



Neuroscience Methods

A Naturally MethOdS
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ynapse gL Macaques
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Imaging Experiment

For each voxel, measured average response to each sound:

o = N W

20 60 100 140

o == N @

20 60 100 140

NORTNORTIY

20 60 100 140
All 165 Sounds

o = NN W

Response
%Sgwsglomange




Imaging Experiment

For each voxel, measured average response to each sound:

11065 Voxels

165 Sounds

Response Magnitude

Data matrix: voxels X sounds.



Imaging Experiment

Neural predictivity: the ability of model to predict each individual
voxel's activity using linear regression.

065

: ‘«L-ﬁ)‘,'

165 Sounds




Response Reliability at Voxel Level




Model Productivity at Best Layer




Model Productivity at Best Layer

R RN

Example first-layer filters

(Remember: spectrotemporal model (Shamma, 2005):)




Model Productivity at Best Layer

— b L

ple first-layer filters

Median Voxel Predictivity




Comparison to Spectrotemporal Filtering Model

Spectemp. explains
more variance

Difference in
variance explained -0.15 0 0.15 -0.15 0 0.15




Comparison of Predictivity by Rol

B Our network (selected architecture, trained filters)
| Spectrotemporal model
B Random-filter network (selected architecture, untrained filters)
Random-filter network (unselected architectures, untrained filters)

b e

O
o

Variance
explained
o
N

O
o

Frequency- Pitch- Music- Speech-
se ectlve selective selective selectlve

Region
of
Interest




Median Predictivity as a Function of Model Layer

Median variance explained across all of auditory cortex

Variance explained

0.8

0.6 -

0.4 -

0.2 -

Word branch

!

model

Our trained
network
Spectrotemporal

Random-filter
network




Predictivity Difference Between High and Low Model Layers

Higher layer

explains
more variance

-015 0 0.15 -015 0 0.15
Difference in variance explained




Differentiation by Region of Interest

variance explained in tonotopic regions

Tonotopic
(C Primary)

o
@

o
~

o
o

variance explained
(corrected for reliability)

05

pool5 |

conv2
pool2
conv3 |
conv4
convs



Differentiation by Region of Interest

variance explained in tonotopic regions

Tonotopic
(C Primary)

08}

variance explained
(corrected for reliability)

05

conv2
pool2
conv3 |
conv4
convs
poolS

S p eeC h - Se | eC‘tlve ' varjance explgined in s?eech regigns

o
@

(c Non-primary)

o
~J

variance explained
(corrected for reliability)

o
N

0.5

pool5S |

conv2
pool2
conv3 |
conv4d
conv5



Differentiation by Region of Interest

B Our network (selected architecture, trained filters)
| Spectrotemporal model
Il Random-filter network (selected architecture, untrained filters)
Random-filter network (unselected architectures, untrained filters)

Frequency-selective Pitch-selective Music-selective Speech-selective
voxels voxels voxels voxels
0.9 ; 0.9 0.9 0.9 ;
c = / ——— B — e
m 4 4 4 ~ - 4 Lo —
% L ’ 4
o 0.5 - _f 0.5 - ﬁ 05 | fﬁ 05 A i
8
C
S _ _ _ /
©
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Ongoing: Functionality Organization by Task

}
primary auditory cortex
}
l -1
* Music Genre

|dentification
Word Recognition



Ongoing: Functionality Organization by Task

!

primary auditory cortex

F—
|
}

-

Music Genre
|dentification

!
!

Word Recognition

Word recognition task

Background
+ noise

Lo mlaiandel e 587-way AFC:




Ongoing: Functionality Organization by Task

Word recognition task

Background
+ noise

!

primary auditory cortex

/l\
!
!

Music Genre
|dentification

!
!

Word Recognition

Musical genre task

Excerpted + Background

music noise
41-way AFC:
Which genre?

2 SecC.



Ongoing: Functionality Organization by Task

Word recognition task Musical genre task
Excerpted + Background Excerpted + Background
speech noise music noise
587-way AFC: 41-way AFC:
Word at 1 sec.? Which genre?
2 sec. 2 sec.

