

# CS375 / Psych 249: Large-Scale Neural Network Models for Neuroscience

---

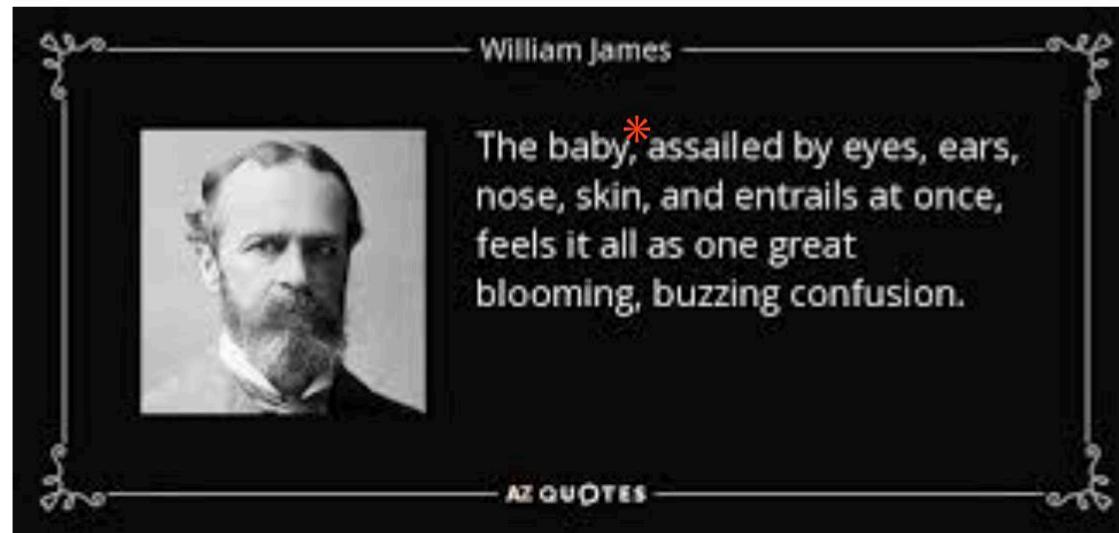
## Lecture 7: Modelling Infant Development

2026.01.28

Dr. Clíona O'Doherty  
*Department of Psychology*  
*Scaffolding of Cognition Team | Stanford NeuroAI Lab*  
*Stanford University*



Understanding complex, noisy data streams is a critical part of cognition.



Without sophisticated parsing and entity extraction, the world would be “as one great blooming, buzzing confusion” (for babies or otherwise).

\*actually not clearly true for babies ...

# How does intelligent behavior emerge?



Infants must learn to...  
parse their sensory input  
into meaningful  
knowledge



# How does intelligent behavior emerge?



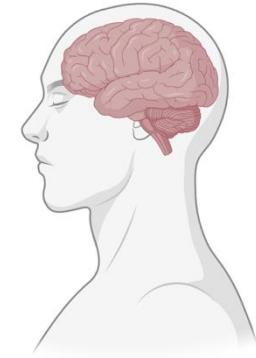
... use their bodies to interact with the objects they see

# How does intelligent behavior emerge?



... control their own motion through a space to interact with the environment

# How does intelligent behavior emerge?

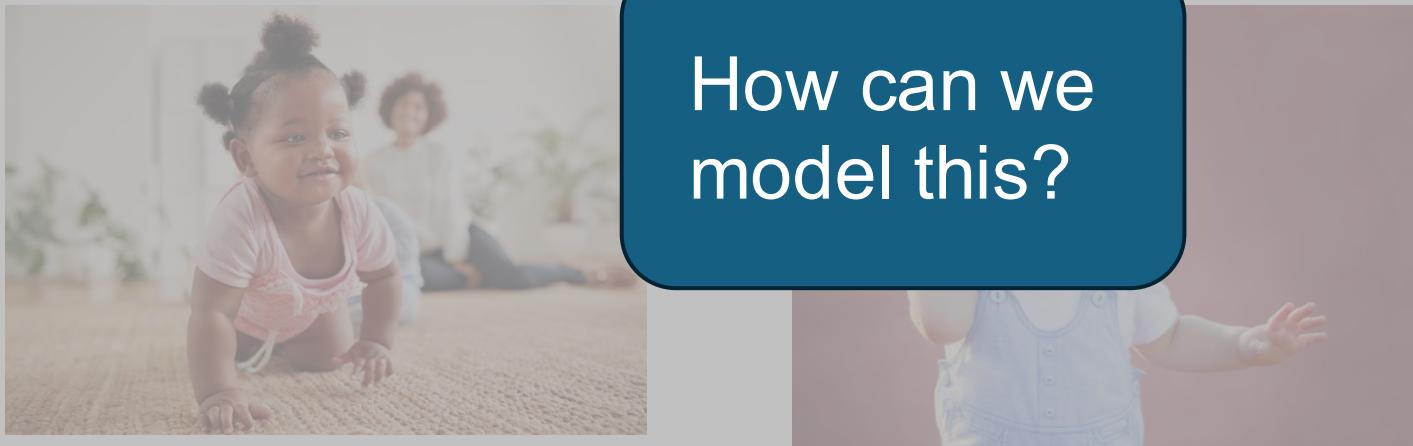


... language and how  
to map words to  
referents

# How does intelligent behavior emerge?



How can we  
model this?



Learn language and  
how to map words to  
referents

# Overview

---

- Why should we model development?
- How to study infants? What do we know about early life?
- Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?

# Overview

---

- Why should we model development?
- How to study infants? What do we know about early life?
- Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?

*“Nothing in biology makes sense except in light of evolution”*

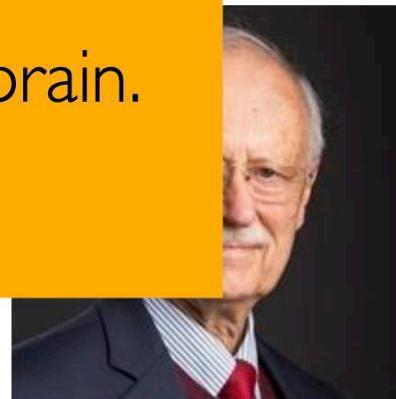


Dobzhansky

*“Nothing*

## **Restated:**

Behavior is highly constraining of the brain.



Gordon Shepherd

Nothing in neuroscience makes sense except in light of  
**optimization.**

*computational*



Behavior is highly constraining of the brain.

# Behavior is highly constraining of the brain.

CellPress

Neuron  
**Perspective**

## Neuroscience Needs Behavior: Correcting a Reductionist Bias

John W. Krakauer,<sup>1,\*</sup> Asif A. Ghazanfar,<sup>2</sup> Alex Gomez-Marin,<sup>3</sup> Malcolm A. MacIver,<sup>4</sup> and David Poeppel<sup>5,6</sup>

There are ever more compelling tools available for neuroscience research, ranging from selective genetic targeting to optogenetic circuit control to mapping whole connectomes. These approaches are coupled with a deep-seated, often tacit, belief in the reductionist program for understanding the link between the brain and behavior. The aim of this program is causal explanation through neural manipulations that allow testing of necessity and sufficiency claims. We argue, however, that another equally important approach seeks an alternative form of understanding through careful theoretical and experimental decomposition of behavior. Specifically, the detailed analysis of tasks and of the behavior they elicit is best suited for discovering component processes and their underlying algorithms. In most cases, we argue that study of the neural implementation of behavior is best investigated *after* such behavioral work. Thus, we advocate a more pluralistic notion of neuroscience when it comes to the brain-behavior relationship: behavioral work provides understanding, whereas neural interventions test causality.

Behavior is highly constraining of the brain.



But how does that behavior arise?



## Learning to adapt and behave in the first year of life

What are the mechanisms of neural development and cognitive function during infancy?

# Nature *versus* Nurture

---

## Nativism

Our development is preprogrammed by genetics

Plato - our sense data do not provide sufficient information to specify the abstract ideas and knowledge that humans possess

## Empiricism

Our environments and experiences shape our development

Aristotle - our sense data are sufficient to specify abstract concepts and ideas and, therefore, that human knowledge is acquired through everyday experience.

# It's not that simple ...

Empirical findings show that this dichotomy is implausible (Lewkowicz, 2011)

## Domain-specific

Infants possess **fragile**, specific **innate** knowledge

This can be sophisticated knowledge but might break under seemingly **trivial** circumstances

**Learning** plays the critical role of optimizing these basic building blocks

## Domain-general

Infants possess learning mechanisms that allow them to quickly acquire sophisticated knowledge

Experience is important but not necessary since infants can make **inferences**

These learning and reasoning mechanisms are **innate**

# It's not that simple ...

Empirical findings show that this dichotomy is implausible (Lewkowicz, 2011)

## Domain-specific

Infants possess ~~fragile~~ specific ~~innate~~ knowledge

This can be sophisticated but might break under circumstances

Learning plays the critical role of optimizing these basic building blocks

## Domain-general

Infants possess learning mechanisms ~~able~~ to quickly acquire knowledge

Important but not all the infants can make

We need to figure out  
the relative  
importance of each

These learning and reasoning mechanisms are innate

# How to study preverbal infants?



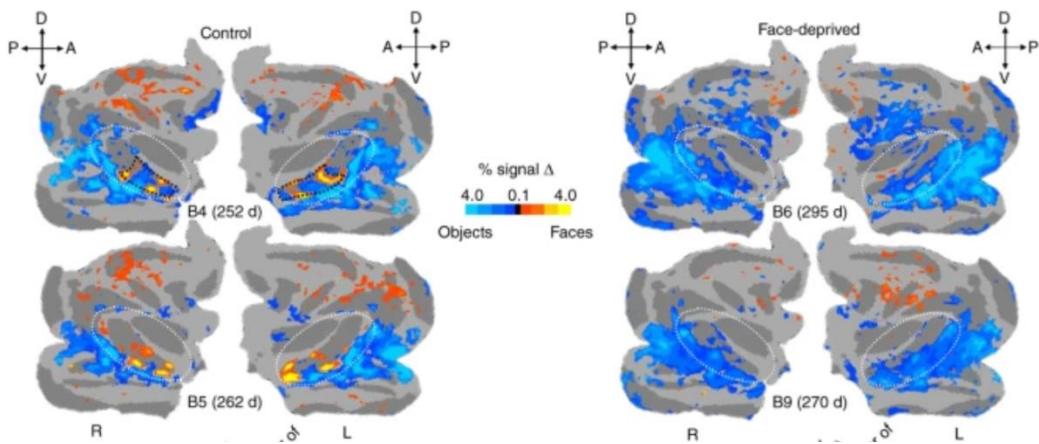
We can't ask them to do complex experimental tasks

We can't interfere with their learning and development

- Although we can use naturally arising differences such as preterm birth or twin studies

# How to study preverbal infants?

**Figure 1: Faces>objects and hands>objects activations in control and face-deprived monkeys.**



No controlled rearing like with animal models Arcaro et al., (2017)

We can't ask them to do complex experimental tasks

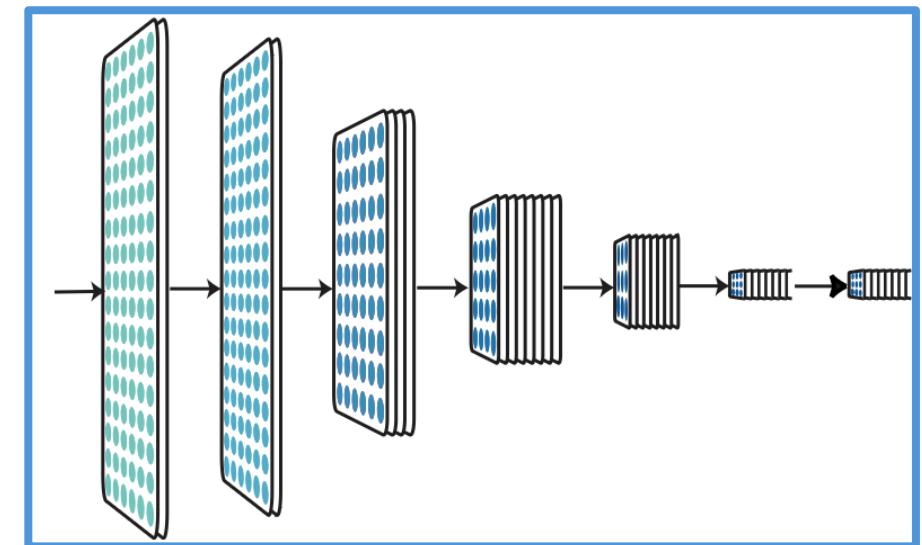
We can't interfere with their learning and development

- Although we can use naturally arising differences such as preterm birth or twin studies

# Could computational models be the answer?



*Brain*



*Model*

# What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don't have to be perfect to be useful
2. Open: Being able to access both the training sample and trained weights is critical for experimental research

Frank, 2023

Nice to have: Interpretable

Once we have this, we can ask **why questions**

Kanwisher, et al., 2023

# What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don't have to be perfect to be useful

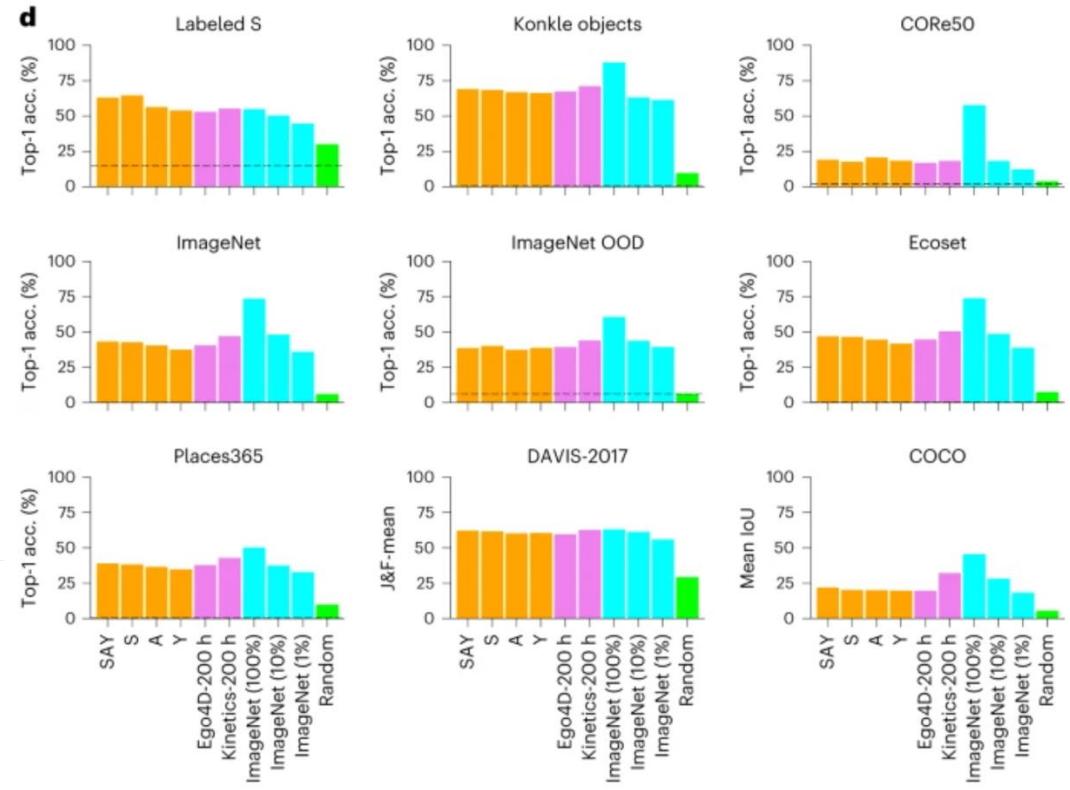
Article | Published: 07 March 2024

## Learning high-level visual representations from a child's perspective without strong inductive biases

A. Emin Orhan  & Brenden M. Lake

*Nature Machine Intelligence* 6, 271–283 (2024) | [Cite this article](#)

5322 Accesses | 24 Citations | 154 Altmetric | [Metrics](#)



# What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don't have to be perfect to be useful
2. Open: Being able to access both the training sample and trained weights is critical for experimental research

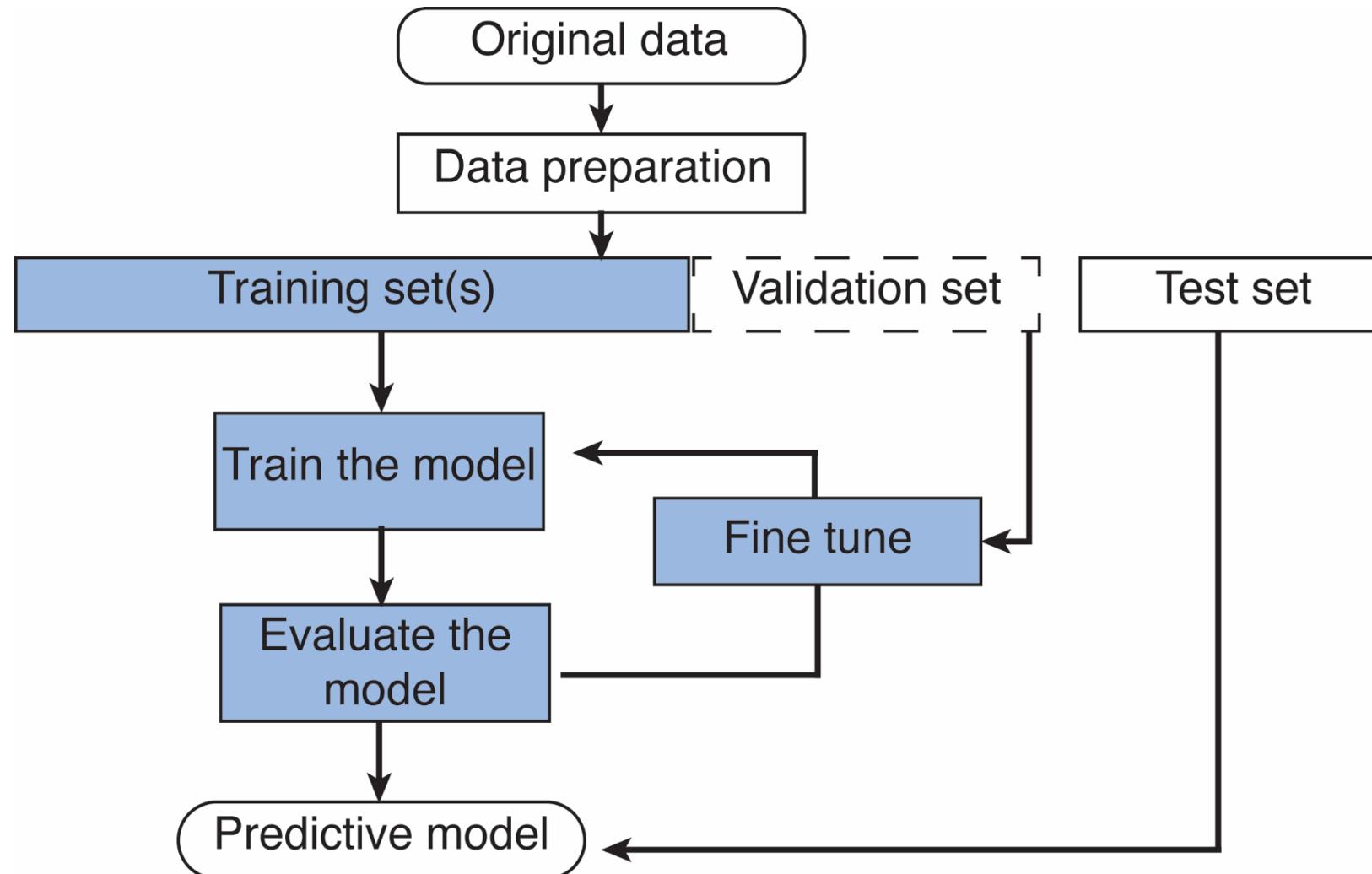
Frank, 2023

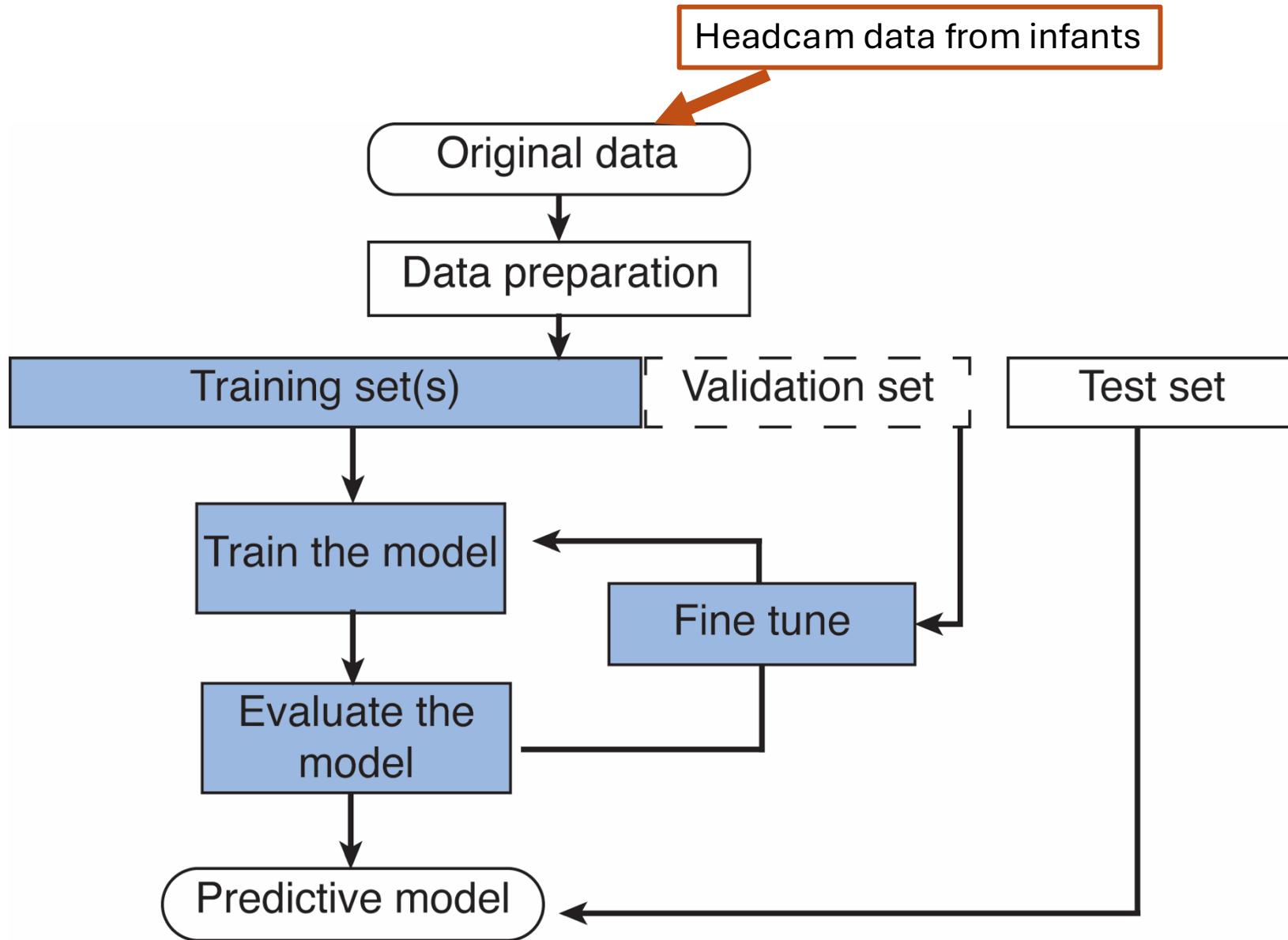
Nice to have: Interpretable

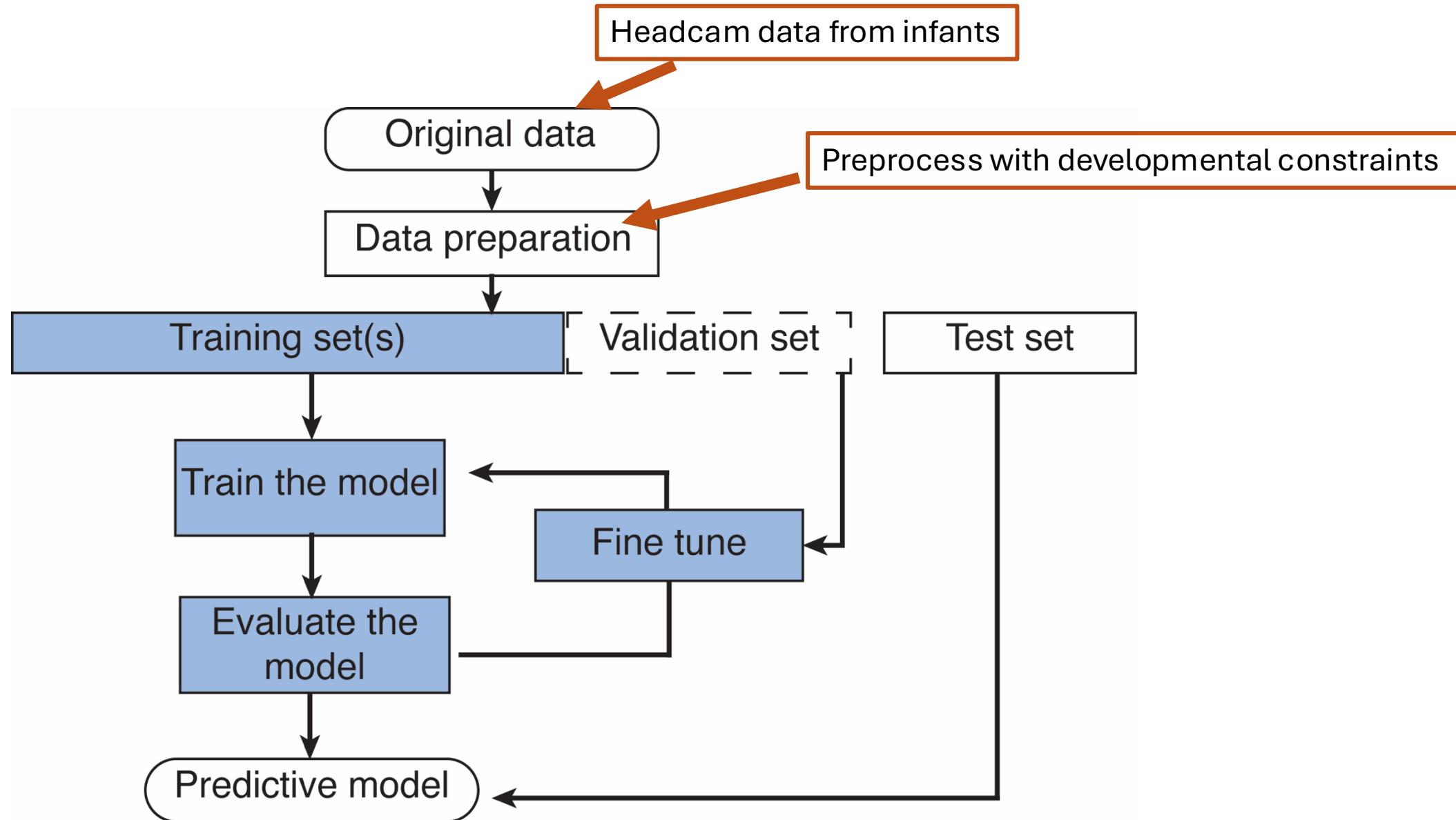
Once we have this, we can ask **why questions**