Variety of architectures with different stream branching points:

ﬂﬂ[ ﬂ (1 T~ | |
Nllitwmwma, - [l




Ongoing: Functionality Organization by Task

Word recognition task Musical genre task
Excerpted + Background Excerpted + Background
speech noise music noise
587-way AFC: 41-way AFC:
Word at 1 sec.? Which genre?
2 sec. 2 sec.

Variety of architectures with different stream branching points:

Jﬂﬂ[ﬂﬂlﬂlﬂl-- ; |
") ;“'i - .. ‘ -
agsr?ﬂﬂ[yﬂﬂﬂﬂ“ﬂﬂﬂ W *ﬁgﬁ

Architectural meta-parameter optimization yields specific branched model:

Word
classifier

Genre
classifier




Analysis of Model Architectures

Differentiation of processing streams into different subsets of brain voxels:

a. Frequency-selective b. Pitch-selective
voxels voxels
L 0.9 _ 0.9
%-% 0.7 - AN e —
SO
X _
> O 0.5 | | | 0.5
00&%006& QOO\Q/ 00&(b 00§b‘ 00(\4(0 QOO\(O
Network trained only on word recognition
== Network trained only on genre recognition
C. Music-selective d. Speech-selective
0.9- voxels 0.9- voxels

0.7 /\ 0.7
/_
0.5 - 0.5 J |




Analysis of Model Architectures

Word
i classifier
g
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& classifier
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. Interesting contrast to ventral stream, many
_different visual tasks supported by single stream. ..
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Analysis of Model Architectures

Word
classifier

Genre
classifier

. = S % =
_\\\‘u—u—-
L L

R KR

0
= [N00000
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& ‘\'“\ AN

IT >V4 >V 1| across

many tested visual tasks
(see lect. 3)

g

2-D Retinal Area

0.57 0.61
o HES 031
l
I
0.0 0.0

Major Axis Length Aspect Ratio
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028 023
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Perimeter

Y-axis Rotation
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0.;
0

4

. Interesting contrast to ventral stream, many
_different visual tasks supported by single stream. ..
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Analysis of Model Architectures

IT >V4>V]|

many tested visual tasks

dCroSS

(see lect. 3)

Word
classifier

Genre
classifier

. Interesting contrast to ventral stream, many

_different visual tasks supported by single stream. ..

> =

Categorization Identification

2-D Retinal Area Perimeter 3-D Object Scale
0.68f 0.36 0.57 0.61 0.61
0.34p 0.18 ‘,"0.28 0.31 0.30
—
=g |
| ‘ i ‘

0.0 0.0 0.0 0.0! 0.0

X-axis Position Y-axis Position Major Axis Length Aspect Ratio Major Axis Angle

47

0.66 [
) l—II
0.0

0.56 o.
|
0.28 023 ‘
00 0.0

Y-axis Rotation X-axis Rotation
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0.29 0.18
0.14 0.09
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Ongoing: Functionality Organization by Task

!
primary auditory cortex
!
l .
L | Finer structure: phoneme,
} Music Genre biphone, triphone hierarchy?

|dentification
Word Recognition /
\




Goal-Driven Modeling Principle
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Categorization Performance (balanced accuracy)

60 16O et al (2014)

Word Recognition Performance
(training percent correct)



Rodent Somatosensory Cortex

Petersen, 200/
A From Whisker to Cortex B Whiskers and Barrels
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Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
-~
V4
o000 MMI; A1
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C  Thalamocortical connectivity D  Corticocortical connectivity
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Chengxu  Mitra Hartmann
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
~
4
e0Q@0 MMHA1 . .
ecoo0. _-9?»92“8” * Spatiotopic sensor
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels * Spatially-structured input data
~
4
o000 NEA2(AD, , ,
coooy 83‘”'8'. - * Spatiotopic sensor
//} o \ ( \(‘.3,0'2 Clli-"'j-,
o?® g quz D1 \—
ew.lsf!‘-" * Potentially hierarchical structure
C  Thalamocortical connectivity D  Corticocortical connectivity
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Rodent Somatosensory Cortex

Petersen, 200/

A  From Whisker to Cortex B  Whiskers and Barrels ¥ Spatially-structured input data
eeoe0 M”' (AD, , . .
....: e % Spatiotopic sensor
Q
.