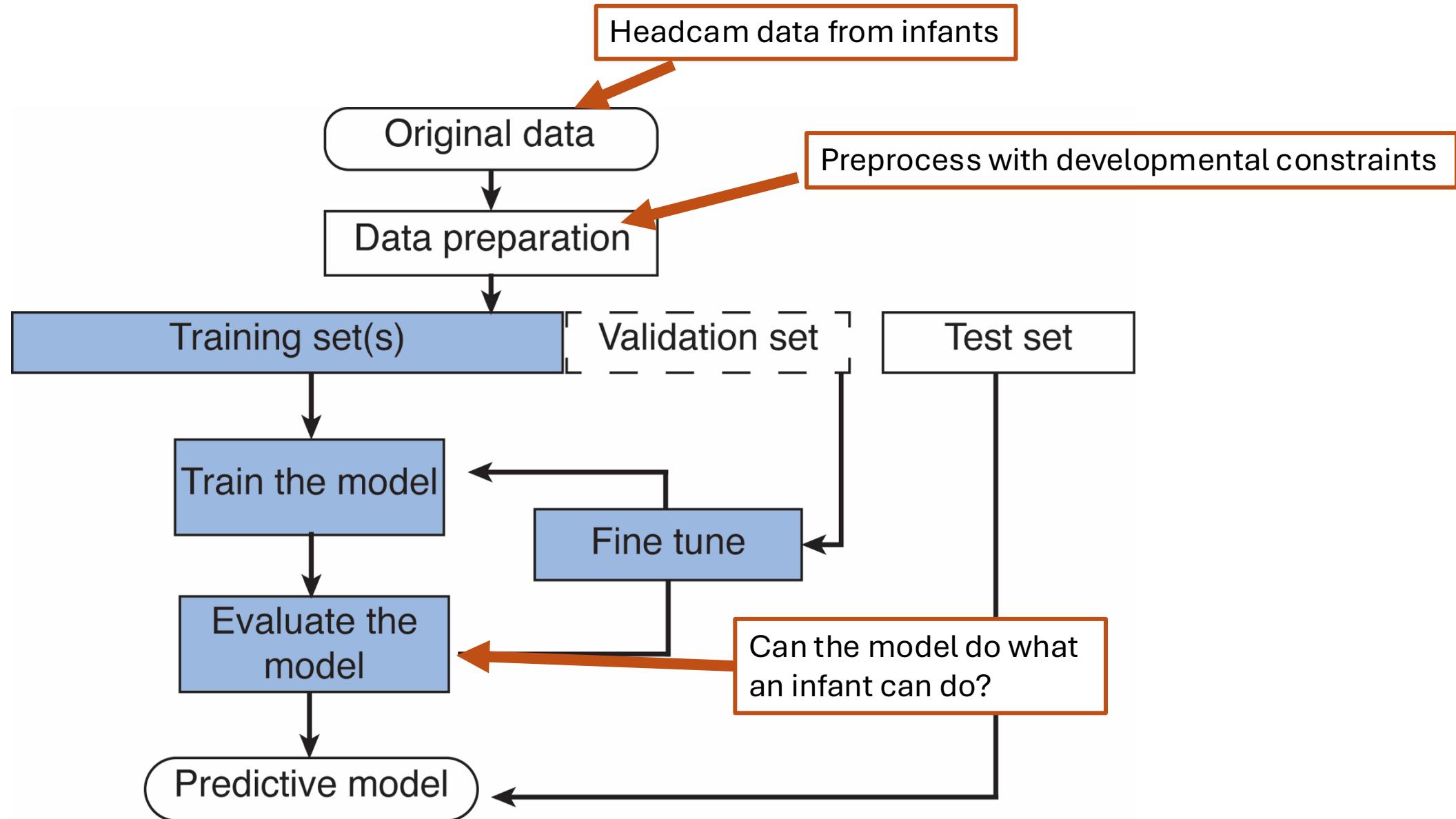
Kanwisher, et al., 2023

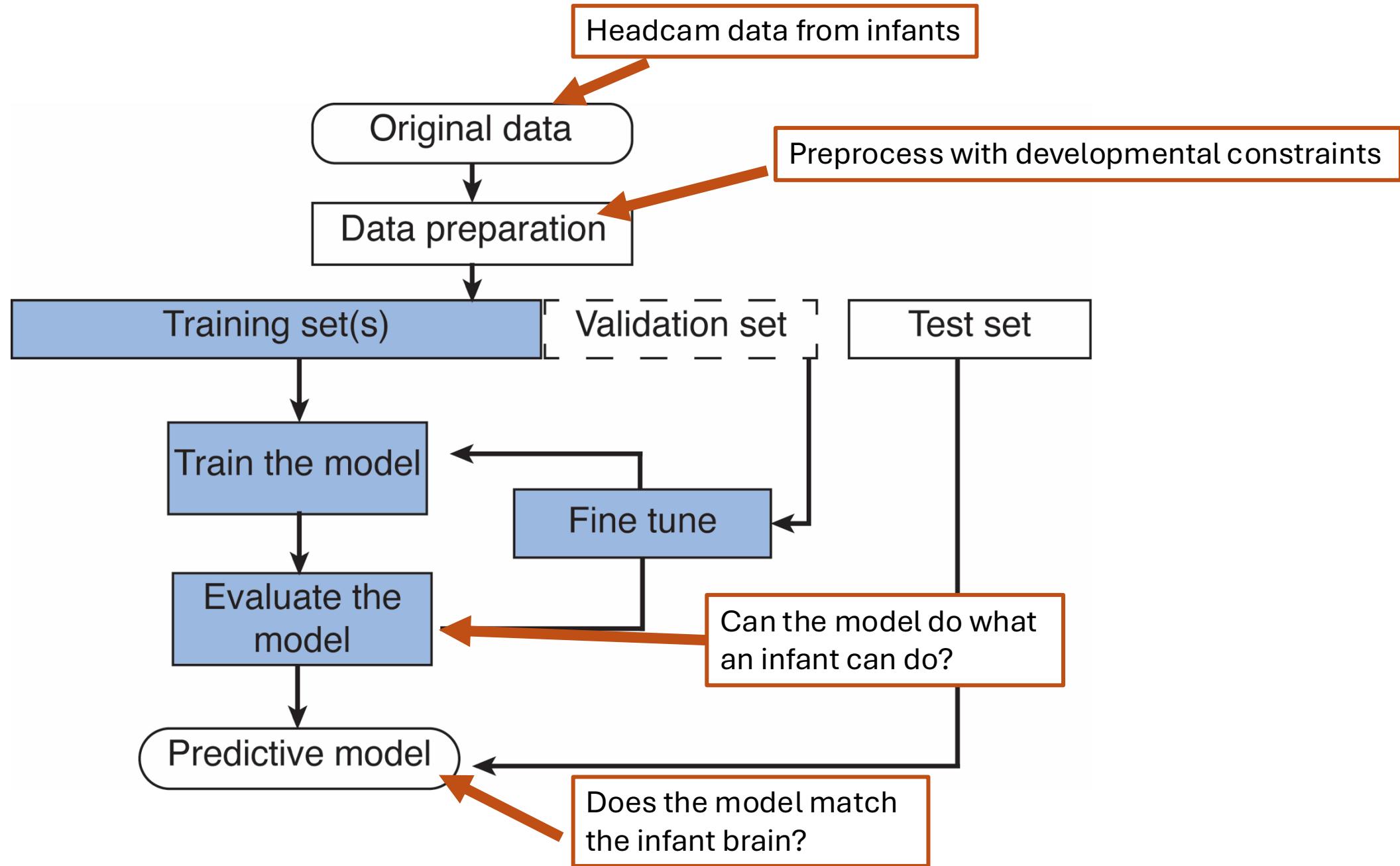
# What does development have to offer modelers?

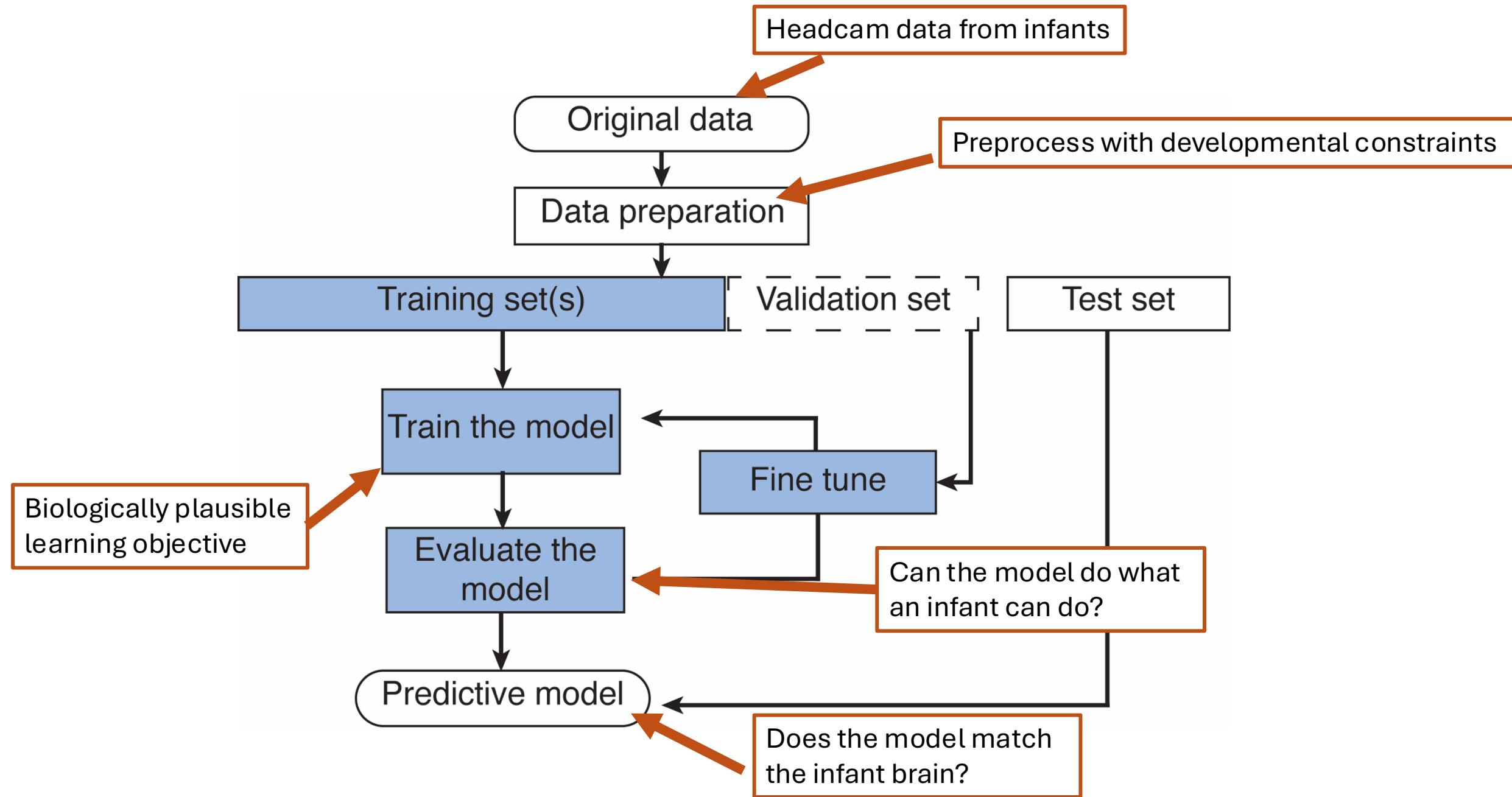


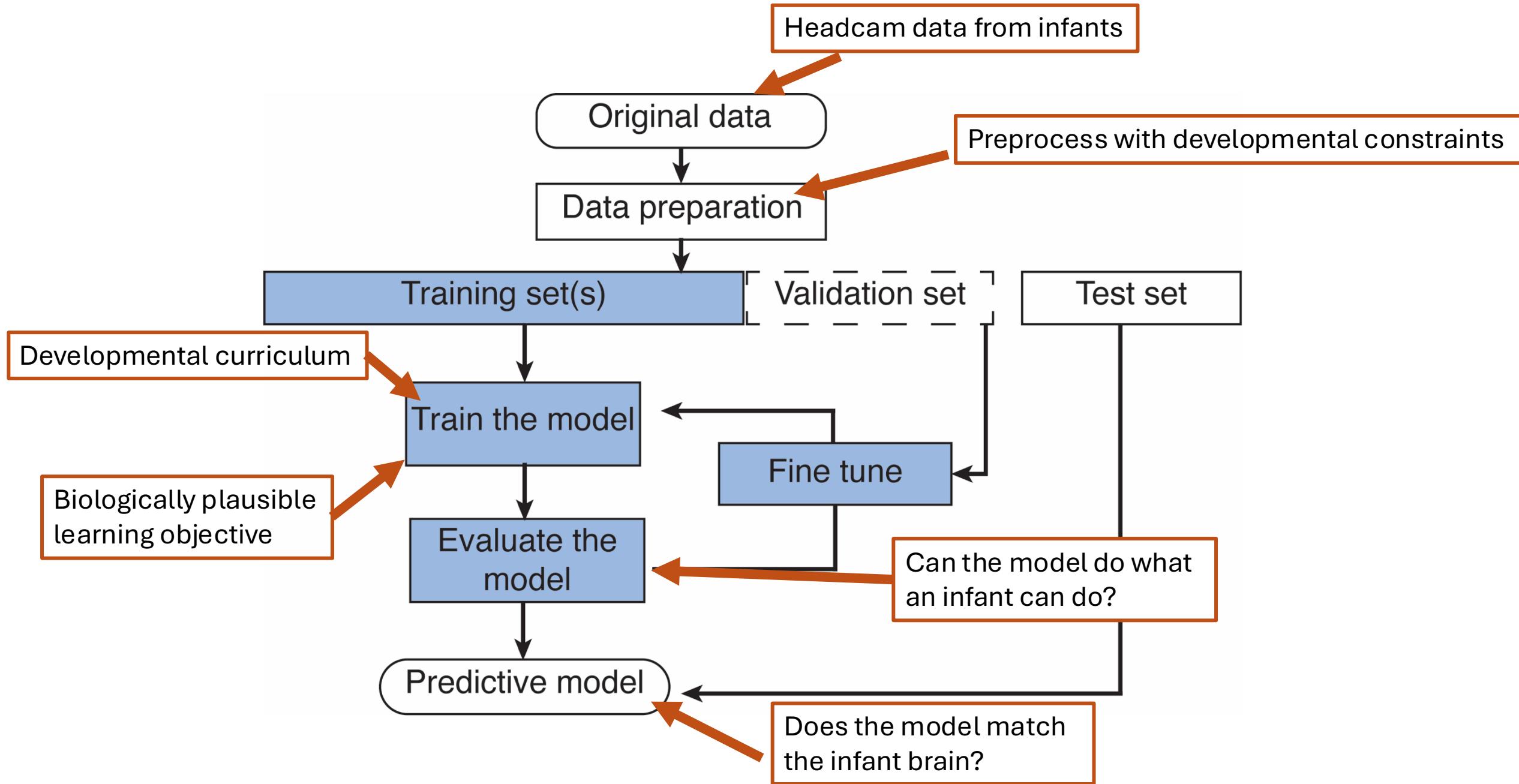






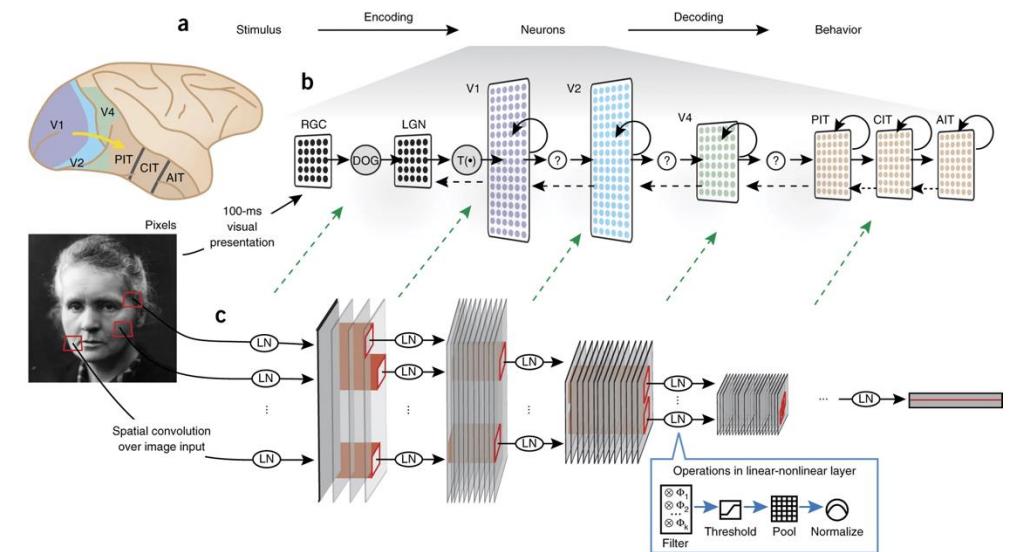






# Cognitive Computational Neuroscience

Deep neural network modelling of object  
recognition and high-level vision.



Yamins & DiCarlo, 2016

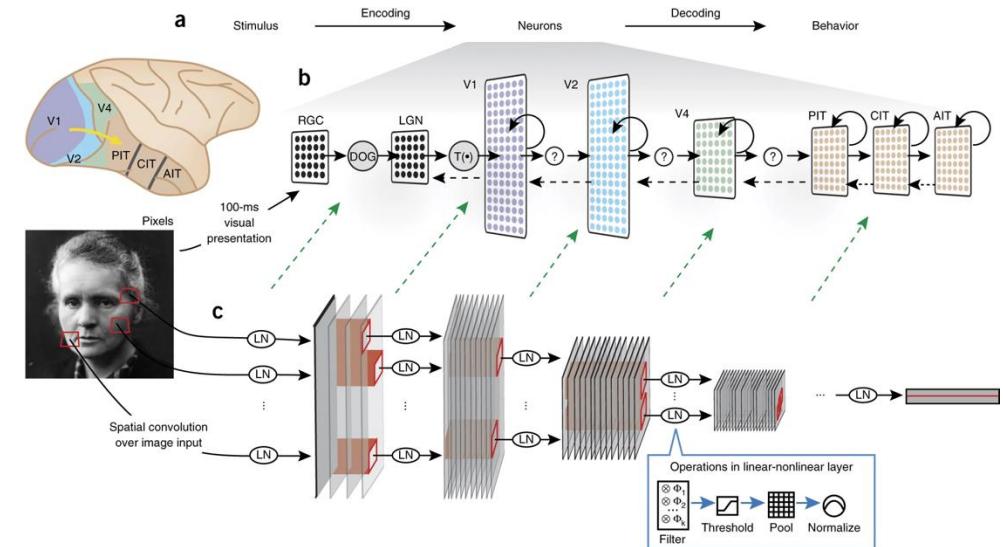


# Learning to recognise in the first year of life

What are the mechanisms of neural development and visual function during infancy?

## Cognitive Computational Neuroscience

Deep neural network modelling of object recognition and high-level vision.



Yamins & DiCarlo, 2016

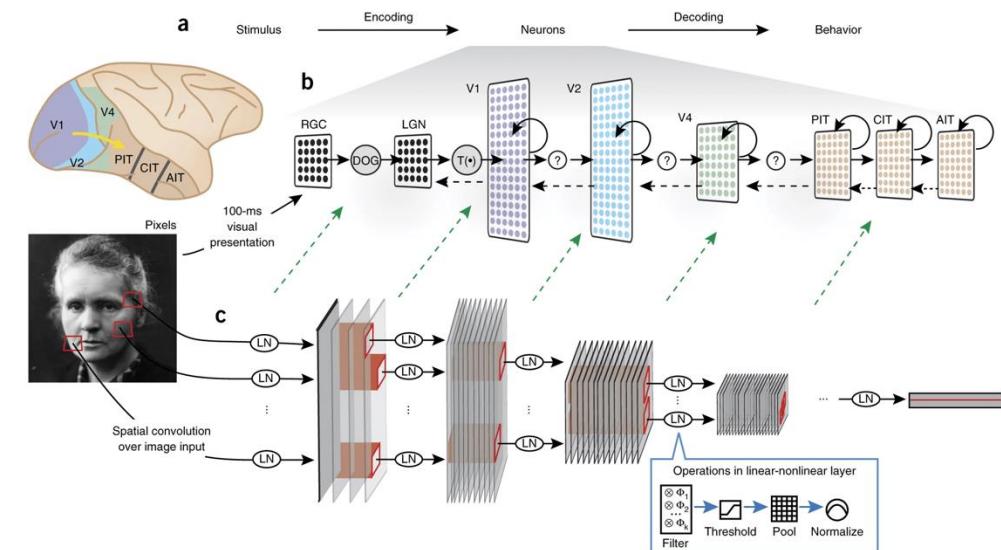


# Learning to recognise in the first year of life

What are the mechanisms of neural development and visual function during infancy?

# *Developmental* Cognitive Computational Neuroscience

# Deep neural network modelling of object recognition and high-level vision.



Yamins & DiCarlo, 2016

# Overview

---

- Why should we model development?
- How to study infants? What can we do in early life?
- Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?

# How to study preverbal infants?

Where we look reveals something about what we know

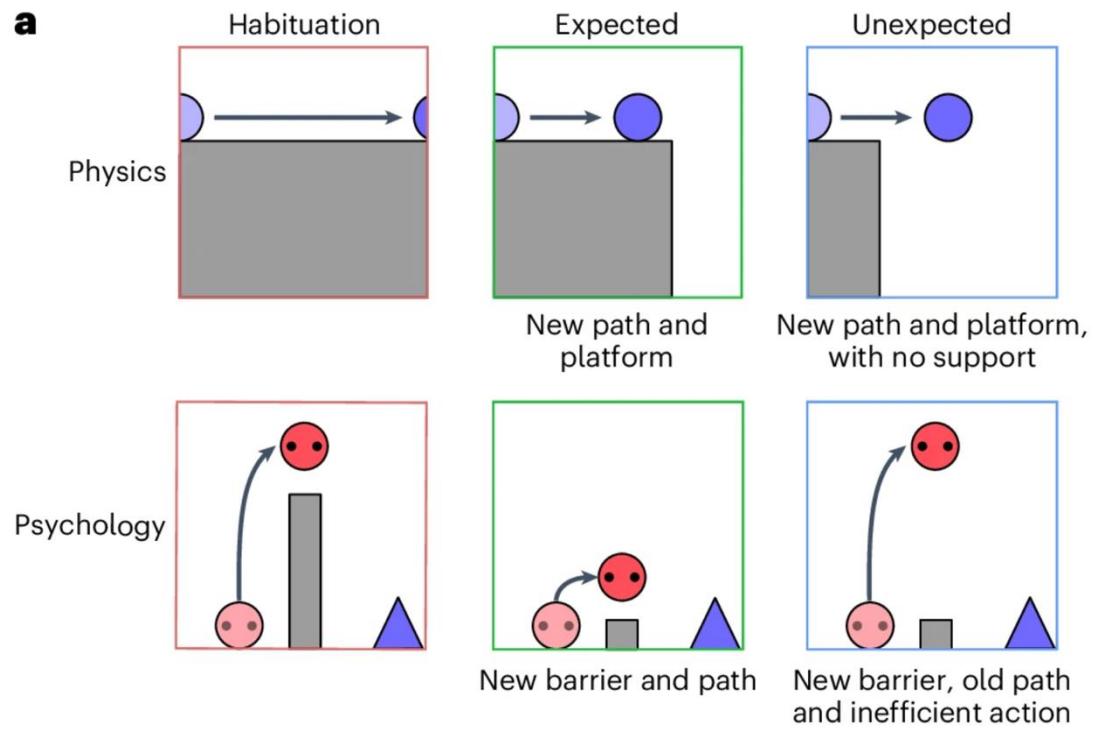


Fig. 1a, Kunin *et al.* (2024)  
Nature Human Behavior

## Domain-specific

Infants possess **fragile**, specific **innate** knowledge

This can be sophisticated knowledge but might break under seemingly **trivial** circumstances

**Learning** plays the critical role of optimizing these basic building blocks

## Domain-general

Infants possess learning mechanisms that allow them to quickly acquire sophisticated knowledge

Experience is important but not necessary since infants can make **inferences**

These learning and reasoning mechanisms are **innate**

# Core knowledge

---

Infants are born with knowledge for domains that are evolutionarily important for foundational skills

Elizabeth Spelke



|                   |                                                                                      |                                     |
|-------------------|--------------------------------------------------------------------------------------|-------------------------------------|
| <b>Cohesion</b>   |    | Objects stay whole/solid            |
| <b>Continuity</b> |    | Objects persist over space and time |
| <b>Contact</b>    |   | Objects do not move on their own    |
| <b>Support</b>    |  | Objects will fall if not supported  |

Objects  
Numbers

Places  
Agents

Plus: Forms, social reasoning...

# Statistical learning

---

A foundational, rapid cognitive mechanism enabling babies to detect structure, patterns, and probabilities in their environment

Jenny Saffran

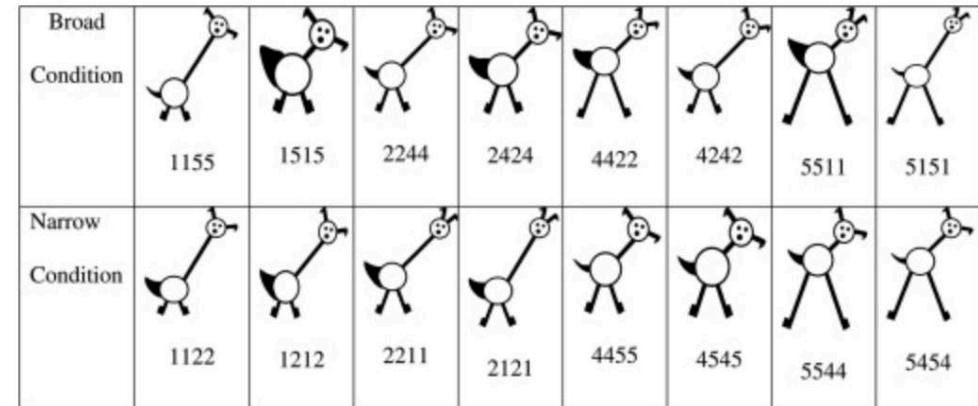
## Statistical Learning by 8-Month-Old Infants

Jenny R. Saffran, Richard N. Aslin, Elissa L. Newport

Learners rely on a combination of experience-independent and experience-dependent mechanisms to extract information from the environment. Language acquisition involves both types of mechanisms, but most theorists emphasize the relative importance of experience-independent mechanisms. The present study shows that a fundamental task of language acquisition, segmentation of words from fluent speech, can be accomplished by 8-month-old infants based solely on the statistical relationships between neighboring speech sounds. Moreover, this word segmentation was based on statistical learning from only 2 minutes of exposure, suggesting that infants have access to a powerful mechanism for the computation of statistical properties of the language input.

---

Science, 1996



Plunkett *et al.*, 2008

Learning an underlying distributional structure – labels can interact with the perceptual learning

# Unique perception in infants

---

Visual acuity and color perception are poor

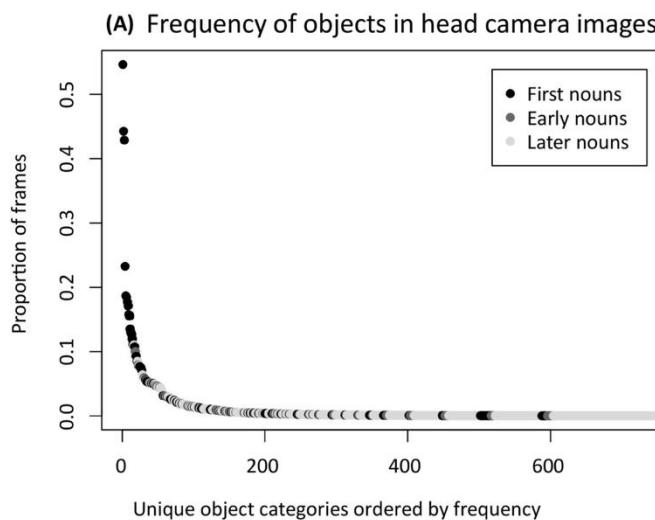
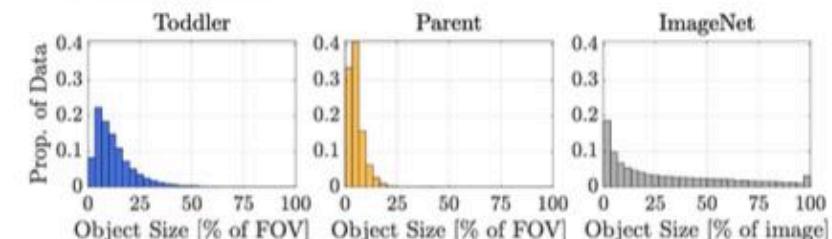


Newborn

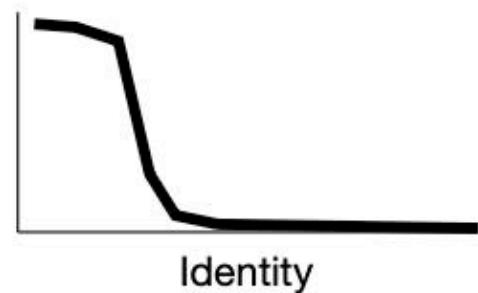
# Unique perception in infants

Visual acuity and color perception are poor

Infants see few objects/faces often



Face experience  
during first year



Smith et al., 2018

Bambach, et al., 2018; Jayaraman, et al., 2019

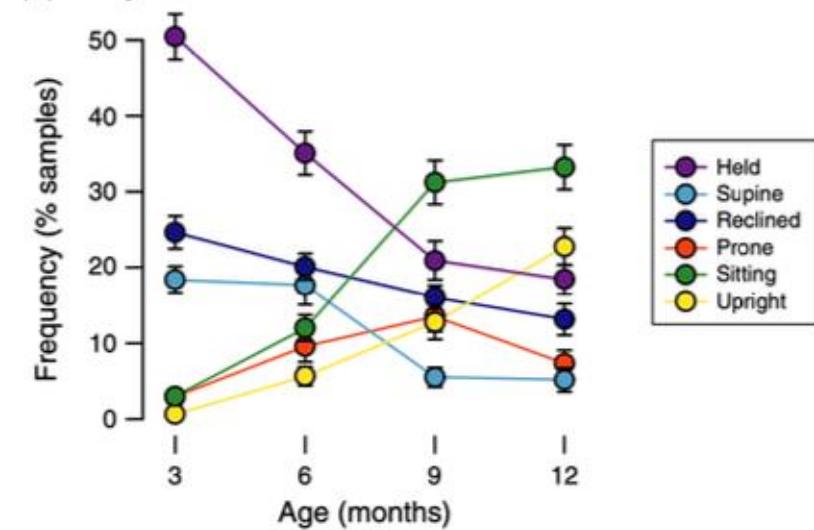
# Unique perception in infants

---

Visual acuity and color perception are poor

Infants see few objects/faces often

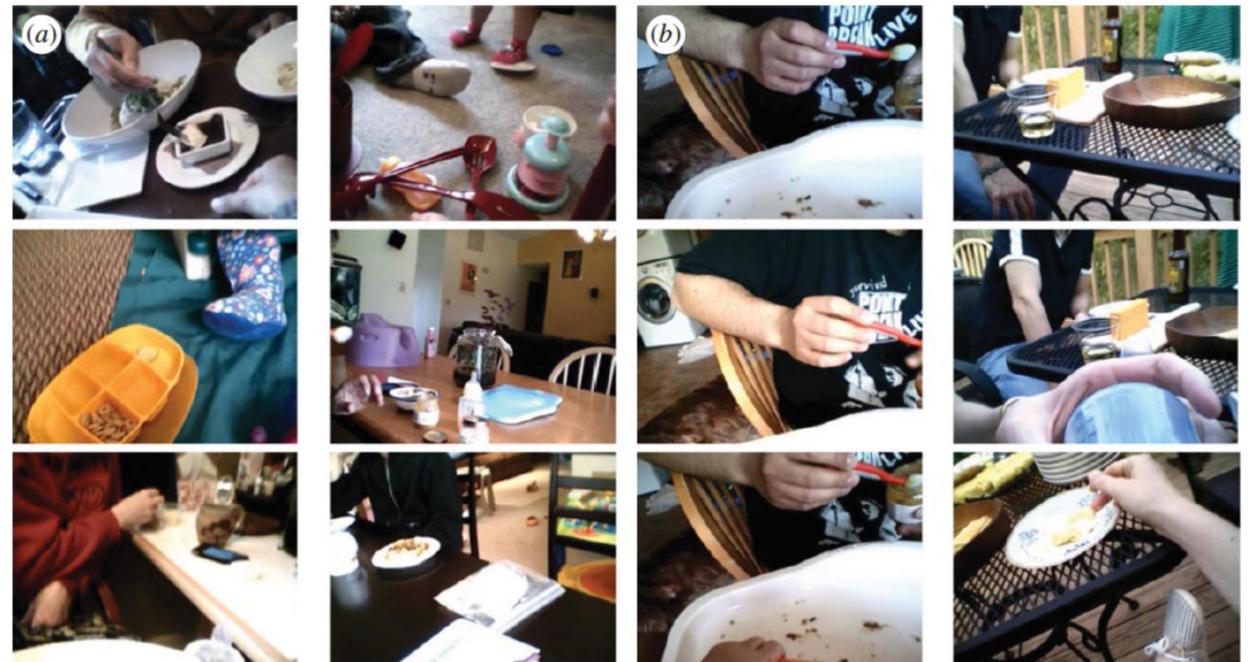
They are lying on their backs most of the time



# Headcam studies



This is more like what real visual experience looks like:



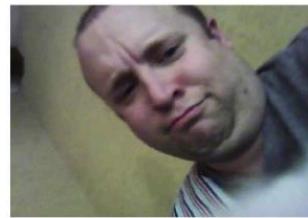
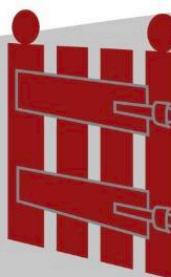
---

Clerkin, Hart, Rehg, Yu, & Smith (2017)

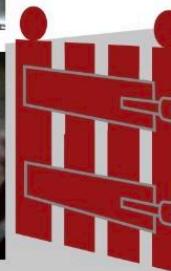
# The Developing Infant Creates a Curriculum for Statistical Learning

Linda B. Smith  · Swapnaa Jayaraman · Elizabeth Clerkin · Chen Yu

## Developmentally changing datasets



Age 1–3 months



Age 8–10 months



Age 12–18 months

# Unique perception in infants

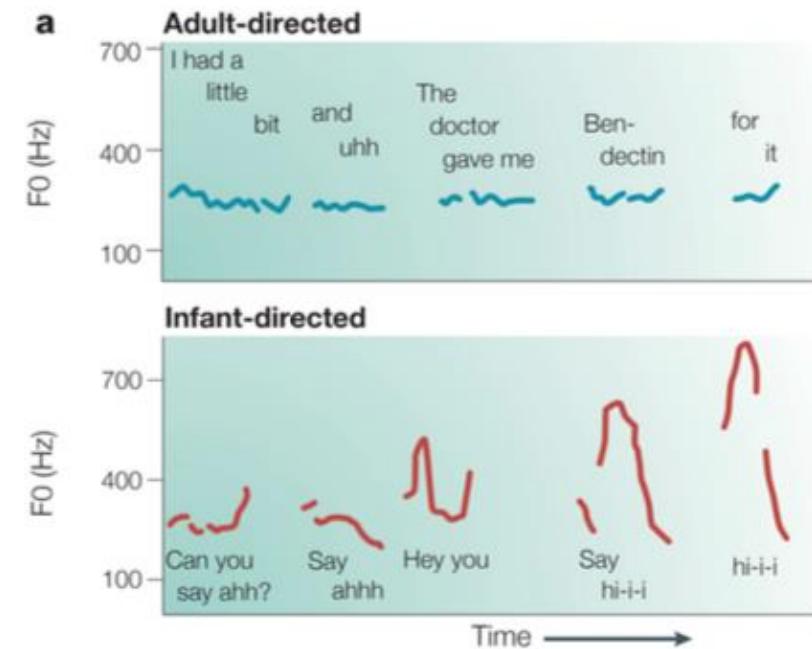
---

Visual acuity and color perception are poor

Infants see few objects/faces often

They are lying on their backs most of the time

Infant directed speech is unique



Fernald & Kuhl, 1987

## Domain-specific

Infants possess **fragile**, specific **innate** knowledge

This can be sophisticated but might break under circumstances

**Learning** plays the critical role of optimizing these basic building blocks

We need to figure out the relative importance of each

## Domain-general

Infants possess learning mechanisms that allow them to quickly acquire general knowledge

is important but not since infants can make mistakes

These learning and reasoning mechanisms are **innate**

Behavior is highly constraining of the brain.

But how does that behavior arise?

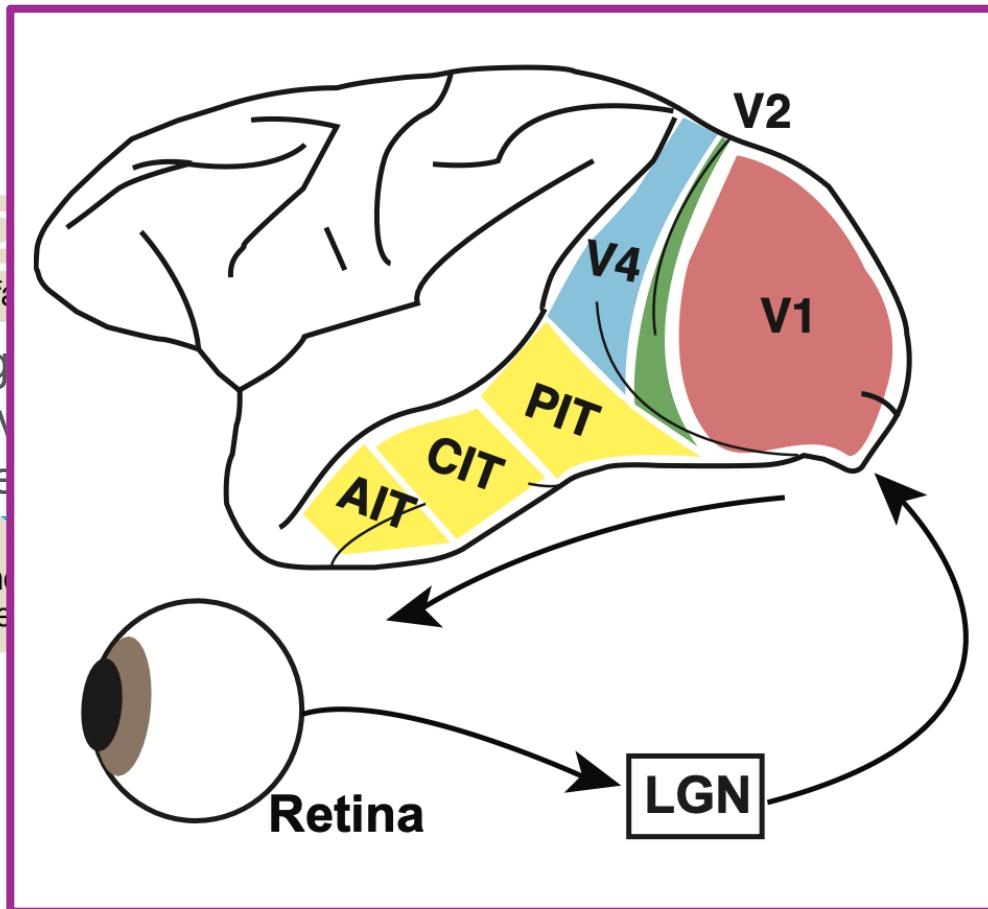
## Domain-specific

Infants possess **fragile** specific **innate** knowledge

This can be sophisticated but might break under circumstances

**Learning** plays the critical role of optimizing these basic building blocks

We need to figure out the relative importance of each



highly constraining of the brain.

does that behavior arise?

# Infant neuroimaging

---

## EEG

- Good temporal resolution
- Poor spatial resolution



## MEG

- Temporal + spatial
- Emerging technology in OPM-MEG



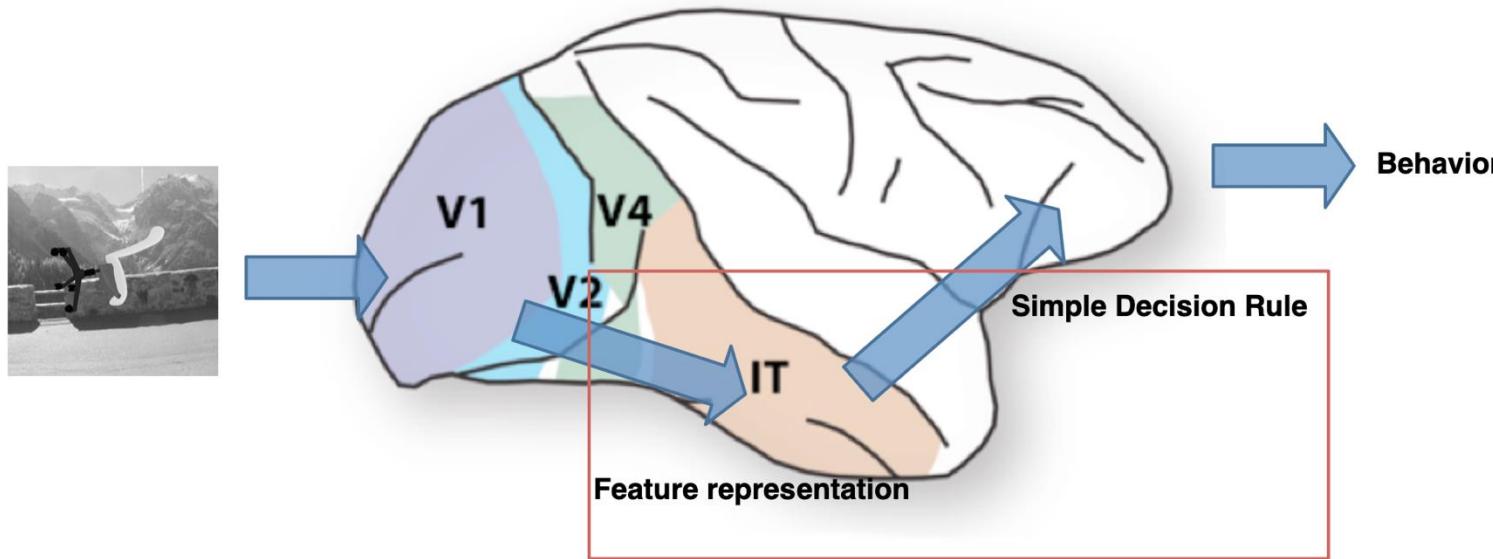
## fNIRS

- Better tolerated, easier to use in naturalistic setting
- Localisation not great



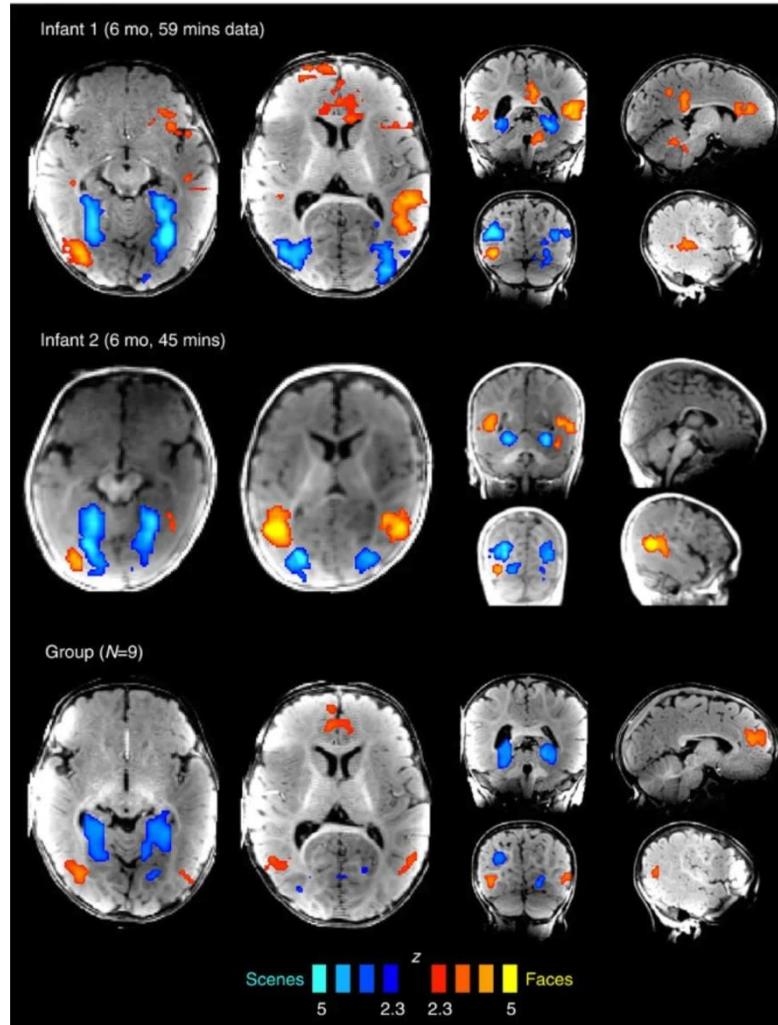
Fig. 1c, Corvilain *et al.* (2025)  
Imaging Neurosci

Fig. 2c, Gervain *et al.* (2023)  
Neurophotonics



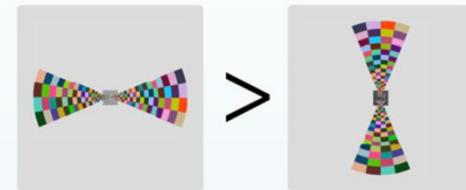
These methods make it difficult to study representations on the ventral surface of the brain

- But is MRI feasible in awake, behaving infants?

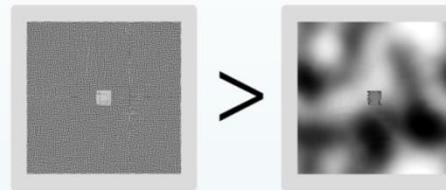


## Retinotopic mapping in human infants with fMRI

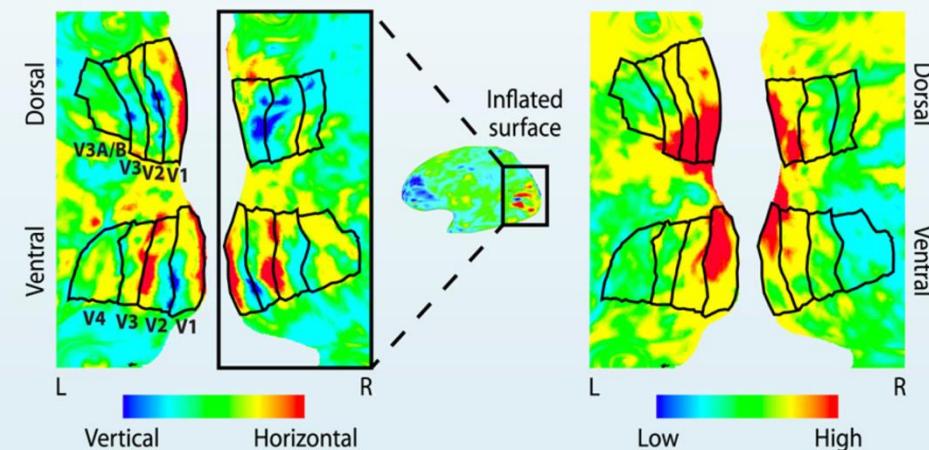
Horizontal vs. vertical orientation



High vs. low spatial frequency



Striate and extrastriate areas



Representative maps from a 5.5 month old  
(one of 17 sessions with infants 5–23 months)

Deen *et al.*, 2017  
Kosakowski *et al.*, 2022

Ellis *et al.*, 2020  
Ellis *et al.*, 2021

## EEG

- Good temporal resolution



Fig. 1c, Corvilain *et al.* (2025)  
Imaging Neurosci

## MEG

- Temporal + spatial
- Emerging technology in OPM-MEG



## fNIRS

- Better tolerated, easier to use in naturalistic setting



Fig. 2c, Gervain *et al.* (2023)  
Neurophotonics

## MRI

- High spatial resolution and access to deep brain structures

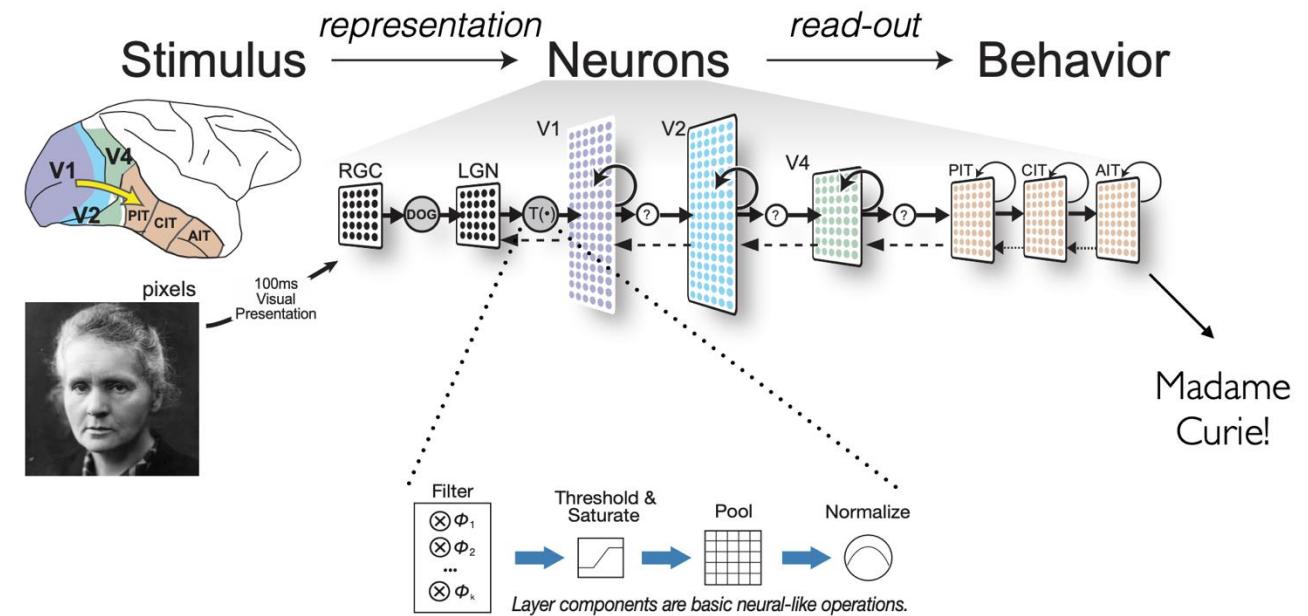


## Brain



?

## Model



# Overview

---

- Why should we model development?
- How to study infants? What can we do in early life?
- Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?

# Overview

---

- Why should we model development?
- How to study infants? What can we do in early life?
- Recent advances in Developmental NeuroAI. \*\*\* abridged version

Is it fair to say that AI is really like a baby?



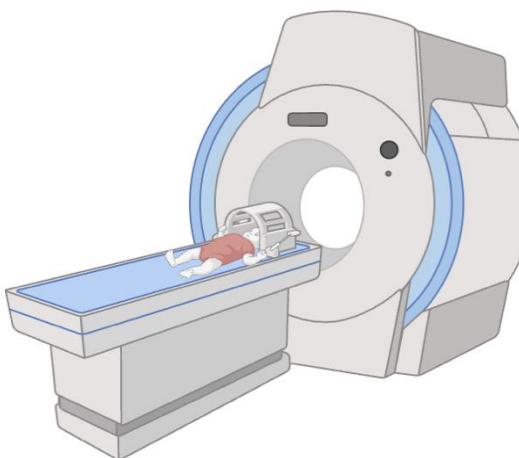
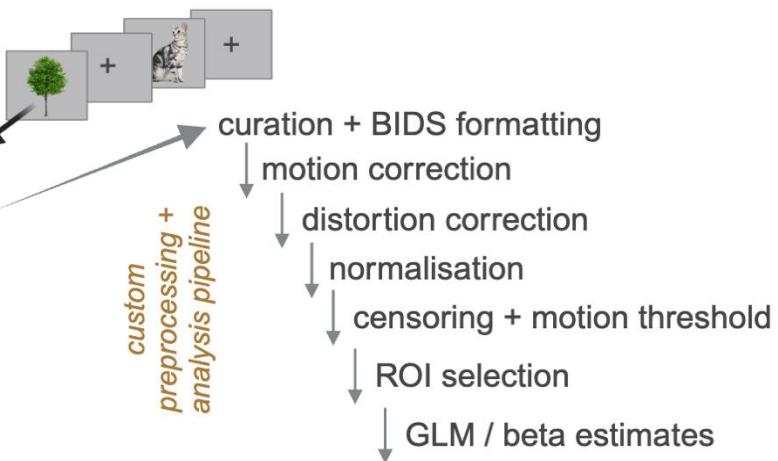
# Longitudinal awake infant fMRI



2-months (n=130)

9-months (n=65)

adults (n=18)

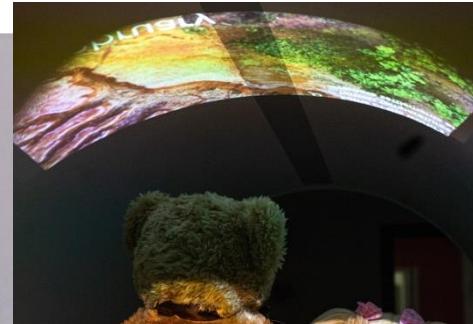




# Infant scan setup



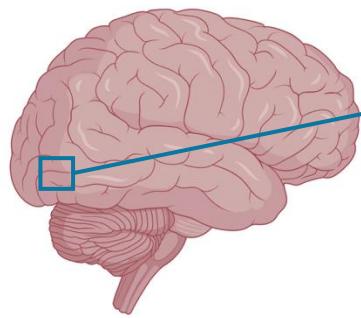
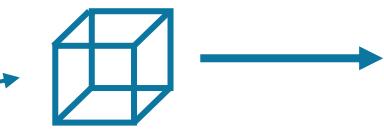
Flexible Task switching



Facial camera recording

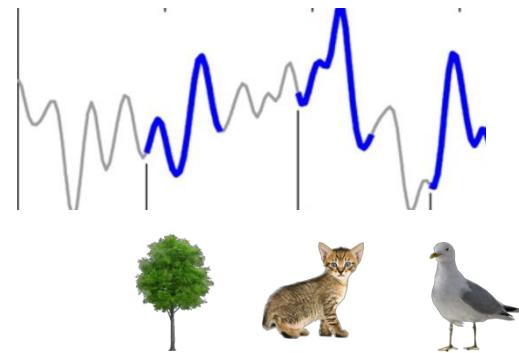
- real time monitoring
- retrospective tagging of attentive state

Inspired by Deen *et al.*, 2017; Ellis *et al.*, 2020



3mm  
isotropic  
voxel

BOLD



tree

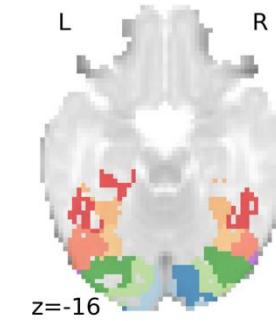


cat

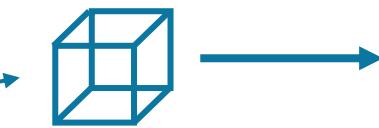


seagull

Many  
voxels  
per ROI

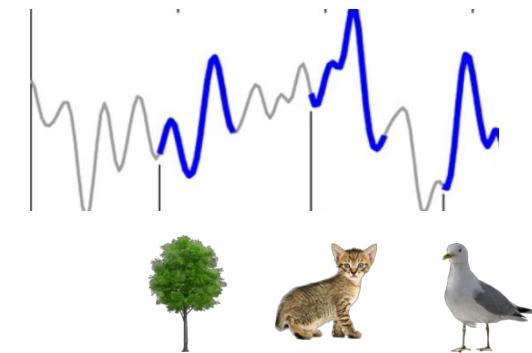


|   |       |
|---|-------|
| ■ | V1    |
| ■ | V2dv  |
| ■ | V3v   |
| ■ | hV4   |
| ■ | VO1   |
| ■ | PHC   |
| ■ | FG2   |
| ■ | FG4   |
| ■ | LOCl  |
| ■ | LOClp |
| ■ | LOC   |

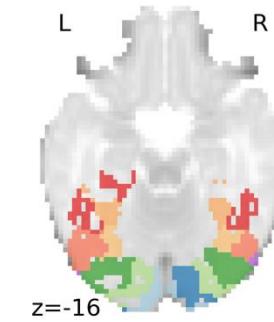


3mm  
isotropic  
voxel

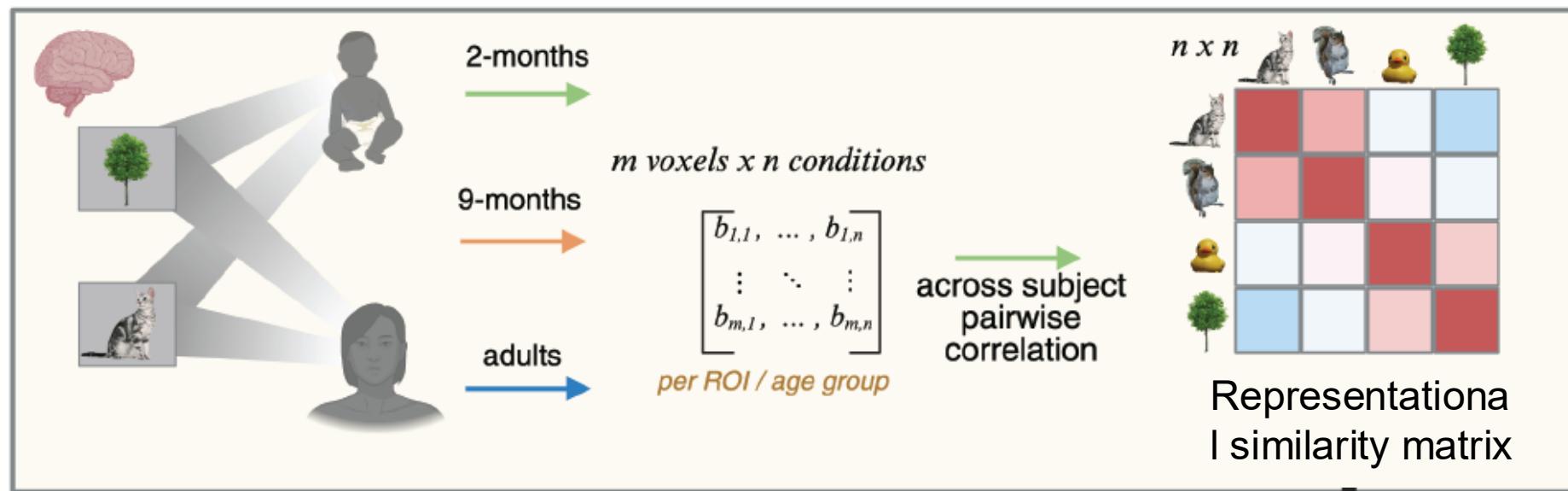
BOLD



Many  
voxels  
per ROI

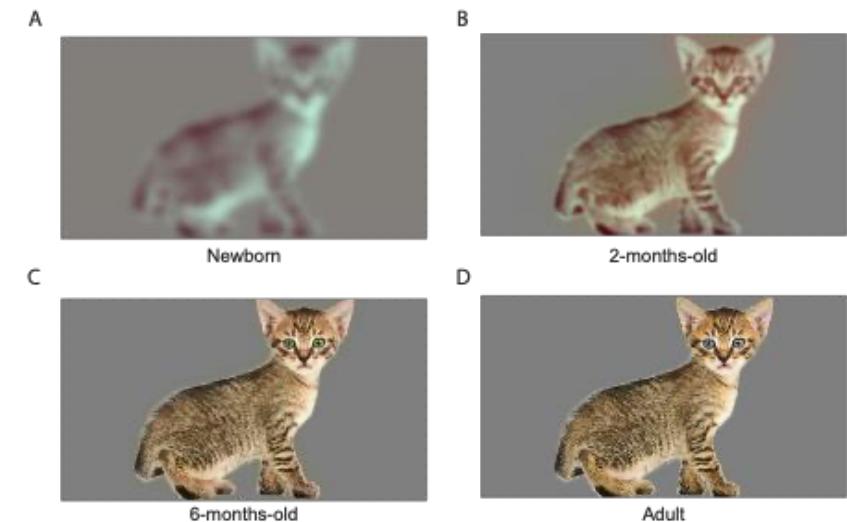


|   |                   |
|---|-------------------|
| ■ | V1                |
| ■ | V2dv              |
| ■ | V3v               |
| ■ | hV4               |
| ■ | VO1               |
| ■ | PHC               |
| ■ | FG2               |
| ■ | FG4               |
| ■ | LOCl <sub>a</sub> |
| ■ | LOCl <sub>p</sub> |
| ■ | LOC               |