quz 01 =’ . . .
me# % Potentially hierarchical structure

* Poorly understood higher
C  Thalamocortical connectivity D  Corticocortical connectivity cortical areas

Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

*—

Cortex
Trigeminal nuclei [; 23 T s A —
T Sty || | 22 S
> 4 barrel 4
, = »AA) ( ) ........ . I
Trigeminal >< >L<X Sa 41——» T - *=
lion 4
Ganglon A 4 4 Thalamus SR I e — ) | Sb

y \\ 6
» >
Matched to real
morphology 2?7 2?7
i % >
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——
—

MWW /

== “Chair”

3 (o}
=/ Task-Optimized
Input Shapes Artificial Vibrissal Array : Neural Network
Architecture(s)

(14 DUCk”

Shape Category

Recognition
Output

Hypothesis: can get a model for this cortical cascade by
optimizing properly-sized CNN with whisker-like sensor input

. for some ethologically relevant somatosensory task.
Chengxu  Mitra Hartmann

Zhuang & Lab



First have to build a model of the sensory to gather data.

Using published data from Mitra Hartmann's group

Chengxu  Mitra Hartmann
Zhuang & Lab



First have to build a model of the sensory to gather data.

Follicle —

Using published data from Mitra Hartmann's group

Chengxu  Mitra Hartmann
Zhuang & Lab



Rodent Somatosensory Cortex

a) Fixed-Position “Follicle” D)
Measuring Forces & Torques
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Rodent Somatosensory Cortex

Exactly the "right’” case for a deep cortical cascade .. ..
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Rodent Somatosensory Cortex

Four distinct architecture families with different hypotheses about how temporal
and spatial information Is integrated.

Spatiotempo
r\,aIForces and torques (18)
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Rodent Somatosensory Cortex

Four distinct architecture families with different hypotheses about how temporal
and spatial information Is integrated.

Spatiotempo Temporal-
I&@ialorques (18)

r,aIForces and torques (18)
h\ ,_L|

& Whiskers (31)

%/’

Time (110)




Rodent Somatosensory Cortex

Four distinct architecture families with different hypotheses about how temporal
and spatial information Is integrated.

Spatiotempo Temporal-
I&@ialorques (18)

r\,aIForces and torques (18)

Sl

Whiskers (31)

Spatial-
Temporal

Time (110)
Whiskers (3P Forces and torques (18) C 1T

/ Z

\




Rodent Somatosensory Cortex

Four distinct architecture families with different hypotheses about how temporal
and spatial information Is integrated.

Spatiotempo Temporal-
r\,aIForces and torques (18) I&@ialorques (18)
g // - o Whiskers (31)
S _) ~ 1l - WT/ //—> 0
S I — \ ~({IITtrrererrp ===
E\ — == 1] _ 2
a x31
Spatial- Fully Recurrent w/ Deep
Time (110)
V\]Ts?ersr(gpgo!:g !nd torques (18) C 1T Fvﬁ|§ecr! (E1)aFco!c(essand torques (18)
~
—
— H

Optimization goal: object shape recognition.



Rodent Somatosensory Cortex

Spatiotempo Temporal- Spatial- Fully Recurrent
ral Spatial Temporal
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Optimization goal: object shape recognition.



Rodent Somatosensory Cortex
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Optimization goal: object shape recognition.



Rodent Somatosensory Cortex
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* Most specific networks don't work, but within
each family, some much better than others

* Filter training and depth very important factors, but number of parameters less so

* Recurrent networks with long-range feedbacks achieve highest performance with
comparatively few parameters and small (neurally reasonable) numbers of units
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Rodent Somatosensory Cortex

Representational Dissimilarity Matrices (RDMs) capture signatures of different
stages of the computation

v_i = vector of responses to i-th stimuli

ROM[i, j] = corr(v_i,v_])

Middle Layer




Rodent Somatosensory Cortex

Representational Dissimilarity Matrices (RDMs) capture signatures of different
stages of the computation

v_i = vector of responses to i-th stimuli

ROM[i, j] = corr(v_i,v_])

Middle Layer Co Late Layer

& S
i b
.l:..:I .