# Pictures task for MVPA

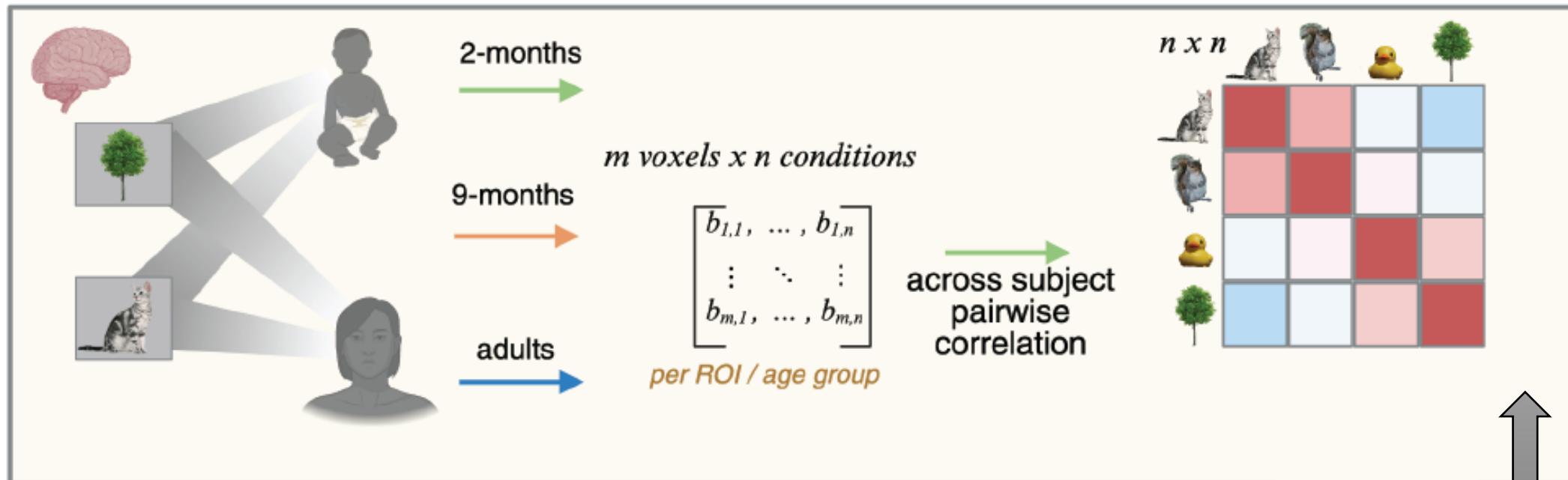
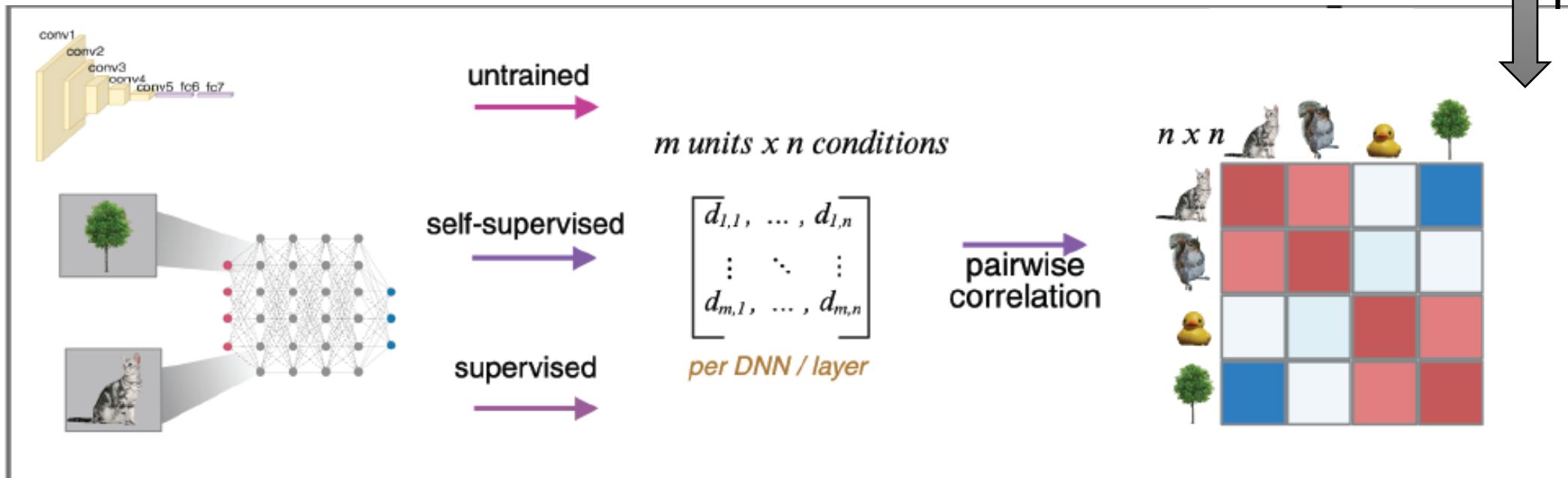
- 36 images
- 12 categories (x3 exemplar each)
  - Chosen across a variety of viewpoints
  - Each relates to video *contexts* in another task
- x4 categories per animate, inanimate small, inanimate large
- Images loom towards the infant
- 3 s presentation, separated by jittered fixation

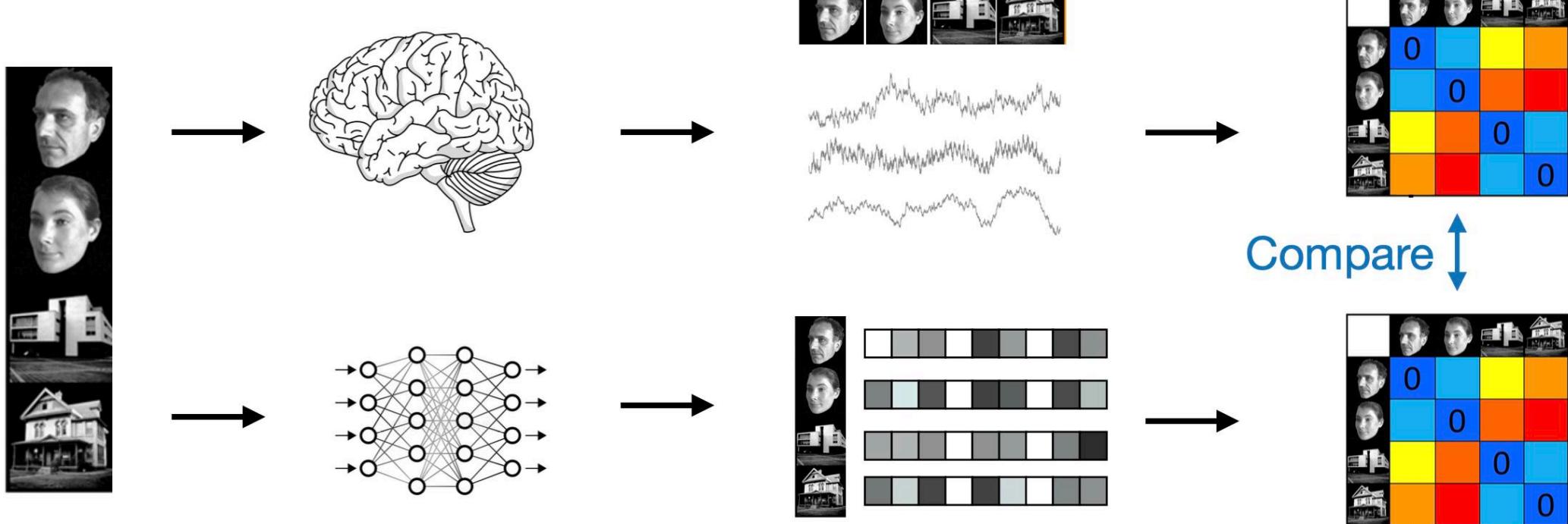


Simulation using our display parameters (Dineen *et al.*, in prep)

- Tiny Eyes, Alex Wade University of York
- <https://github.com/wadelab/VischeckTinneyes>

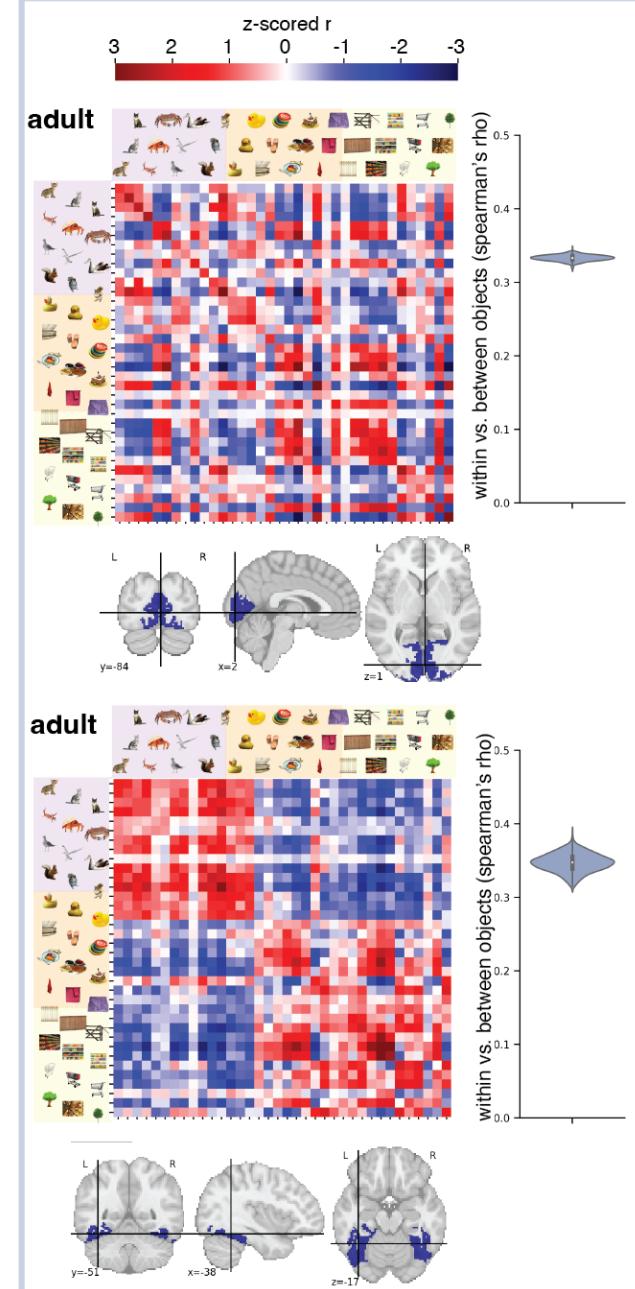


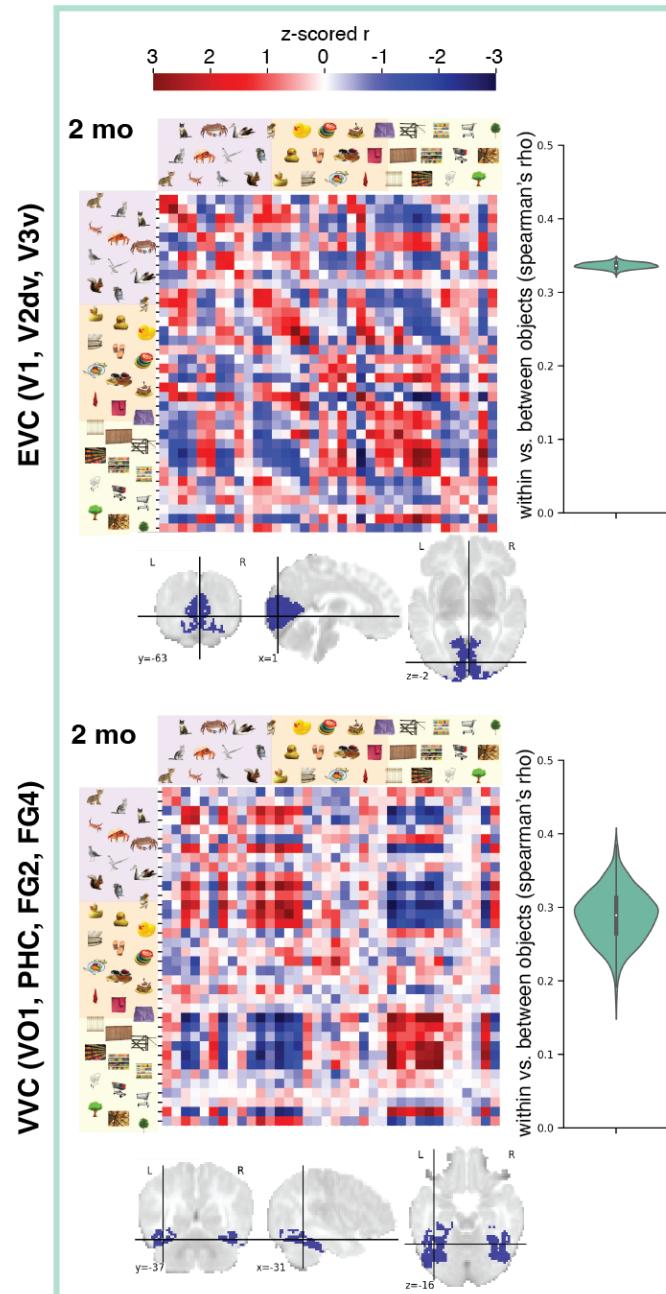
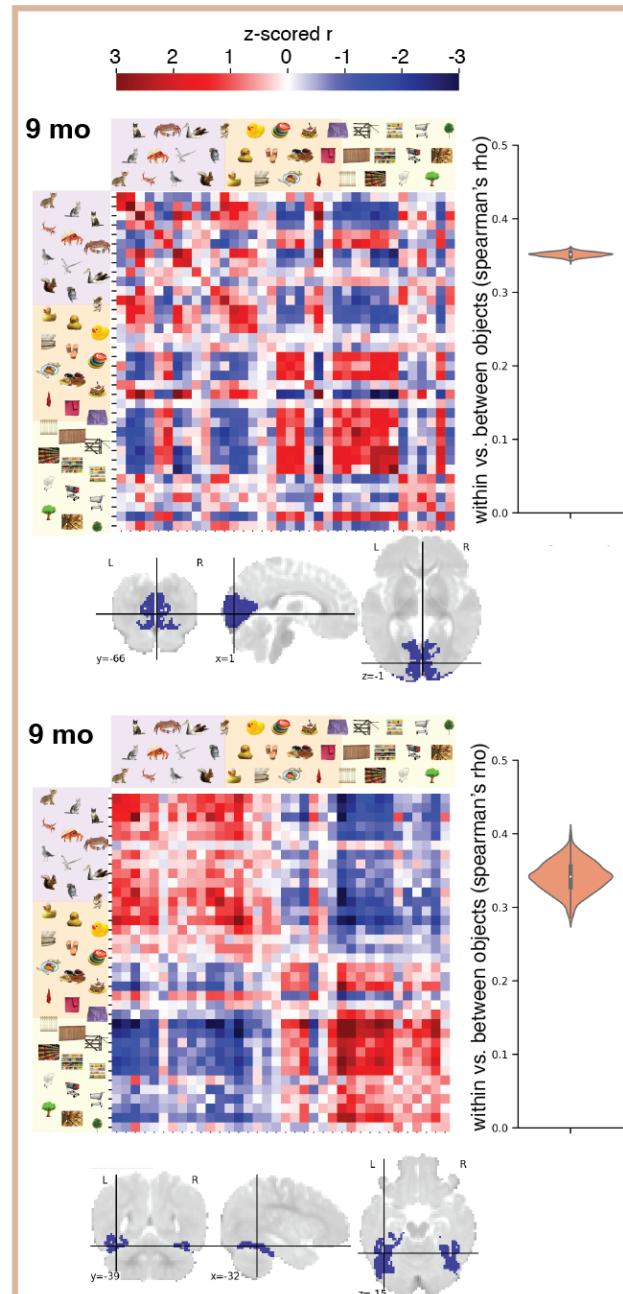
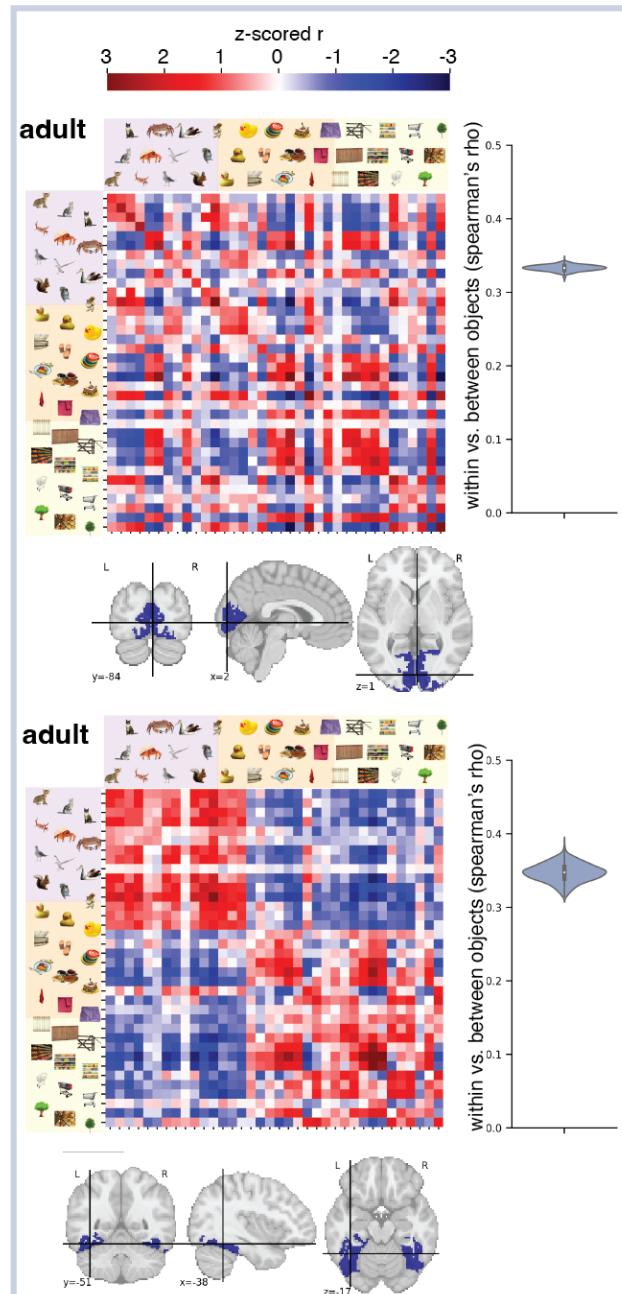




VVC (VO1, PHC, FG2, FG4)

EVC (V1, V2dv, V3v)



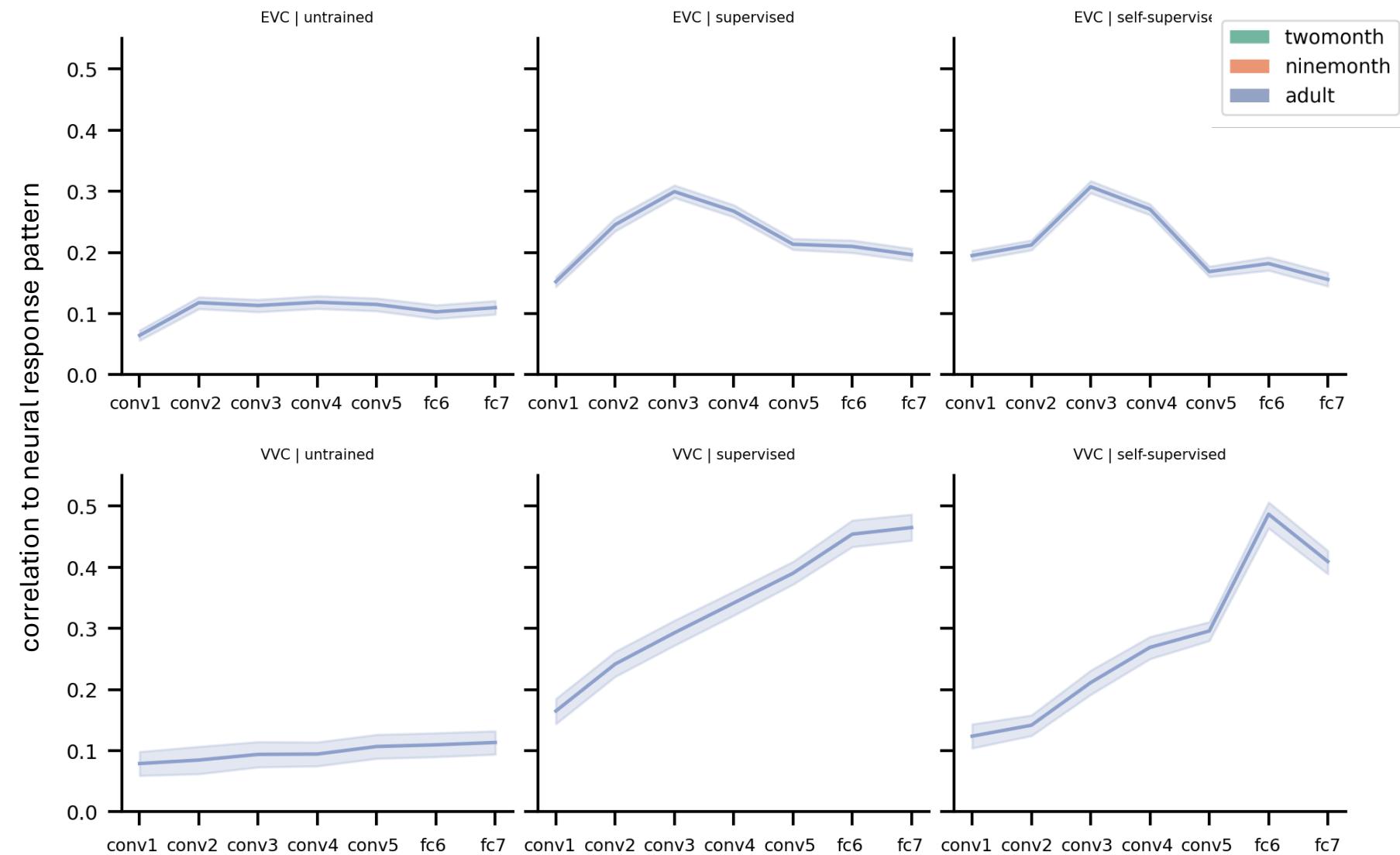


## DNN Modelling

AlexNet trained on ImageNet

Random initialisation, supervised and self-supervised contrastive learning

Expected hierarchical correspondence between layer and visual hierarchy

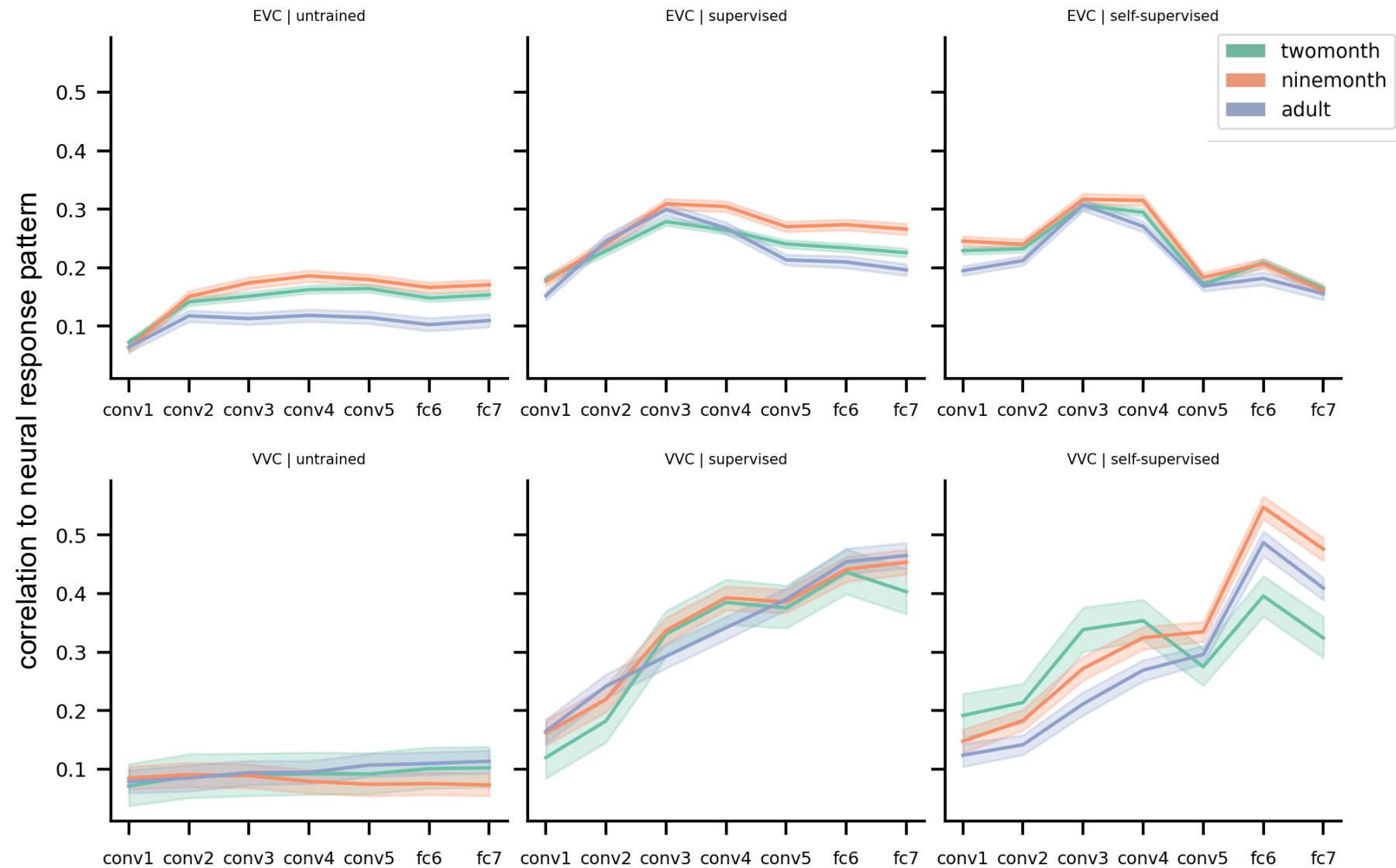


## DNN Modelling

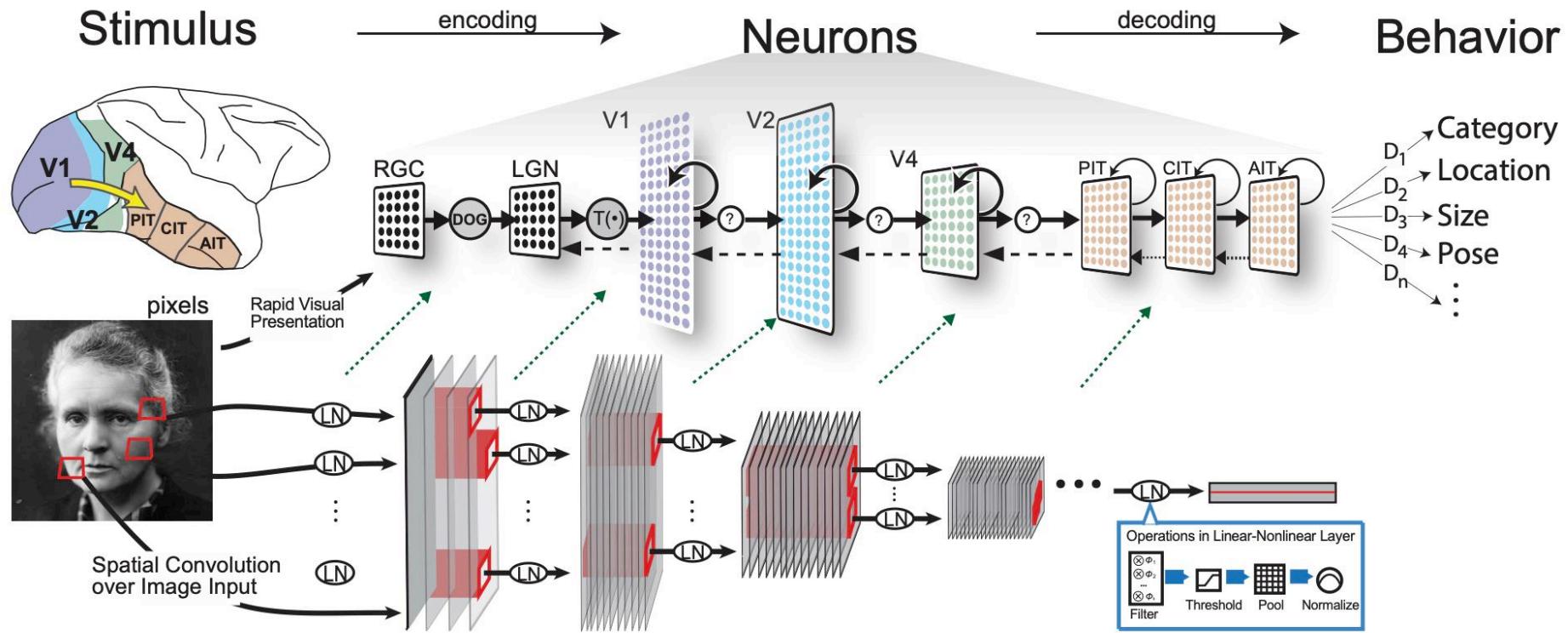
AlexNet trained on ImageNet

Random initialisation, supervised and self-supervised contrastive learning

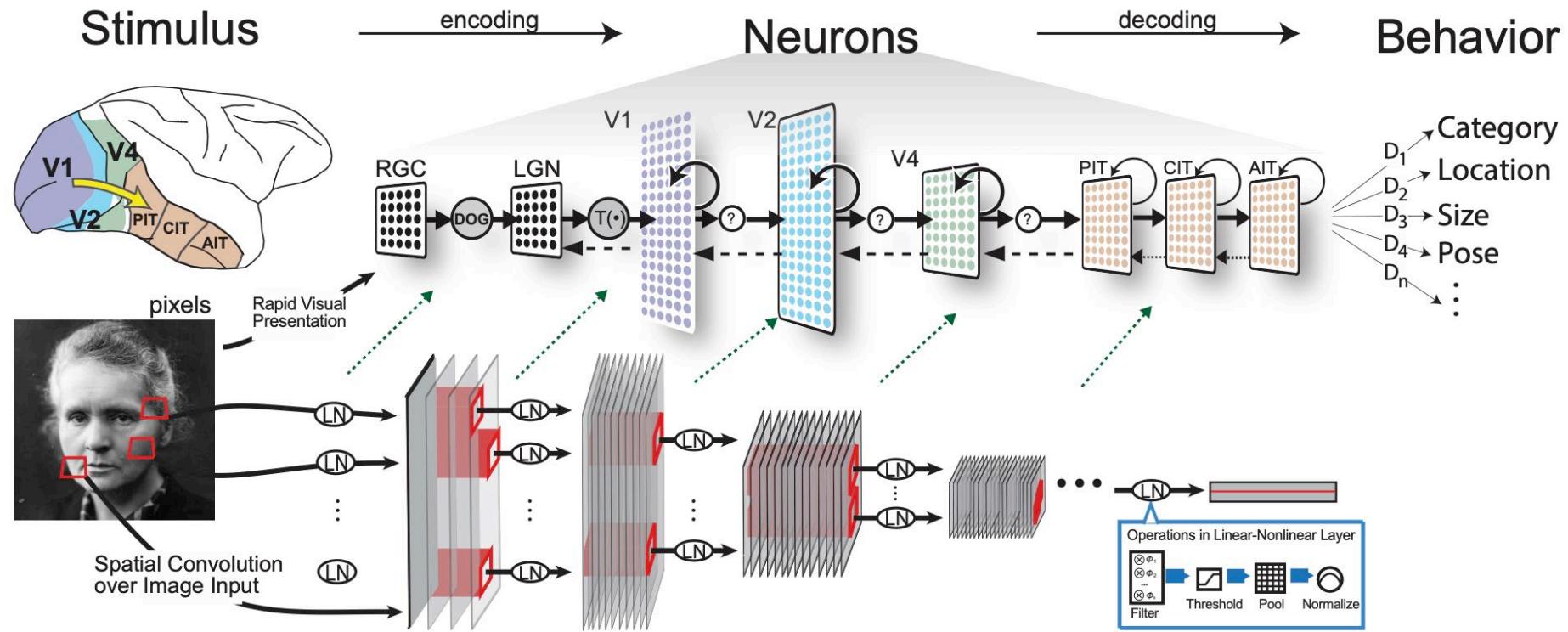
Expected hierarchical correspondence between layer and visual hierarchy



# Large-Scale Neural Network Models for Neuroscience

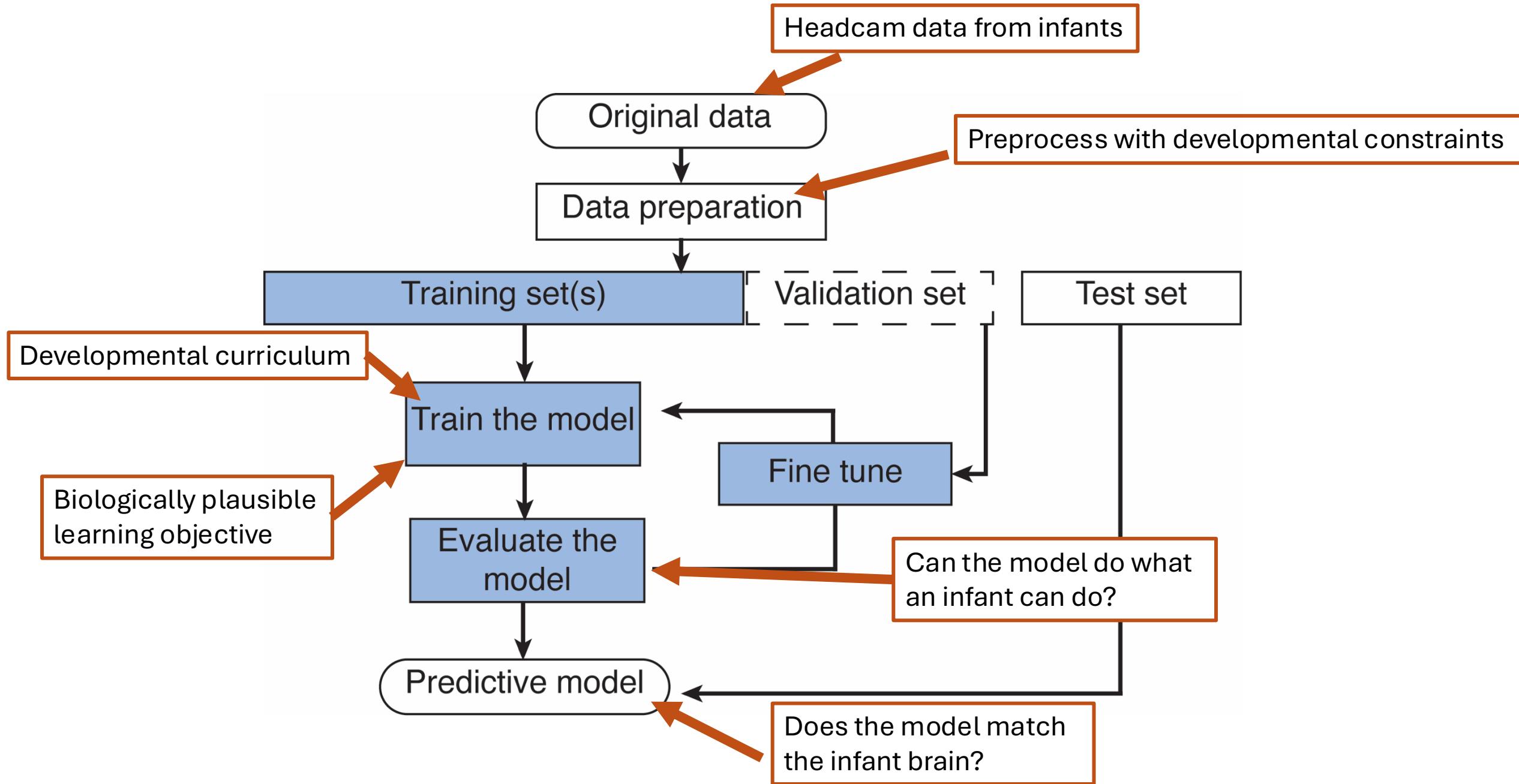


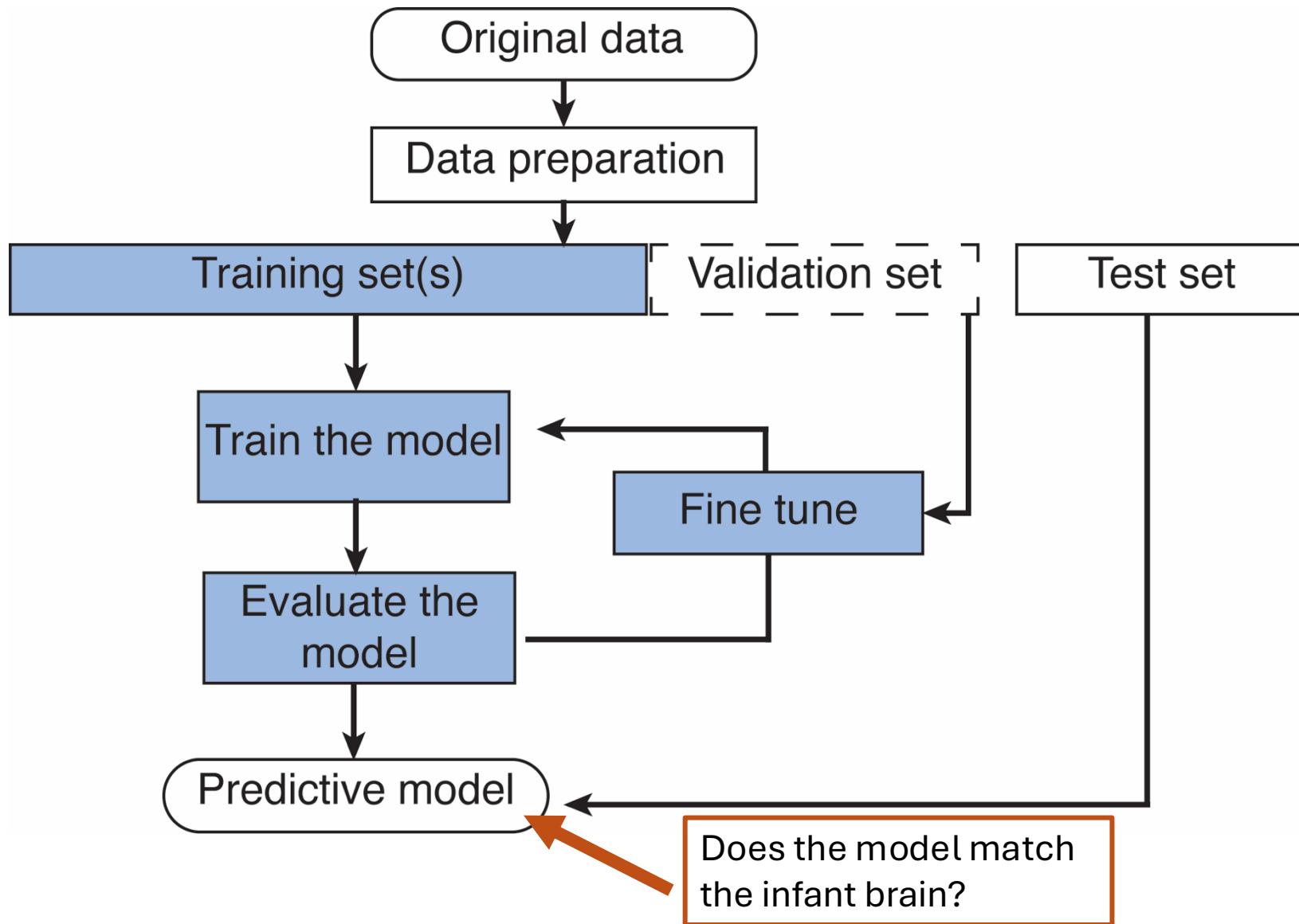
# Large-Scale Neural Network Models for Neuroscience

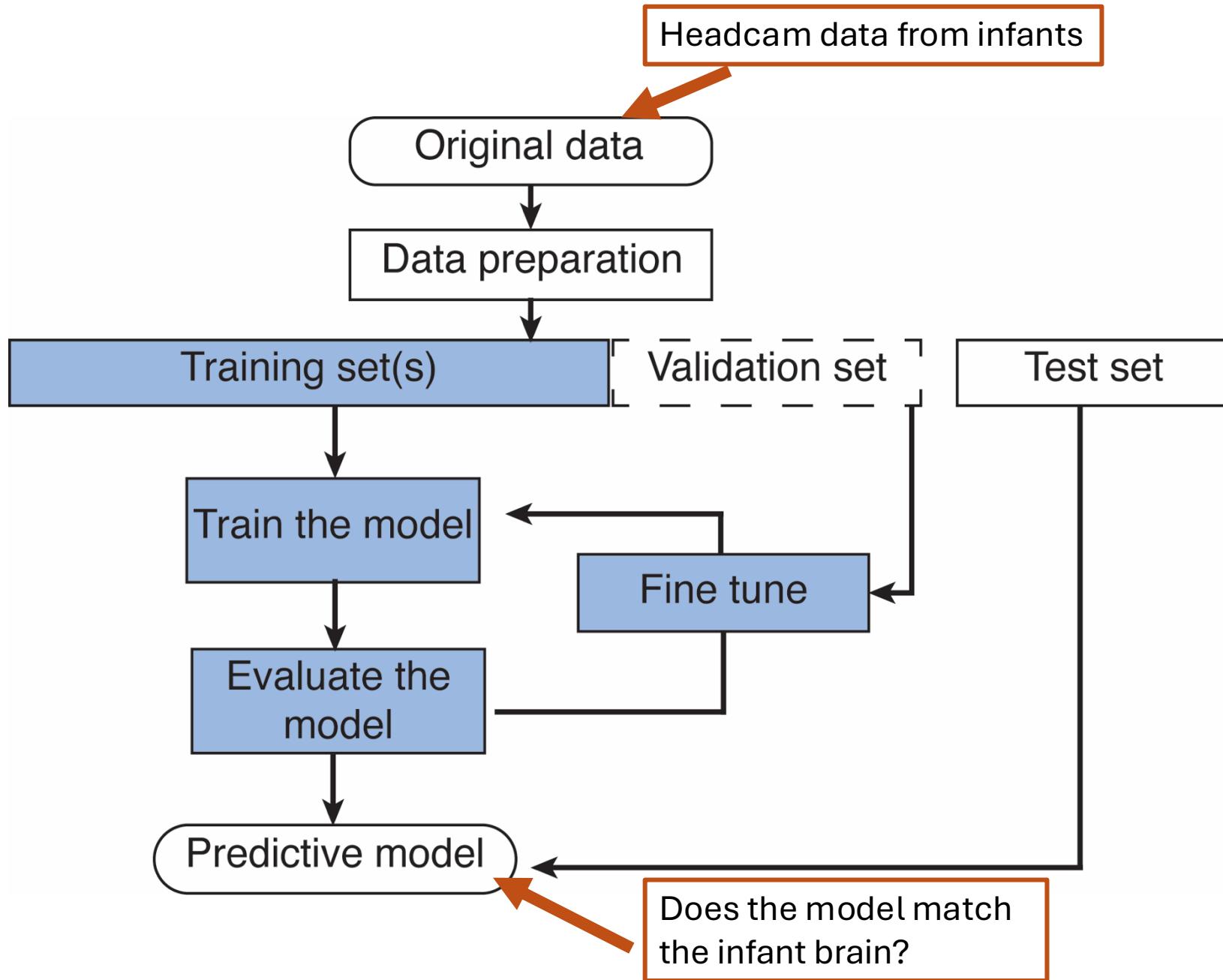


Works for babies too!









# Infants generate interesting datasets for visual learning



1 to 3 months



8 to 10 months



12 to 24 months

Smith & Slone (2017)



SAYCam  
Sullivan *et al.* (2021)

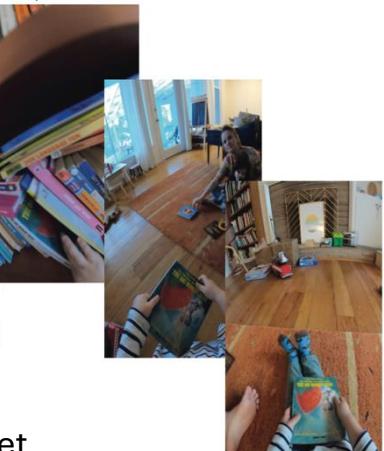
**a**

The  
BabyView  
Camera



**b**

Example frames



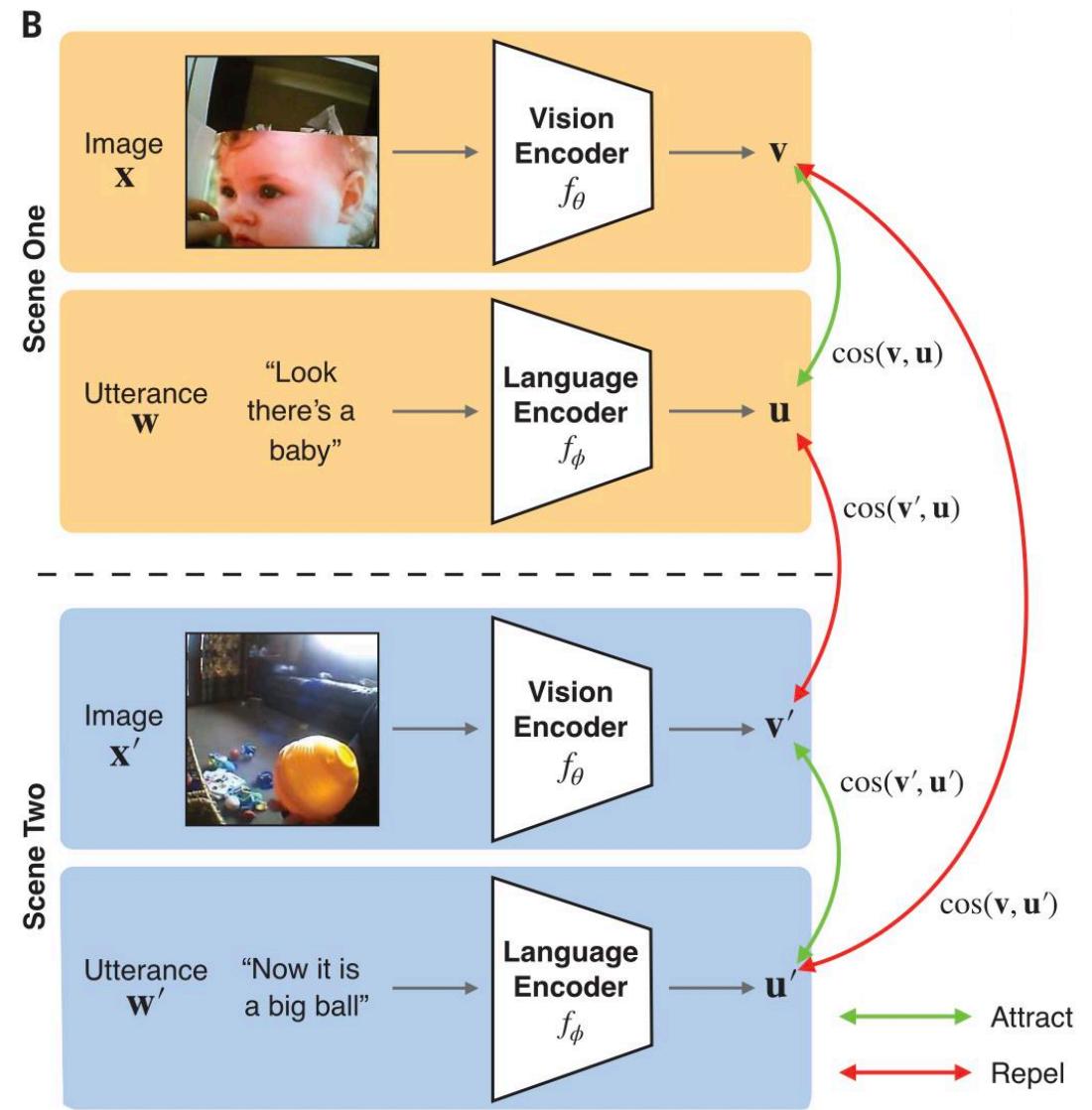
BabyView Dataset  
Long *et al.* (2025)

## MACHINE LEARNING

# Grounded language acquisition through the eyes and ears of a single child

Wai Keen Vong<sup>1\*</sup>, Wentao Wang<sup>1</sup>, A. Emin Orhan<sup>1</sup>, Brenden M. Lake<sup>1,2</sup>

- Image-text model
- ViT encoder head
- Pretrained on headcam data





Time: 0:41  
Utterance: You see this block the triangle



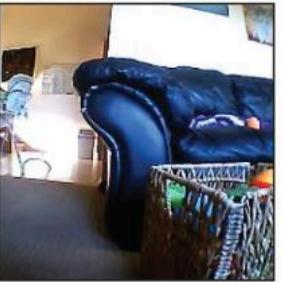
Time: 0:44  
Utterance: It goes in



Time: 0:48  
Utterance: Boop



Time: 0:52  
Utterance: Hey look here



Time: 1:13  
Utterance: Yeah

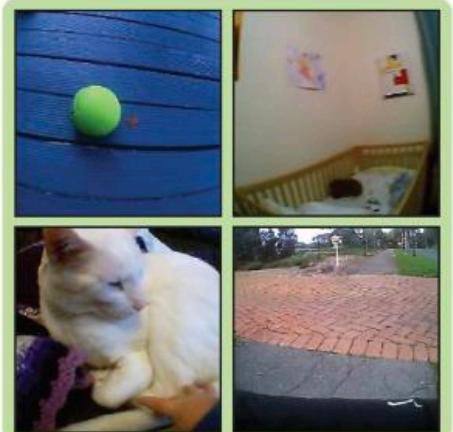
...



Time: 2:00  
Utterance: You like the string



Time: 2:06  
Utterance: You want the blocks too



Task: Which one is the **ball**?

Assessed on a more dev psych type task

D



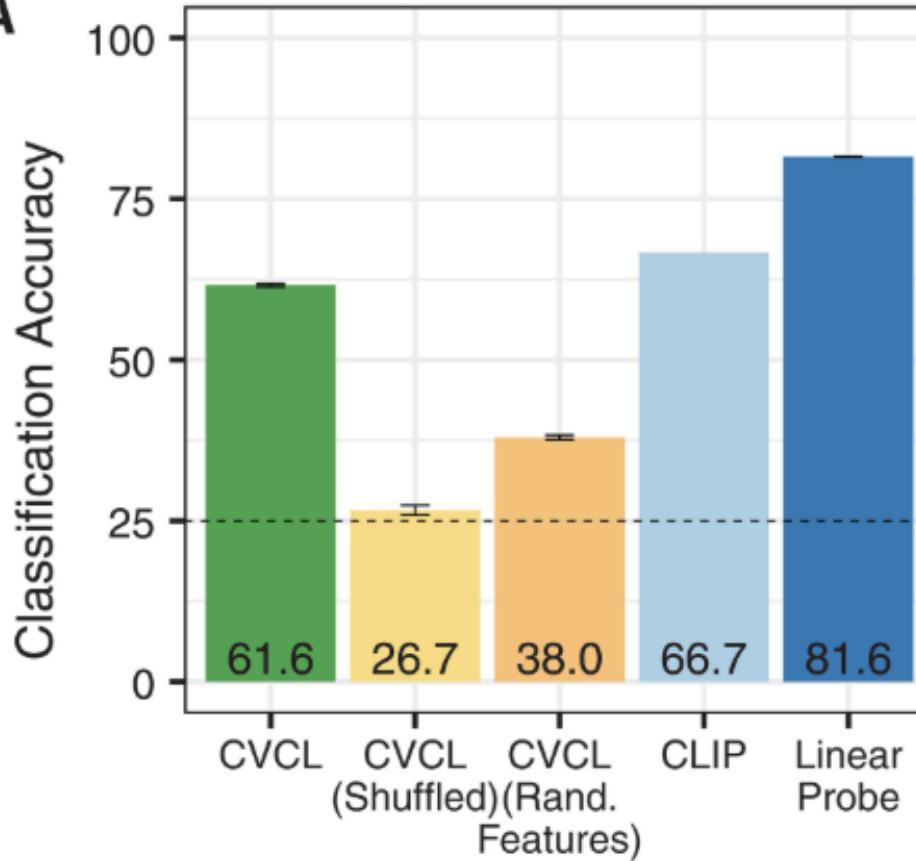
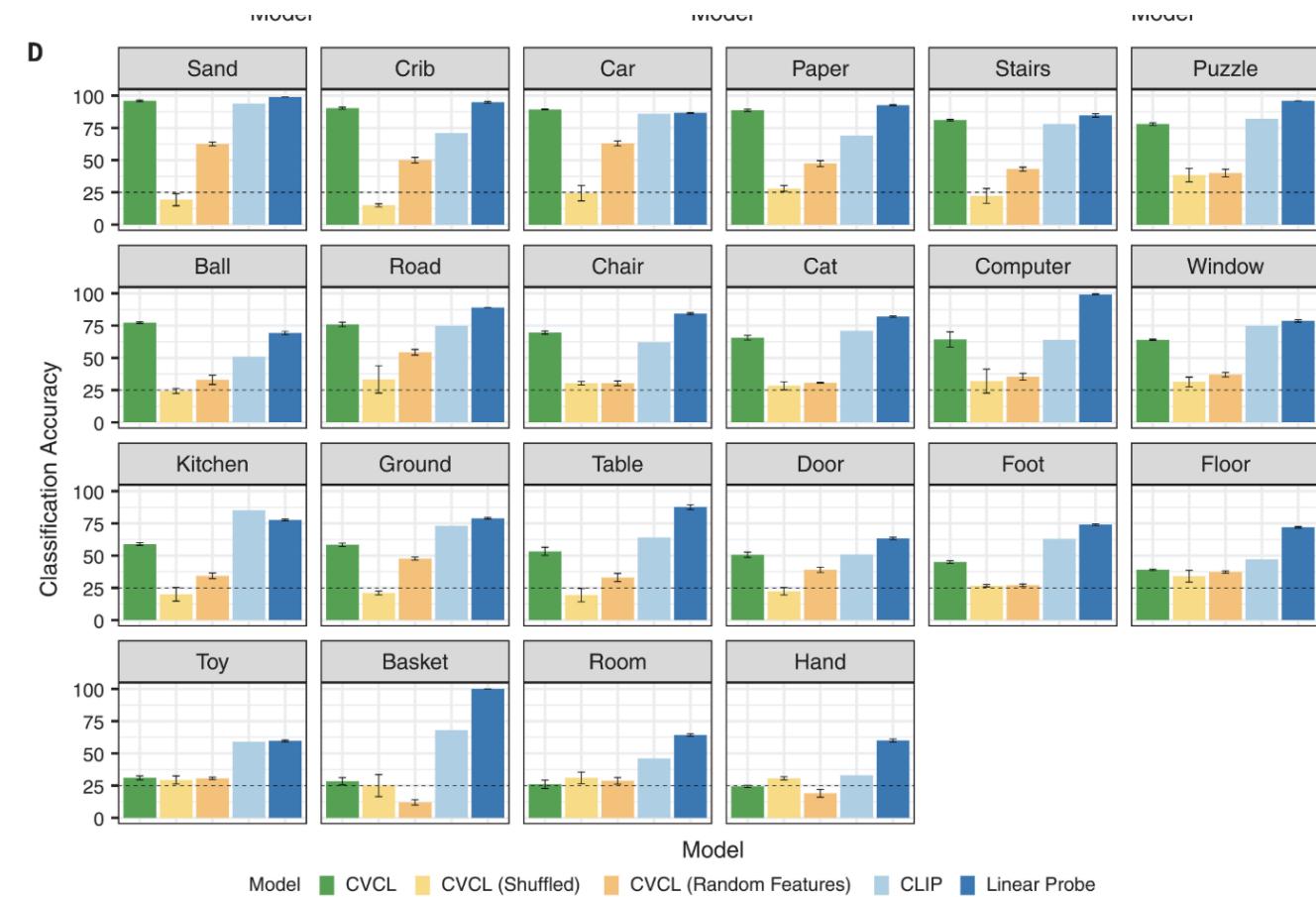
## CVCL

600,000 video frames paired with 37,500 transcribed utterances (extracted from 61 hours of video)

## CLIP

400 million image-text pairs from the web

Can word-referent mappings be learned with this amount of data?