0.00 0.16  0.00

RDMs have been successfully used to compare models to real neural data In
visual cortex (Kriegeskorte)



Rodent Somatosensory Cortex

Dimension reduction on RDMs can be used to “visualize” model differences.

different initial conditions

of parameters \

Principal Axis 2

Principal Axis |



Rodent Somatosensory Cortex

Dimension reduction on RDMs can be used to “visualize” model differences.

different initial conditions

of parameters \

Principal Axis 2

inter-mcv)mA
distance

Temporal-Spatial

within-model
variability

Principal Axis |



Rodent Somatosensory Cortex

Dimension reduction on RDMs can be used to “visualize” model differences.

Feedback RNN

different initial conditions

of parameters \ hypothetical

\ neural data
inter-mcv)mA
distance

Temporal-Spatial

Principal Axis 2

Mitra Hartmann
& Lab

within-model
variability

Exper‘imen‘ta| p|an: Principal Axis |

(1) collect neural responses in an intermediate area S|
(1) compute RDMs,
(1) compare to model families




Where 1t might work ...

Lf successful:
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Where it might NOT work
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Where it might NOT work . ..

So, recall, in vision:
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audition:
spectrotemporal layout, | channel

somatosensation:

spectrotemporal layout, ~6 channels ... SO there’s Something to exp/ain.



Where it might NOT work . ..
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Thousands of (genetically encoded)
input channels ... no obvious spatial
structuring ... simple behaviors ...



Where it might NOT work . ..

Olfaction (smell)
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Thousands of (genetically encoded)
input channels ... no obvious spatial
structuring ...simple behaviors ... [

. SO no need for deep networks.

Iwo layer random association model of piriform cortex.
(Stettler & Axel 2009)



Where it might NOT work . ..

Olfaction (smell)

Trichoid Basiconic Coeloconic
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Thousands of (genetically encoded)
input channels ... no obvious spatial
structuring ...simple behaviors ... [

. SO no need for deep networks.

Can task-trained model beat this—>  Two layer random association model of piriform cortex.
7! maybe not ... (Stettler & Axel 2009)



But see...

> Neuron. 2021 Dec 1;109(23):3879-3892.e5. doi: 10.1016/j.neuron.2021.09.010. Epub 2021 Oct 7.

Evolving the olfactory system with machine learning

Peter Y Wang 1, Yi Sun 2, Richard Axel 3, L F Abbott ', Guangyu Robert Yang 4
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PMID: 34619093 DOI: 10.1016/j.neuron.2021.09.010
Free article
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Figure 1. Artificial neural network
evolves with the connectivity of the fly
olfactory system

(A) The fly olfactory system.

(B) lllustration of the task. Every odor (a
million in total; 100 shown) is a point in the
space of ORN activity (50 dimensions; two
dimensions shown) and is classified based
on the closest prototype odor (triangles, 10(
in total; four shown). Each class is defined

by two prototype odors.

(C) Architecture of the artificial neural
network. The expression profile of ORs in
every ORN, as well as all other connection
weights, is trained.

(D) OR-ORN expression profile after
training. ORNs are sorted by the strongest
projecting OR.

(E) ORN-PN mapping after training. Each
PN type is sorted by the strongest
projecting ORN.

(F) Effective connectivity from OR to PN
type, produced by multiplying the matrices
in (D) and (E).
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Figure 3. Recurrent neural networks

converge with biological structures

(A) Schematic of a recurrent neural network
using recurrent connections (WRgc) (left)
and the equivalent “unrolled” network
diagram (right).

(B and C) Network connectivity between
neurons whose activity, when averaged
across all odors, exceeds a threshold at
different steps. (B) Connectivity from
neurons active at step 1 to neurons active
at step 2. Connections are sorted. (C)
Connectivity from neurons active at step 2
to neurons active at step 3, showing only
the first 20 active neurons at step 3.

(D) Number of active neurons at each step
of computation. At step 1, only the first 500
units in the recurrent network are activated
by odors. Classification performance is
assessed after step 3.

(E-I) Similar to (A)—(D), but for networks
unrolled for four steps, instead of 3.
Classification readout occurs at step 4.
Effective step 2—4 connectivity is the matrix
product of step 2-3 (G) and step 3—4