**A****D**

## Limitations

The model is unrealistic:

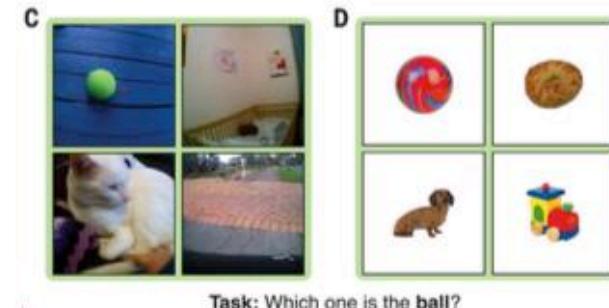
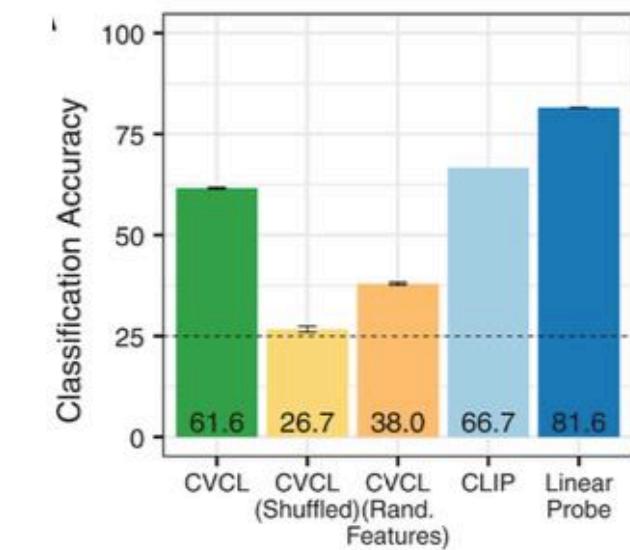
Using transcribed speech

Training is not continuous

This is just testing noun learning, not grammar or non-nouns

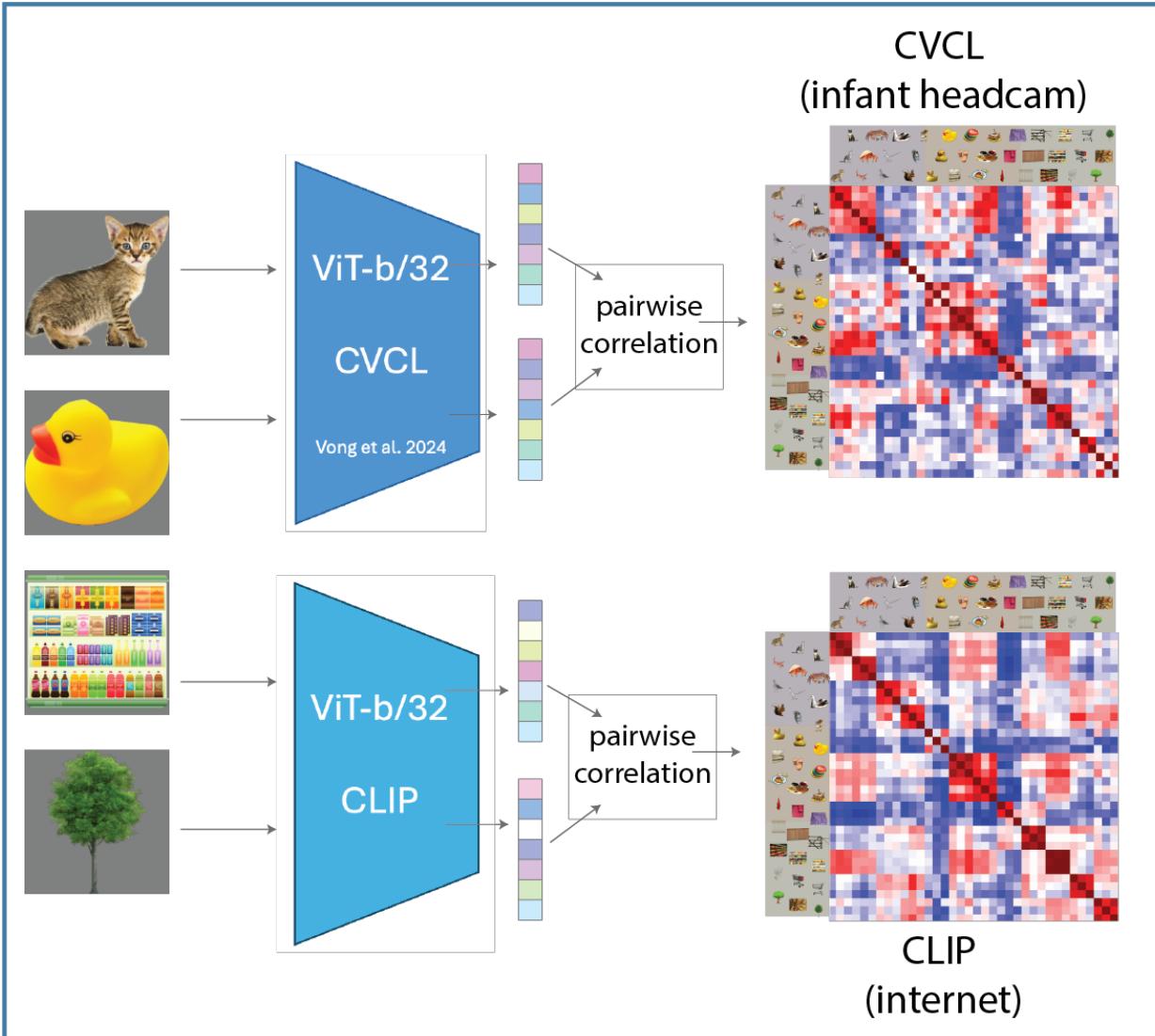
They show that learning from domain-general mechanisms is possible, they don't show that it is **sufficient**

Future studies must match children input **and outputs**

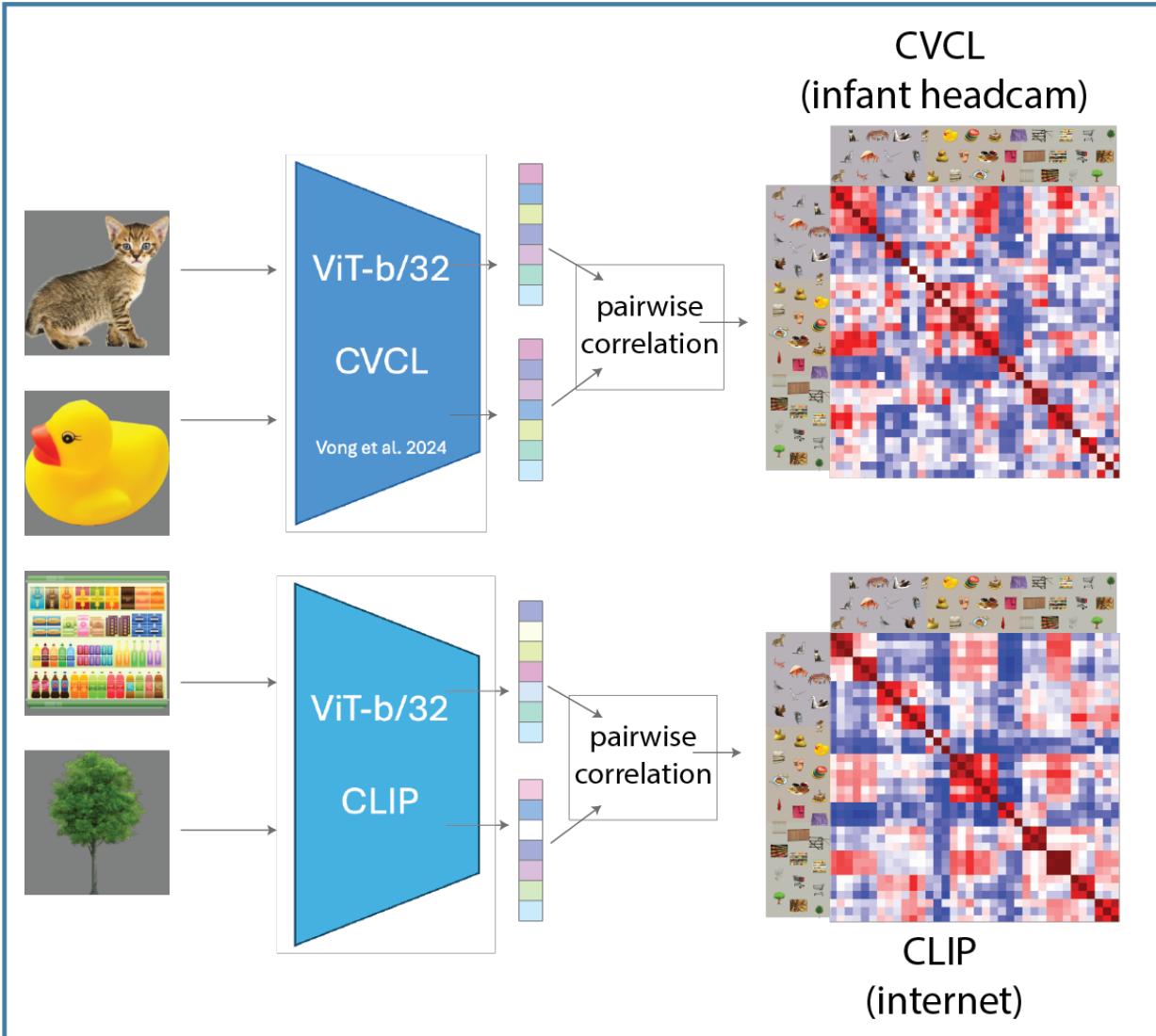
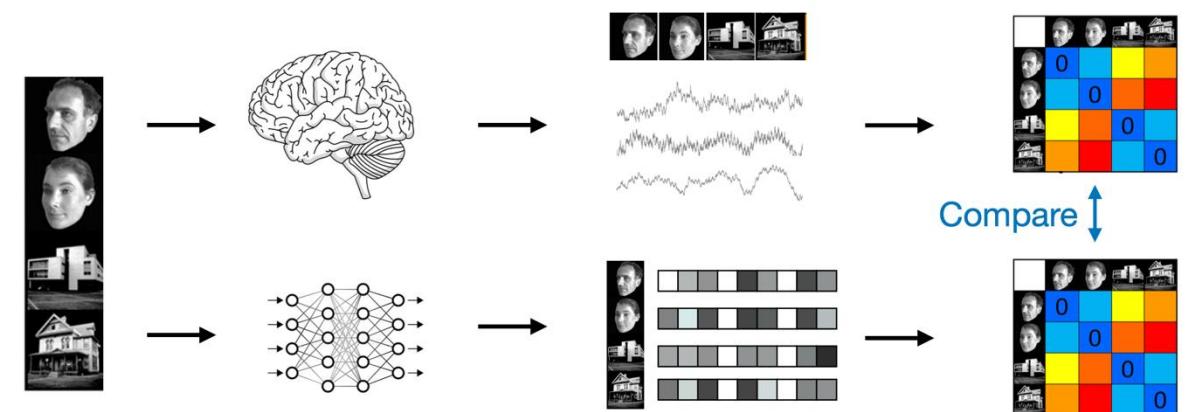


Vong et al., 2024

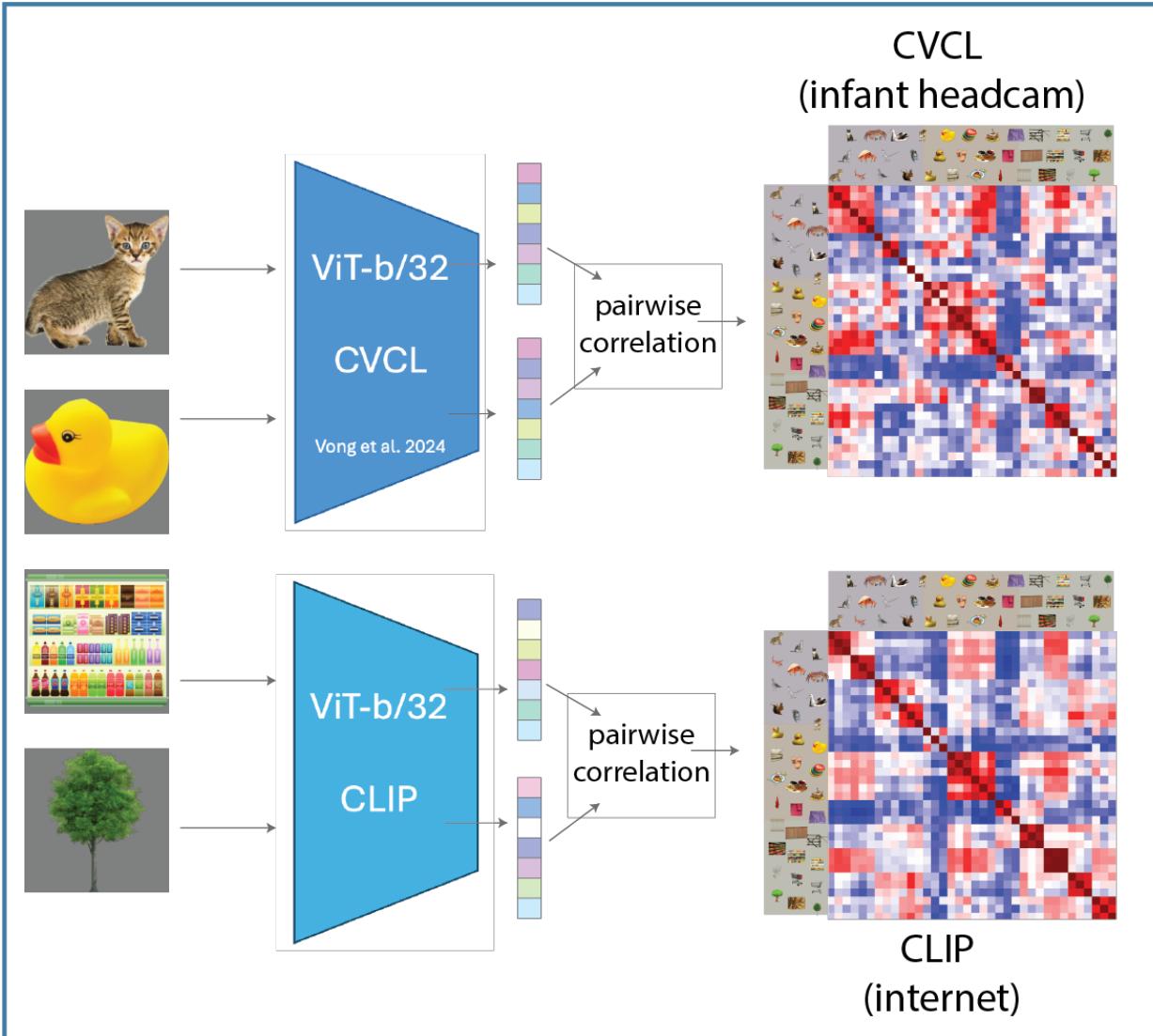
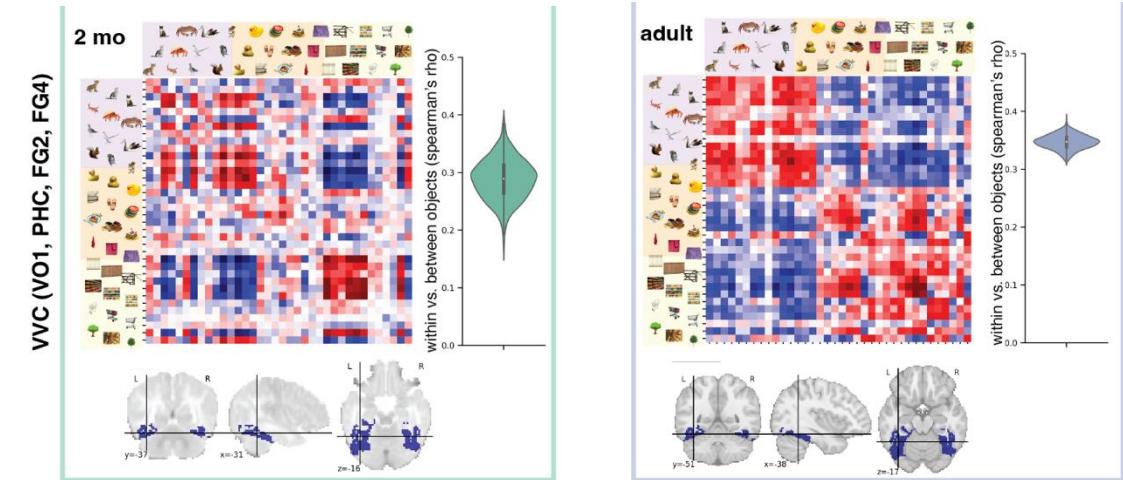
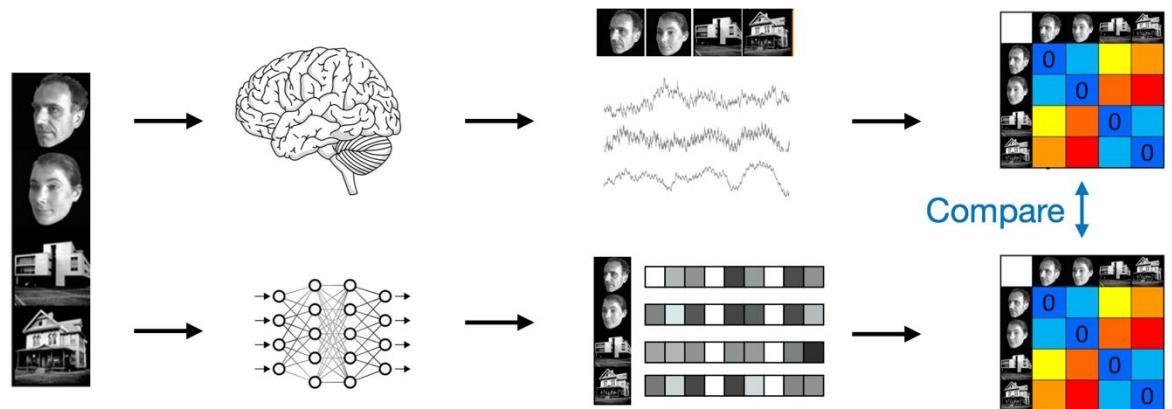
# Developmental DNNs for modelling the developing brain



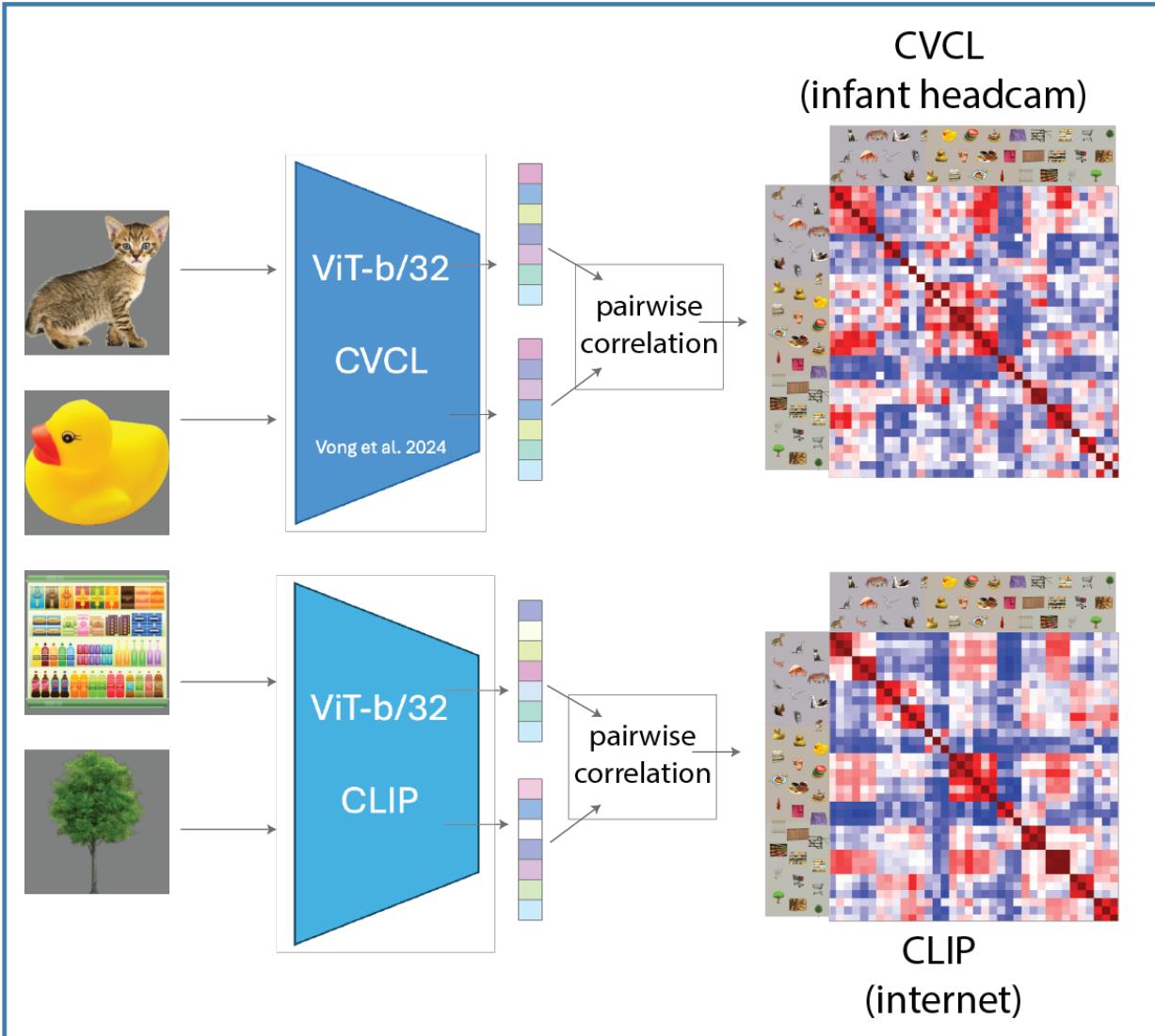
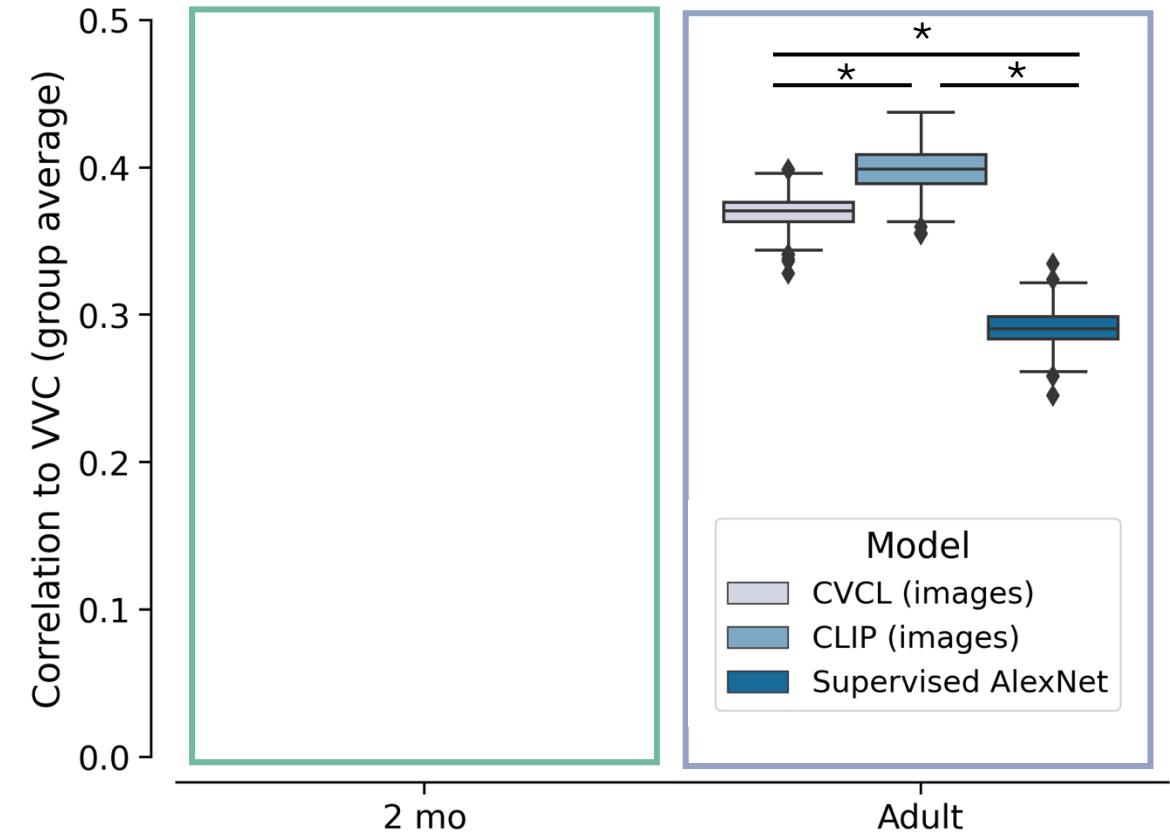
# Developmental DNNs for modelling the developing brain



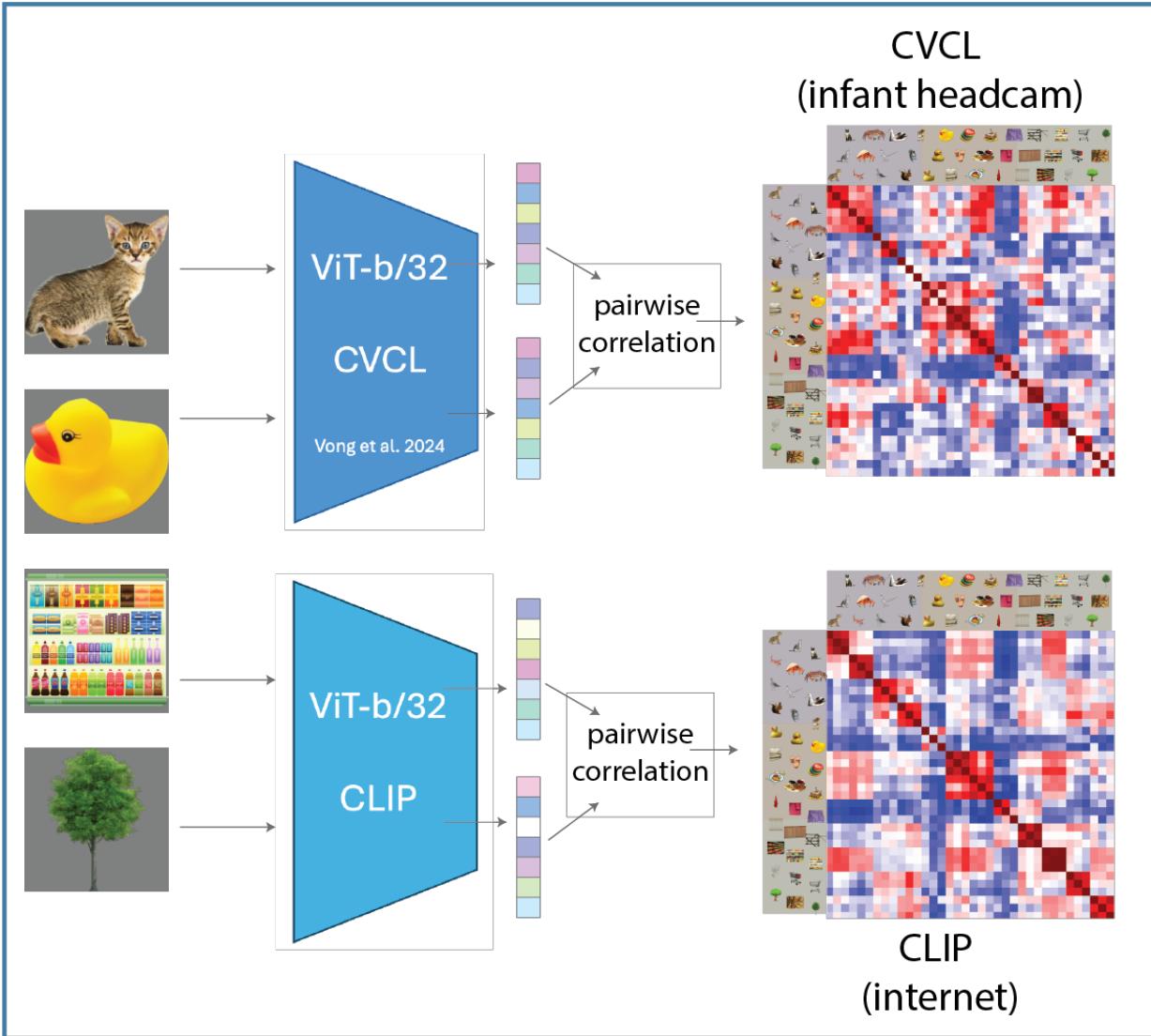
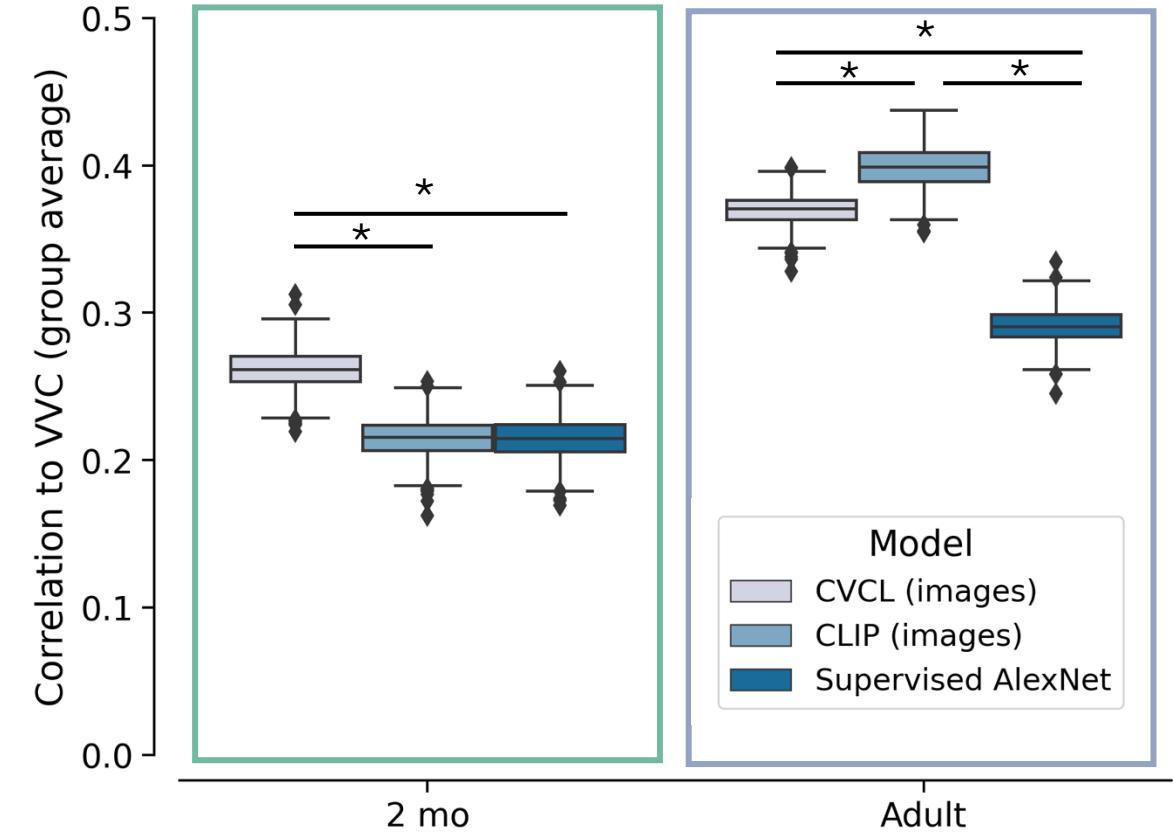
# Developmental DNNs for modelling the developing brain



# Developmental DNNs for modelling the developing brain

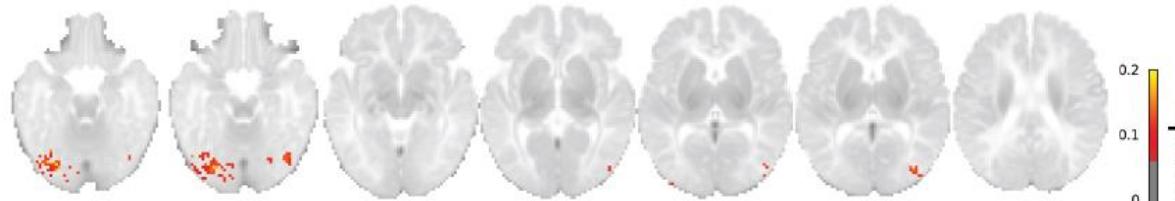


# Developmental DNNs for modelling the developing brain

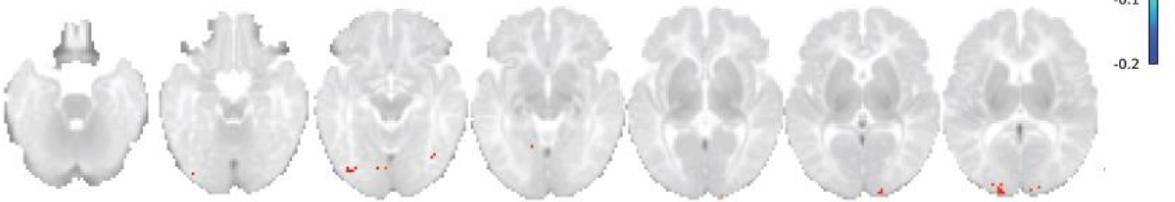


## 2 mo Searchlight

CVCL image features

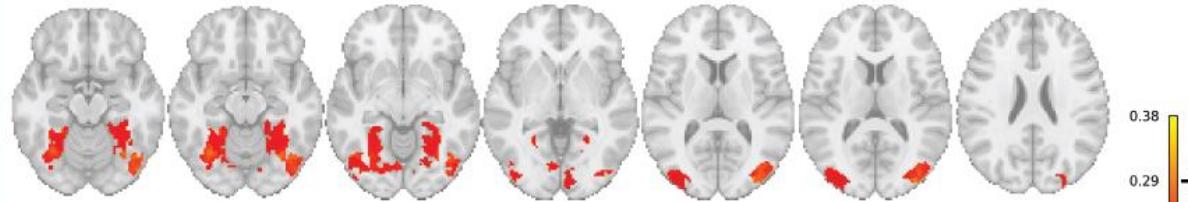


CLIP image features



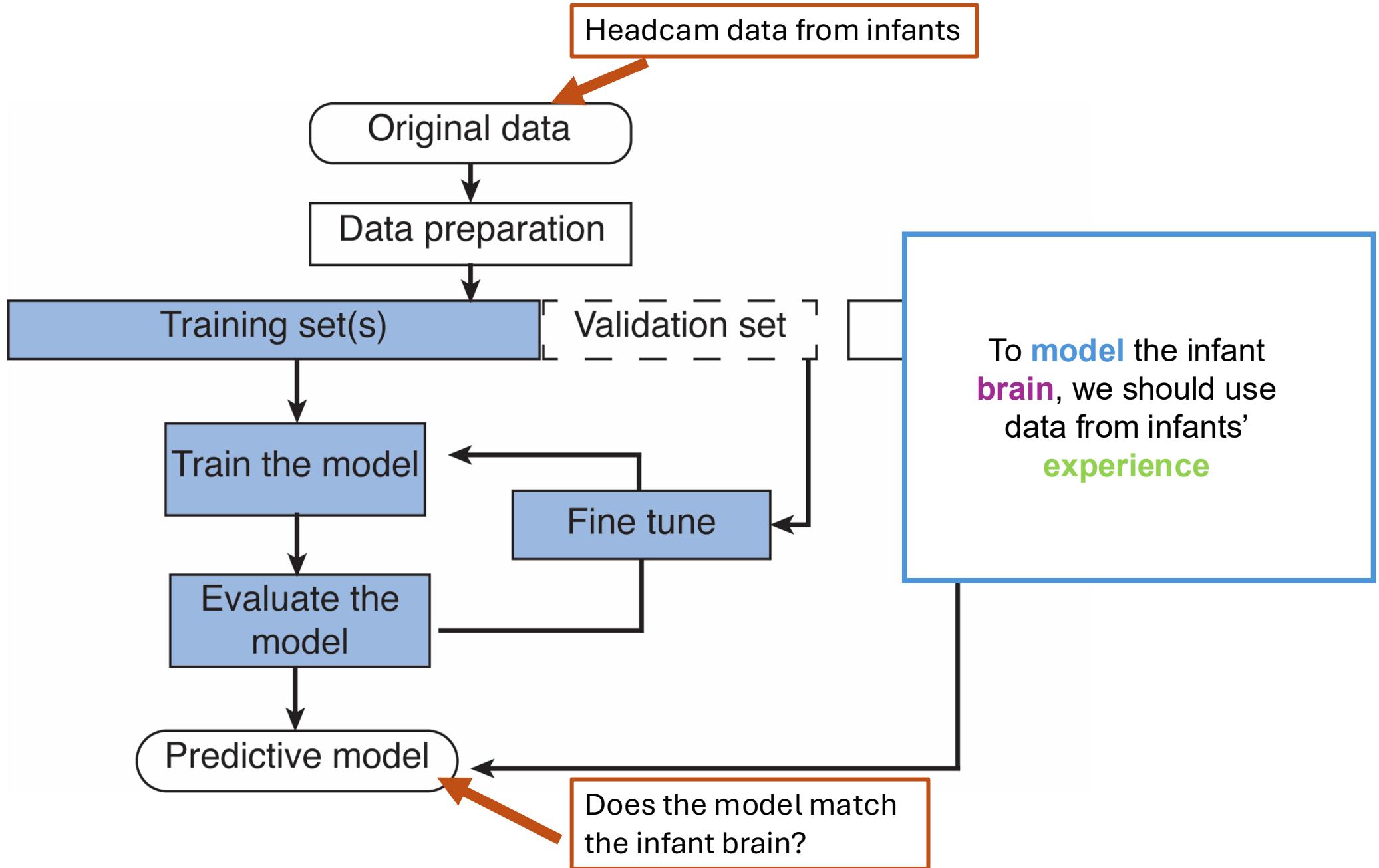
## Adult Searchlight

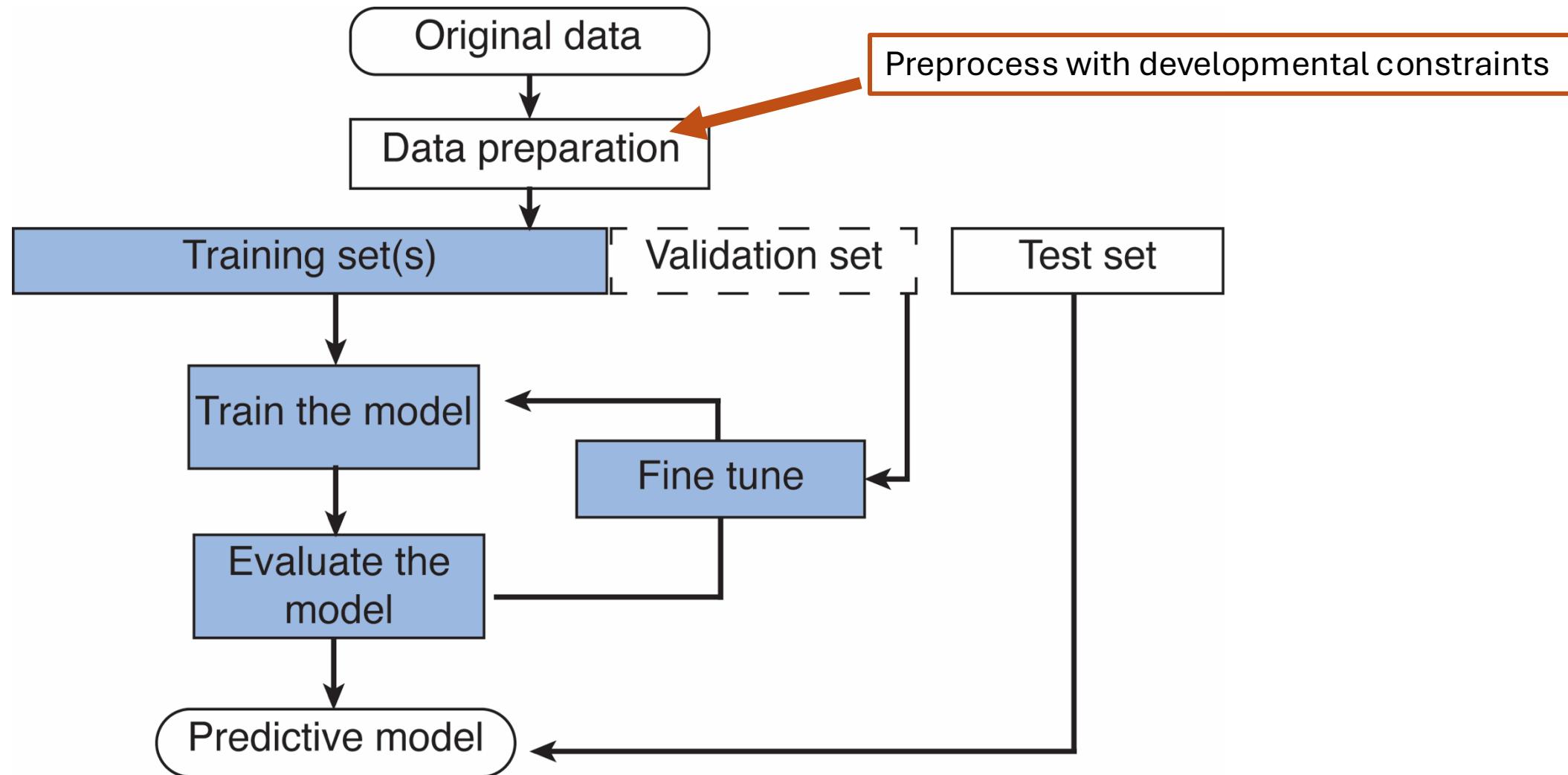
CVCL image features



CLIP image features





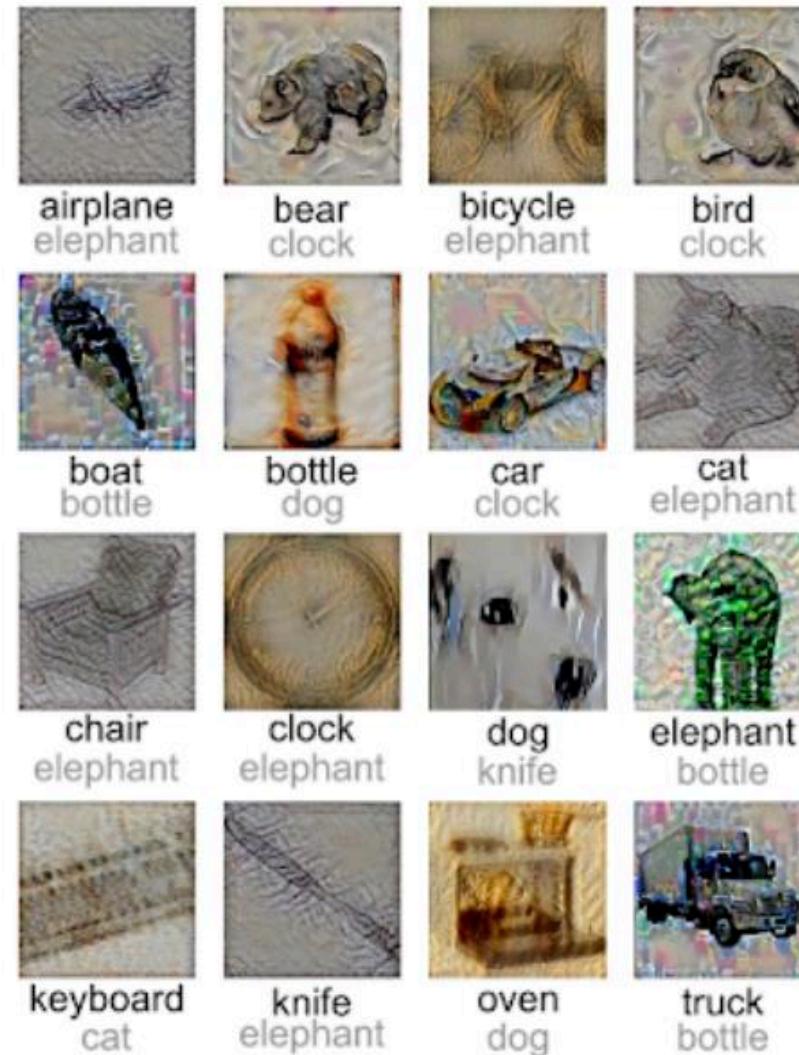


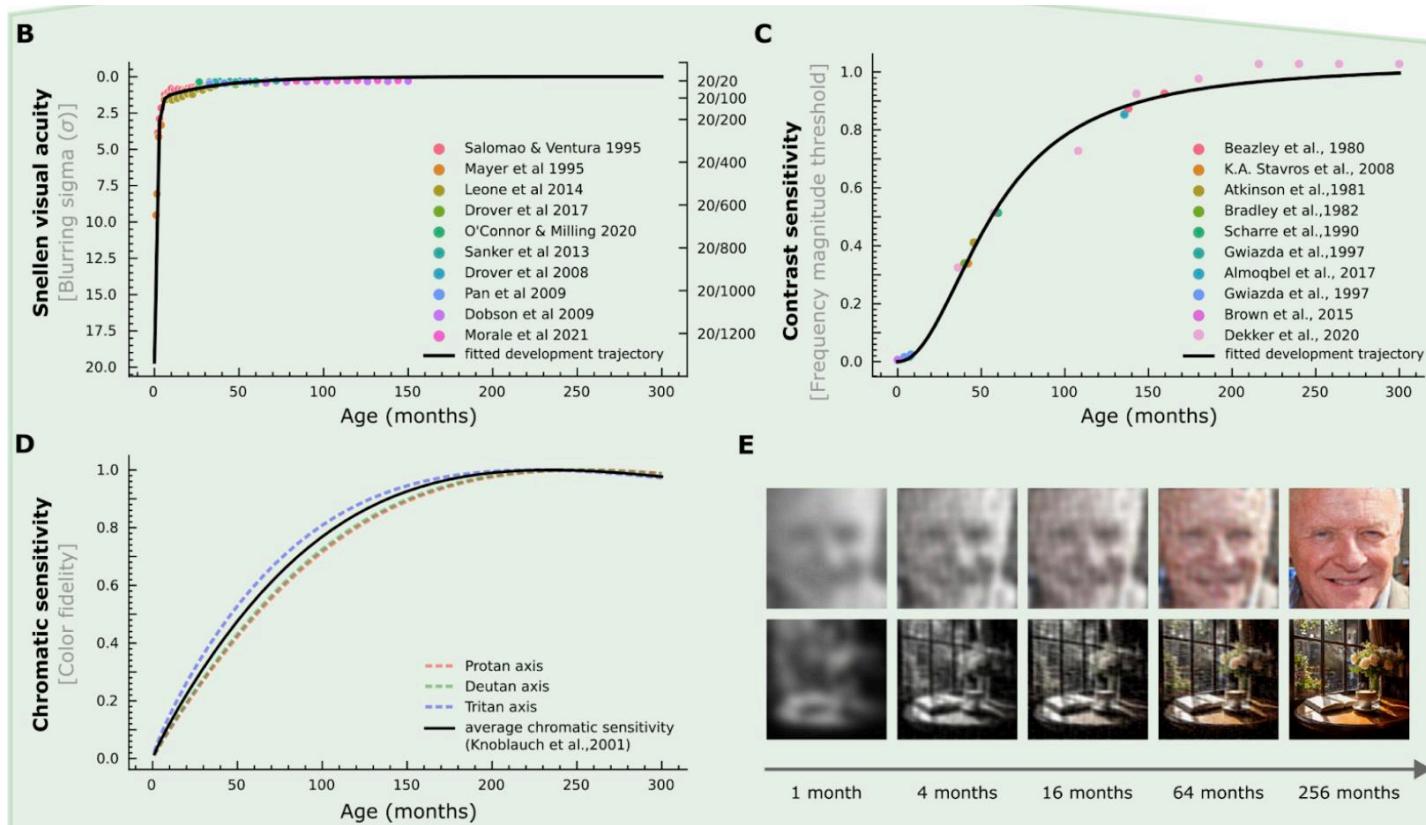
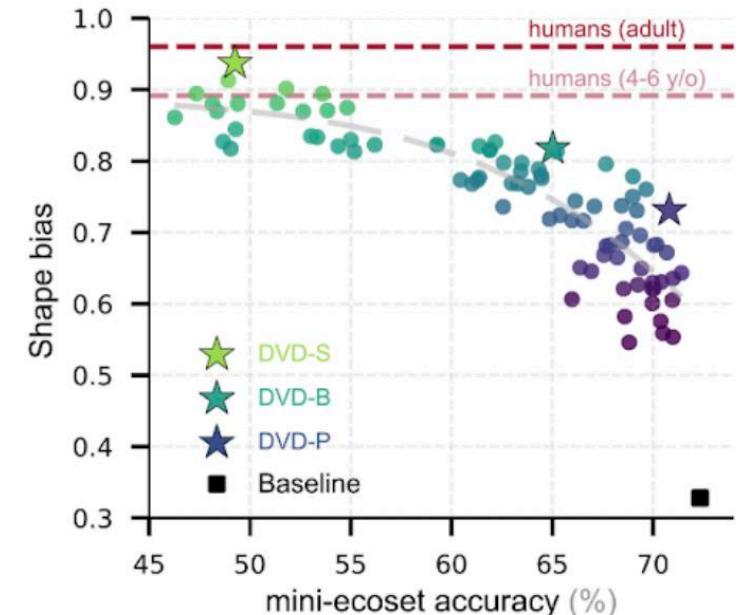
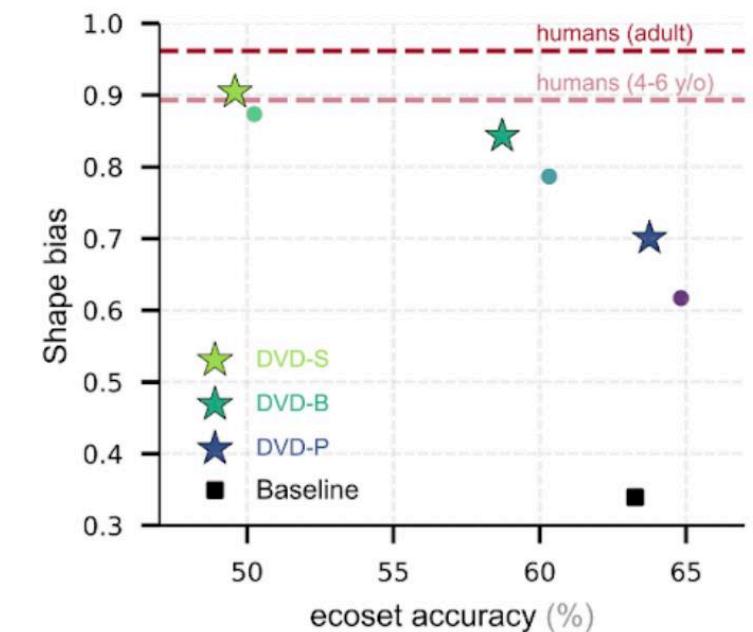
Neural networks are biased towards texture, not shape like humans

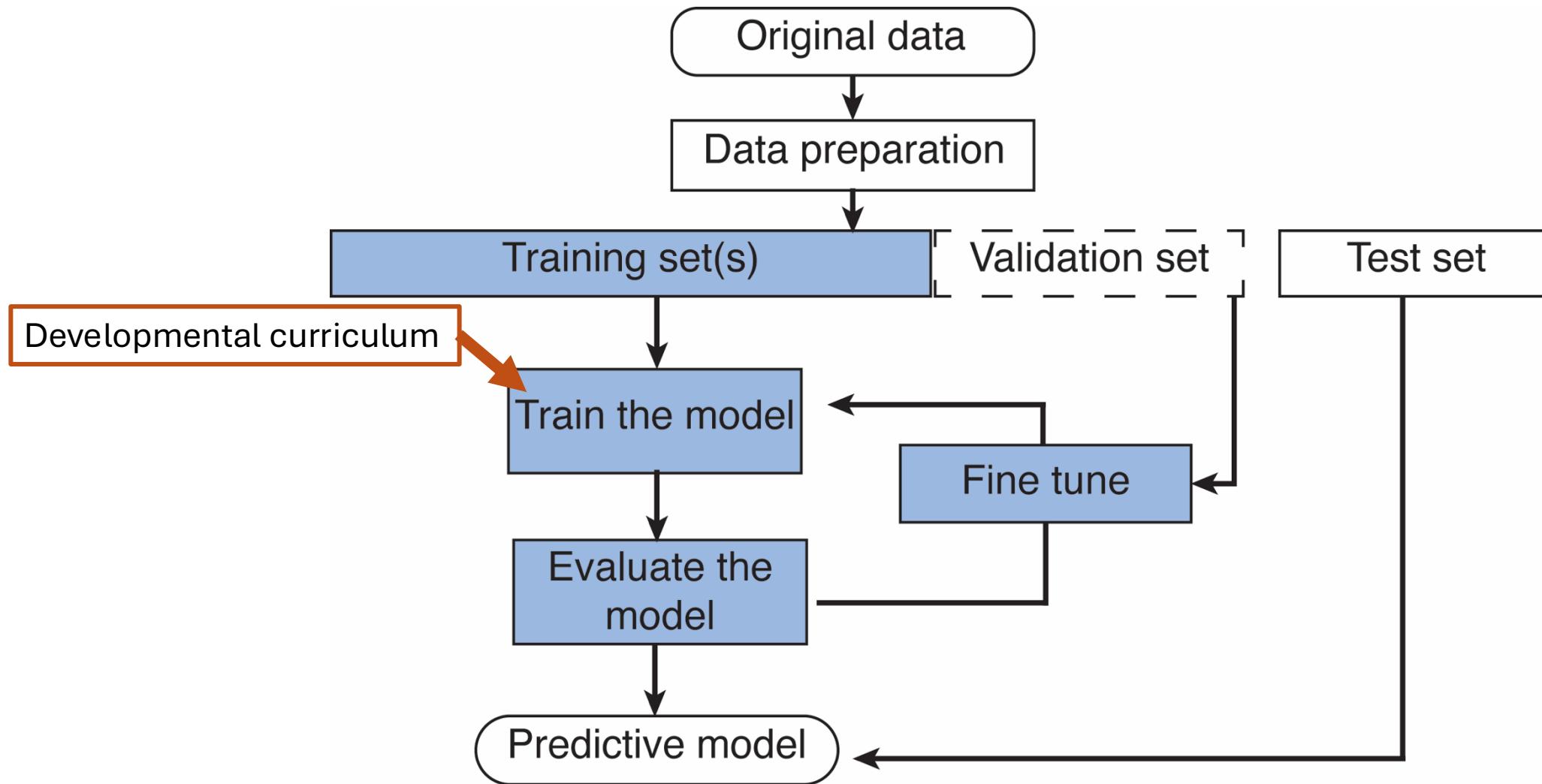
What interventions will correct for this shape bias?

Lu et al., arXiv preprint 2025

## Cue-conflicting stimuli









Newborn

Children who are born with cataracts and then sight is later restored

- Visual acuity recovers
- Configural processing of faces is impacted
- Although some resilience in ventrot temporal cortex Mattioni *et al.* 2025



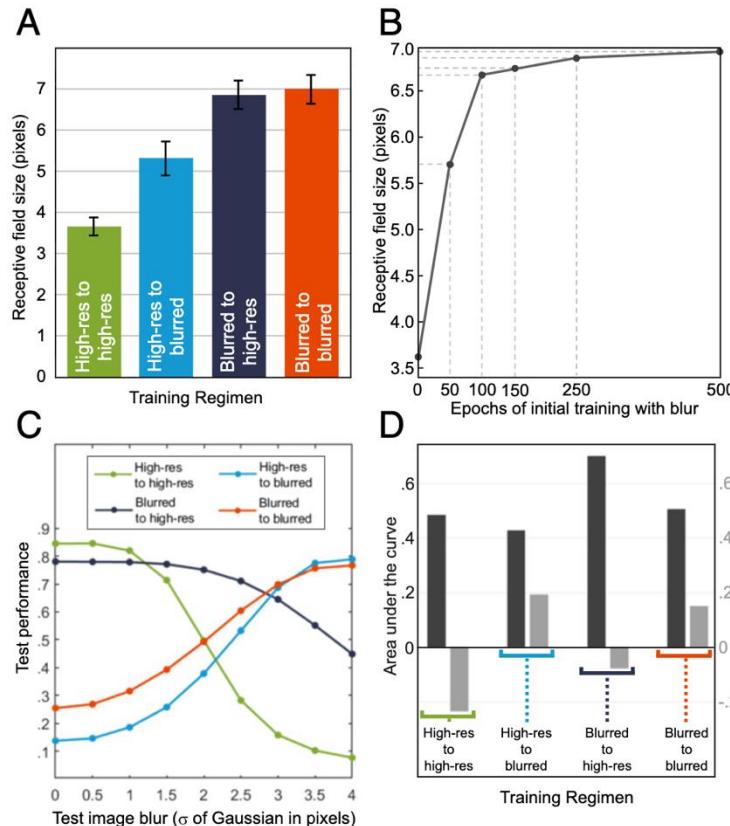
Newborn

Is blurry vision adaptive?

## Potential downside of high initial visual acuity

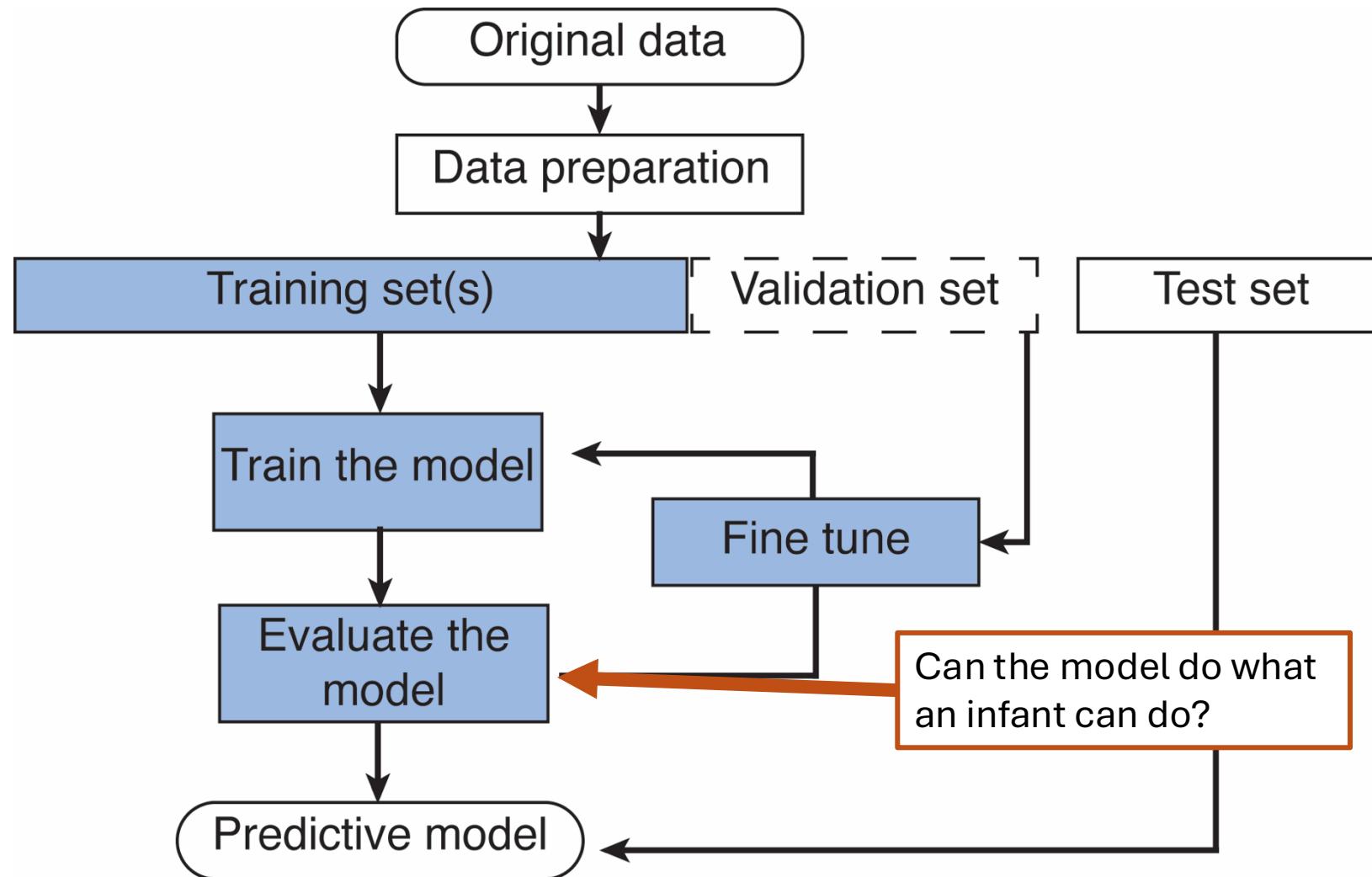
Lukas Vogelsang<sup>a,b,1</sup>, Sharon Gilad-Gutnick<sup>a,1</sup>, Evan Ehrenberg<sup>a</sup>, Albert Yonas<sup>c</sup>, Sidney Diamond<sup>a</sup>, Richard Held<sup>a,2</sup>, and Pawan Sinha<sup>a,3</sup>

<sup>a</sup>Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; <sup>b</sup>Institute of Neuroinformatics, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; and <sup>c</sup>Department of Psychology, Arizona State University, Tempe, AZ 85281



Initial blurry exposure allows for larger receptive fields – ability to integrate information over a larger visual area

Even limited exposure to blur stabilises receptive fields and allows for better face classification



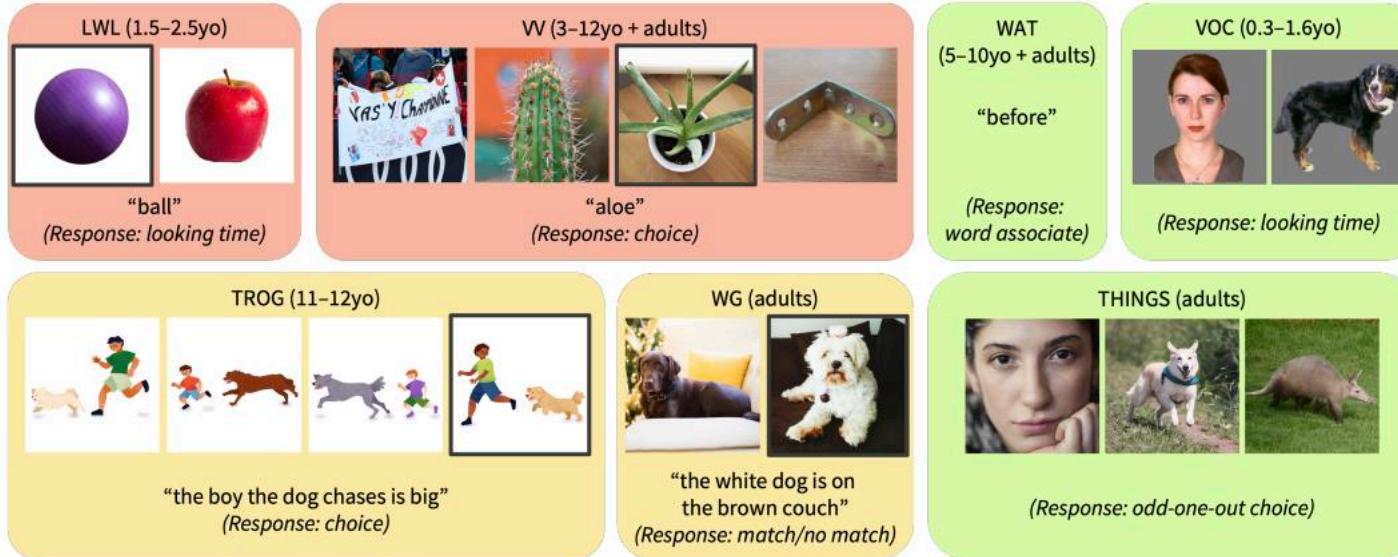


Table 2: Model characteristics and performance across all tasks, demonstrating variation across models. Arrows indicate the direction of better performance (i.e., lower is better vs. higher is better). **Bolded results** indicate most human-like result on a task.

| Model             | # params | # images | Lexicon      |              | Syntax       |              | Semantics    |              |              |
|-------------------|----------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                   |          |          | LWL (↓)      | VV (↓)       | TROG (↓)     | WG (↓)       | WAT (↓)      | VOC (↑)      | THINGS (↑)   |
| CLIP-base [48]    | 149M     | 400M     | 0.014        | 0.205        | 0.732        | 0.256        | 0.495        | -0.081       | <b>0.397</b> |
| CLIP-large [48]   | 428M     | 400M     | 0.013        | <b>0.179</b> | 0.692        | 0.256        | 0.495        | 0.005        | 0.246        |
| ViLT [49]         | 87M      | 4.1M     | 0.009        | 0.326        | 0.682        | 0.252        | 0.495        | -0.053       | 0.127        |
| FLAVA [50]        | 350M     | 70M      | 0.013        | 0.197        | 0.912        | 0.254        | 0.495        | -0.042       | 0.189        |
| BLIP [51]         | 252M     | 14M      | 0.010        | 0.193        | <b>0.576</b> | 0.259        | 0.495        | -0.104       | 0.185        |
| BridgeTower [52]  | 333M     | 4M       | <b>0.008</b> | 0.265        | 0.584        | <b>0.250</b> | 0.495        | -0.095       | 0.345        |
| OpenCLIP-H [53]   | 1.0B     | 32B      | 0.012        | 0.188        | 0.683        | 0.255        | <b>0.495</b> | 0.031        | 0.227        |
| SigLIP [54]       | 800M     | 9B       | 0.067        | 0.612        | 0.888        | 0.258        | 0.495        | -0.028       | 0.192        |
| CVCL [4]          | 26M      | 600K     | 0.060        | 0.740        | 0.911        | 0.258        | 0.495        | <b>0.138</b> | 0.175        |
| Human             |          |          | 0.010        | 0.091        | 0.028        |              |              | 0.251        |              |
| Random (OpenCLIP) | 1.0B     | 0        | 0.087        | 0.740        | 0.908        | 0.258        | 0.495        | 0.246        | 0.054        |

DevBench

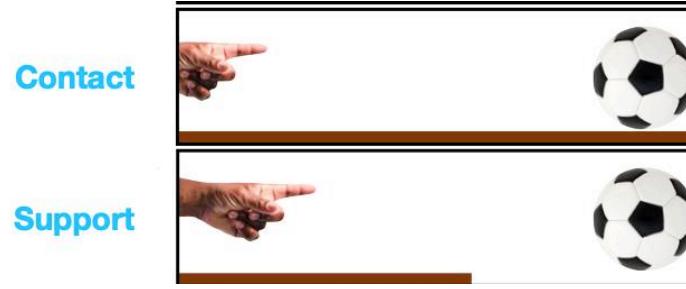
Tan et al. NeurIPS 2024



Objects stay whole/solid



Objects persist over space and time



Objects do not move on their own



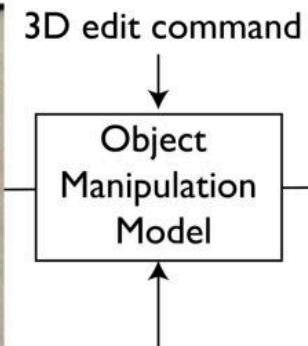
Objects will fall if not supported

Input Image + prompt

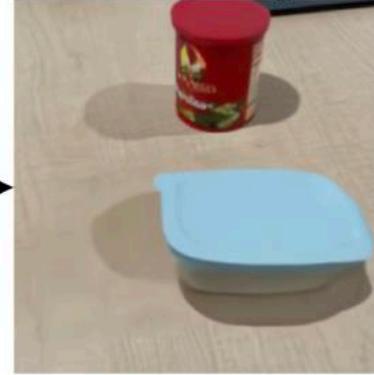


Segment Extraction

Object segment

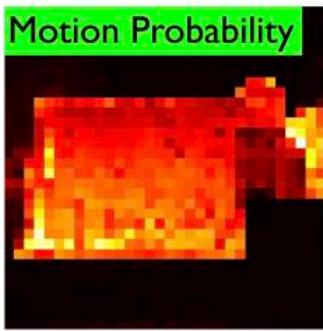
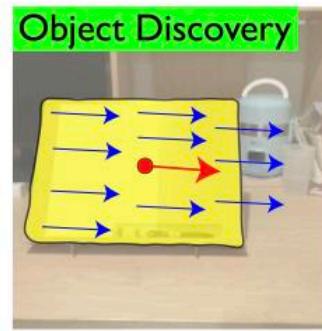
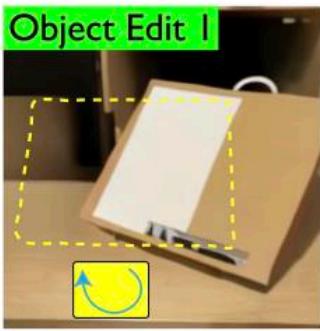
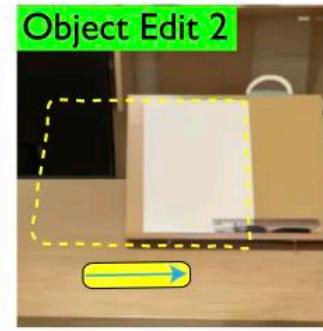


Edited Image



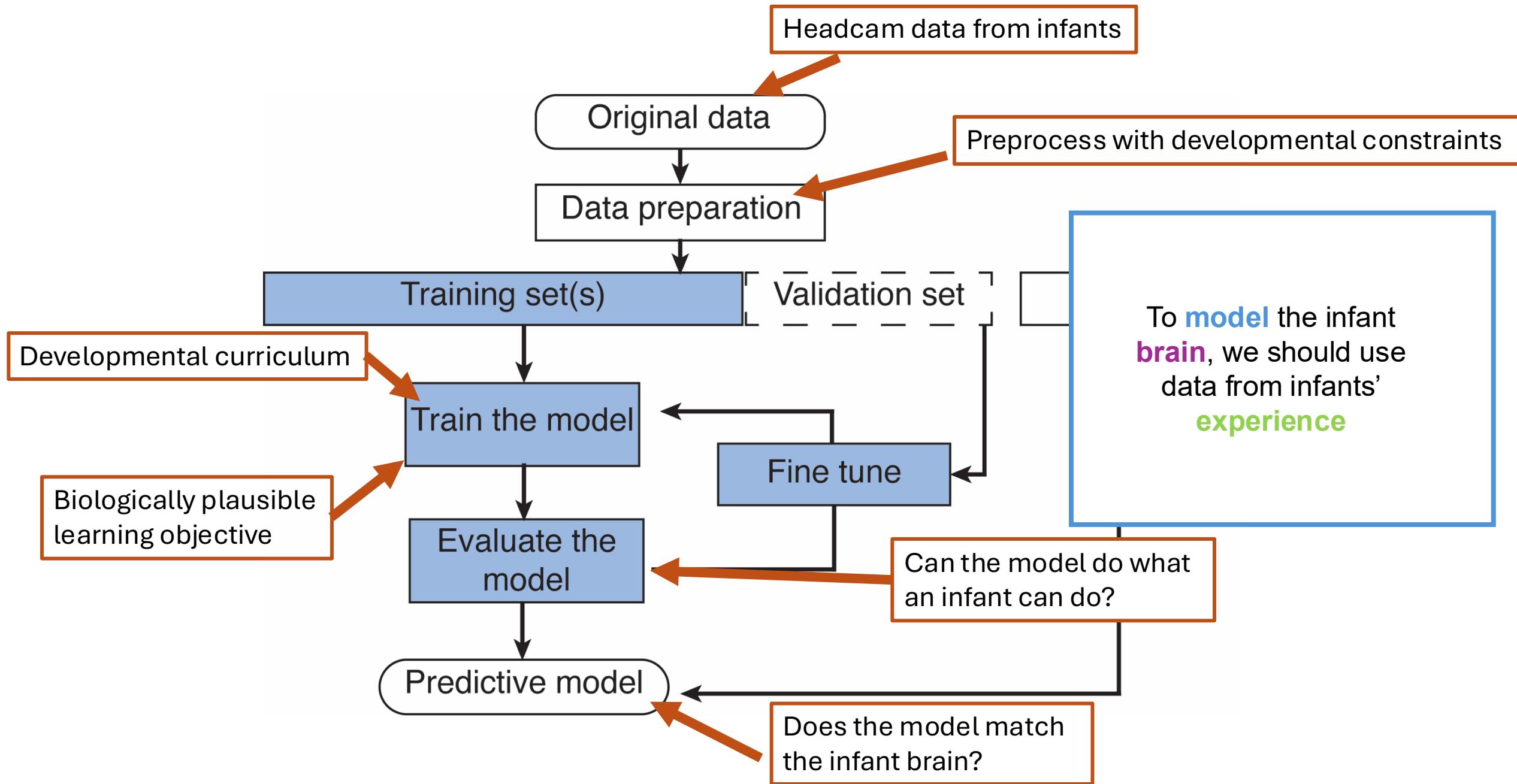
Discovering Spelke objects . . .

. . . using Spelke objects for object manipulation.



SpelkeBench

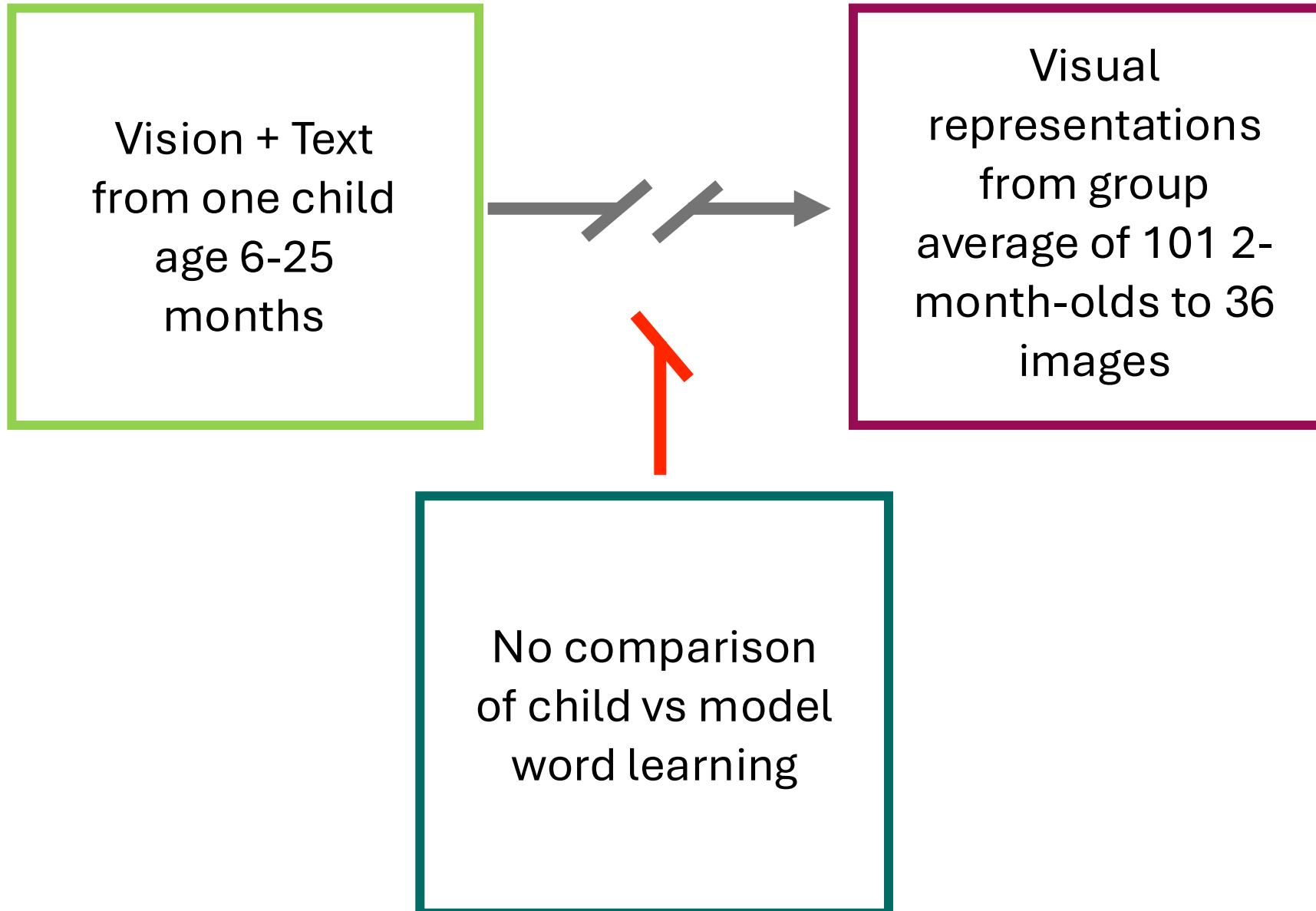
Vankatesh et al. arXiv 2025



Vision + Text  
from one child  
age 6-25  
months



Visual  
representations  
from group  
average of 101 2-  
month-olds to 36  
images



As much of a single child's awake experience recorded as possible



Neural data collection from the same child, throughout infancy

Measure of word learning in the same infant to evaluate model task performance

# Project Simsom

## Project design



## Data collection

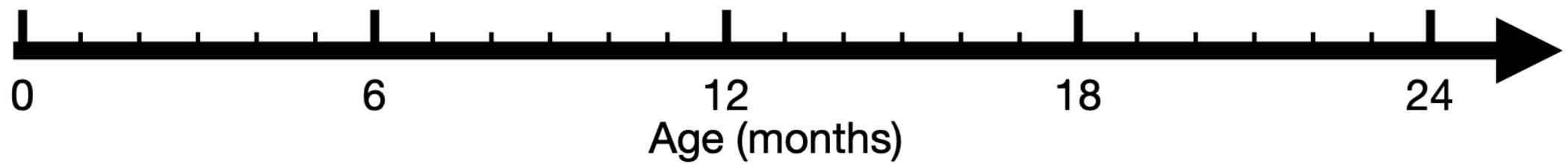


## SCAFFOLDING OF COGNITION TEAM



## Analysis

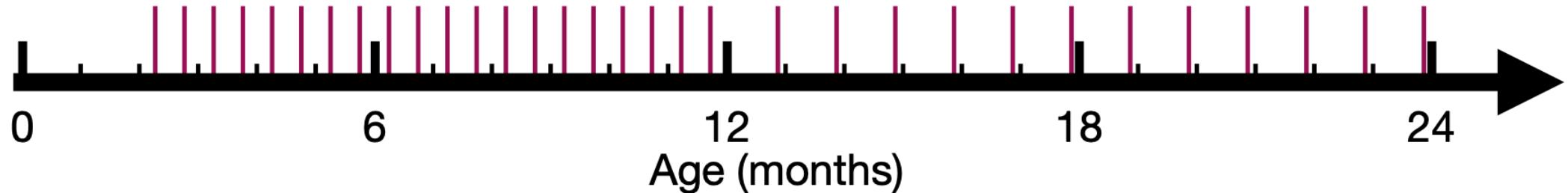
# Project Simsom



# Project Simsom

Brain

Dense sample of the  
brain's  
response to audiovisual  
static  
and dynamic stimuli



# Project Simsom

## Experience

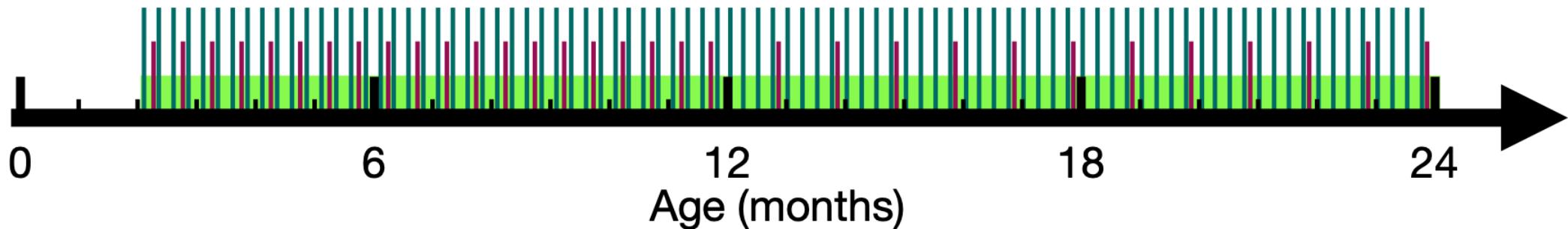
Dense sample of visual and auditory experiences, plus minor interventions to change experiences experimentally

## Brain

Dense sample of the brain's response to audiovisual static and dynamic stimuli

## Behavior

Dense sample of noun-label knowledge that is expected to show longitudinal change



As much of a single child's awake experience recorded as possible



Neural data collection from the same child, throughout infancy

Measure of word learning in the same infant to evaluate model task performance

# References

---

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: correcting a reductionist bias. *Neuron*, 93(3), 480-490.

Lewkowicz, D. J. (2011). The biological implausibility of the nature–nurture dichotomy and what it means for the study of infancy. *Infancy*, 16(4), 331-367.

Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S. (2017). Seeing faces is necessary for face -domain formation. *Nature neuroscience*, 20(10), 1404-1412.

Frank, M. C. (2023). Openly accessible LLMs can help us to understand human cognition. *Nature Human Behaviour*, 7(11), 1825-1827.

Kanwisher, N., Khosla, M., & Dobs, K. (2023). Using artificial neural networks to ask ‘why’questions of minds and brains. *Trends in Neurosciences*, 46(3), 240-254.

Orhan, A. E., & Lake, B. M. (2024). Learning high-level visual representations from a child’s perspective without strong inductive biases. *Nature Machine Intelligence*, 6(3), 271-283.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. *Nature neuroscience*, 19(3), 356-365

Kunin, L., Piccolo, S. H., Saxe, R., & Liu, S. (2024). Perceptual and conceptual novelty independently guide infant looking behaviour: a systematic review and meta-analysis. *Nature Human Behaviour*, 8(12), 2342-2356.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. *science*, 274(5294), 1926-1928.

Plunkett, K., Hu, J. F., & Cohen, L. B. (2008). Labels can override perceptual categories in early infancy. *Cognition*, 106(2), 665-681.

Smith, L. B., Jayaraman, S., Clerkin, E., & Yu, C. (2018). The developing infant creates a curriculum for statistical learning. *Trends in cognitive sciences*, 22(4), 325-336.

Bambach, S., Crandall, D., Smith, L., & Yu, C. (2018). Toddler-inspired visual object learning. *Advances in neural information processing systems*, 31.

# References

---

Jayaraman, S., & Smith, L. B. (2019). Faces in early visual environments are persistent not just frequent. *Vision research*, 157, 213-221.

Franchak, J. M. (2019). Changing opportunities for learning in everyday life: Infant body position over the first year. *Infancy*, 24(2), 187-209

Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. (2017). Real-world visual statistics and infants' first-learned object names. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1711), 20160055.

Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant preference for motherese speech. *Infant behavior and development*, 10(3), 279-293.

Kosakowski, H. L., Cohen, M. A., Takahashi, A., Keil, B., Kanwisher, N., & Saxe, R. (2022). Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. *Current Biology*, 32(2), 265-274

Deen, B., Richardson, H., Dilks, D. D., Takahashi, A., Keil, B., Wald, L. L., ... & Saxe, R. (2017). Organization of high-level visual cortex in human infants. *Nature communications*, 8(1), 13995

Ellis, C. T., Skalaban, L. J., Yates, T. S., Bejjanki, V. R., Córdova, N. I., & Turk-Browne, N. B. (2020). Re-imagining fMRI for awake behaving infants. *Nature Communications*, 11(1), 4523

Ellis, C. T., Yates, T. S., Skalaban, L. J., Bejjanki, V. R., Arcaro, M. J., & Turk-Browne, N. B. (2021). Retinotopic organization of visual cortex in human infants. *Neuron*, 109(16), 2616-2626.

Corvilain, P., Wens, V., Bourguignon, M., Capparini, C., Fourdin, L., Ferez, M., ... & Bertels, J. (2025). Pushing the boundaries of MEG based on optically pumped magnetometers towards early human life. *Imaging Neuroscience*, 3, imag\_a\_00489

Gervain, J., Minagawa, Y., Emberson, L., & Lloyd-Fox, S. (2023). Using functional near-infrared spectroscopy to study the early developing brain: future directions and new challenges. *Neurophotonics*, 10(2), 023519-023519.

O'Doherty, C., Dineen, Á.T., Truzzi, A., King, G., Zaadnoordijk, L., Harrison, K., ... & Cusack, R. (2026). Infants have rich visual categories in ventrotemporal cortex at 2 months of age. *Nature Neuroscience*, 10.1038/s41593-025-02187-8.

# References

---

Smith, L. B., & Slone, L. K. (2017). A developmental approach to machine learning?. *Frontiers in psychology*, 8, 296143.

Sullivan, J., Mei, M., Perfors, A., Wojcik, E., & Frank, M. C. (2021). SAYCam: A large, longitudinal audiovisual dataset recorded from the infant's perspective. *Open mind*, 5, 20-29.

Long, B., Sparks, R. Z., Xiang, V., Stojanov, S., Yin, Z., Keene, G. E., ... & Frank, M. C. (2024). The BabyView dataset: High-resolution egocentric videos of infants' and young children's everyday experiences. *arXiv preprint arXiv:2406.10447*.

Vong, W. K., Wang, W., Orhan, A. E., & Lake, B. M. (2024). Grounded language acquisition through the eyes and ears of a single child. *Science*, 383(6682), 504-511.

Lu, Z., Thorat, S., Cichy, R. M., & Kietzmann, T. C. (2025). Adopting a human developmental visual diet yields robust, shape-based AI vision. *arXiv preprint arXiv:2507.03168*.

Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. *Proceedings of the National Academy of Sciences*, 115(44), 11333-11338.

Tan, A., Yu, C., Long, B., Ma, W., Murray, T., Silverman, R., ... & Frank, M. C. (2024). Devbench: A multimodal developmental benchmark for language learning. *Advances in Neural Information Processing Systems*, 37, 77445-77467.

Venkatesh, R., Kotar, K., Chen, L. N., Kim, S., Wheeler, L. T., Watrous, J., ... & Yamins, D. (2025). Discovering and using Spelke segments. *arXiv preprint arXiv:2507.16038*.