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Infants must learn to… 
parse their sensory input 
into meaningful 
knowledge

How does intelligent behavior emerge?



… use their 
bodies to 
interact with the 
objects they 
see

How does intelligent behavior emerge?



… control their own 
motion through a 
space to interact with 
the environment

How does intelligent behavior emerge?



How does intelligent behavior emerge?

Control their own 
motion through a 
space to interact with 
the environment

… language and how 
to map words to 
referents



How does intelligent behavior emerge?

Control their own 
motion through a 
space to interact with 
the environment

Learn language and 
how to map words to 
referents

How can we 
model this?



Overview

• Why should we model development?
• How to study infants? What do we know about early life?
• Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?
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But how does that behavior arise?



Learning to adapt and behave in the 
first year of life
What are the mechanisms of neural development and 
cognitive function during infancy?



Nature versus Nurture

Nativism Empiricism

Our development is 
preprogrammed by genetics

Plato - our sense data do not 
provide sufficient information to 
specify the abstract ideas and 
knowledge that humans possess

Our environments and experiences 
shape our development

Aristotle - our sense data are sufficient 
to specify abstract concepts and ideas 
and, therefore, that human knowledge is 
acquired through everyday experience.



It’s not that simple …

Empirical findings show that this dichotomy is implausible (Lewkowicz, 2011)
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We need to figure out 
the relative 

importance of each



How to study preverbal infants?

We can’t ask them to do complex 
experimental tasks

We can’t interfere with their learning 
and development
- Although we can use naturally arising 
differences such as preterm birth or twin 
studies



How to study preverbal infants?

We can’t ask them to do complex 
experimental tasks

We can’t interfere with their learning 
and development
- Although we can use naturally arising 
differences such as preterm birth or twin 
studies

No controlled rearing like with animal 
models Arcaro et al., (2017)



Could computational models be the answer?

Brain Model









What does development have to offer modelers?
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Preprocess with developmental constraints

Can the model do what 
an infant can do?

Does the model match 
the infant brain?

Biologically plausible 
learning objective

Developmental curriculum



Yamins & DiCarlo, 2016

Deep neural network modelling of object 
recognition and high-level vision.

Cognitive 
Computational Neuroscience
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Learning to recognise in the first year 
of life
What are the mechanisms of neural development and 
visual function during infancy?

Deep neural network modelling of object 
recognition and high-level vision.

Cognitive 
Computational Neuroscience

Developmental

Yamins & DiCarlo, 2016



Overview

• Why should we model development?
• How to study infants? What can we do in early life?
• Recent advances in Developmental NeuroAI.

Is it fair to say that AI is really like a baby?



Fig. 1a, Kunin et al. (2024)
Nature Human Behavior

How to study preverbal infants?
Where we look reveals something about what we know





Core knowledge
Infants are born with knowledge for domains that 
are evolutionarily important for foundational skills
Elizabeth Spelke



Statistical learning
A foundational, rapid cognitive mechanism 
enabling babies to detect structure, patterns, and 
probabilities in their environment
Jenny Saffran

Science, 1996

Learning an underlying distributional 
structure – labels can interact with the 
perceptual learning

Plunkett et al., 2008



Unique perception in infants

Visual acuity and color perception are poor
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time



Headcam studies





Unique perception in infants

Visual acuity and color perception are poor

Infants see few objects/faces often

They are lying on their backs most of the 
time

Infant directed speech is unique



We need to figure 
out the relative 

importance of each
But how does that behavior arise?



We need to figure 
out the relative 

importance of each
But how does that behavior arise?

Developmental Cognitive Neuroscience 



Fig. 2c, Gervain et al. (2023)
Neurophotonics

Fig. 1c, Corvilain et al. (2025)
Imaging Neurosci

EEG fNIRSMEG
• Good temporal 

resolution
• Poor spatial 

resolution

• Temporal + 
spatial

• Emerging 
technology in 
OPM-MEG

• Better tolerated, 
easier to use in 
naturalistic setting

• Localisation not 
great

Infant neuroimaging



These methods make it difficult to study representations 
on the ventral surface of the brain
- But is MRI feasible in awake, behaving infants?



Deen et al., 2017
Kosakowski et al., 2022

Ellis et al., 2020
Ellis at al., 2021



Fig. 2c, Gervain et al. (2023)
Neurophotonics

Fig. 1c, Corvilain et al. (2025)
Imaging Neurosci

EEG fNIRSMEG MRI
• Good temporal 

resolution
• Temporal + 

spatial
• Emerging 

technology in 
OPM-MEG

• Better tolerated, 
easier to use in 
naturalistic 
setting

• High spatial 
resolution and 
access to deep 
brain structures



Brain Model

?



Overview

• Why should we model development?
• How to study infants? What can we do in early life?
• Recent advances in Developmental NeuroAI.
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Overview

• Why should we model development?
• How to study infants? What can we do in early life?
• Recent advances in Developmental NeuroAI.*** abridged version

Is it fair to say that AI is really like a baby?



Longitudinal awake infant fMRI

54

O’Doherty et al., (2026) Nature Neuroscience



Infant scan setup

Inspired by Deen et al., 2017; Ellis et al., 2020

Facial camera recording
• real time monitoring
• retrospective tagging of 

attentive state

Slide credit: Áine Dineen

Flexible Task switching
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3mm 
isotropic 

voxel

Many 
voxels 

per ROI

Representationa
l similarity matrix

O’Doherty et al., (2026) Nature Neuroscience



Simulation using our display parameters (Dineen et al., in prep)
- Tiny Eyes, Alex Wade University of York
- https://github.com/wadelab/VischeckTinyeyes

Pictures task for MVPA
• 36 images
• 12 categories (x3 exemplar each)

• Chosen across a variety of viewpoints
• Each relates to video contexts in another task

• x4 categories per animate, inanimate small, 
inanimate large

• Images loom towards the infant
• 3 s presentation, separated by jittered fixation



59

O’Doherty et al. (under review)

r

O’Doherty et al., (2026) Nature Neuroscience
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O’Doherty et al., (2026) Nature Neuroscience
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Large-Scale Neural Network Models for Neuroscience

  Works for babies too! 



Headcam data from infants

Preprocess with developmental constraints

Can the model do what 
an infant can do?

Does the model match 
the infant brain?

Biologically plausible 
learning objective

Developmental curriculum
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Headcam data from infants

Does the model match 
the infant brain?



BabyView Dataset   
Long et al. (2025)SAYCam

Sullivan et al. (2021)

Smith & Slone (2017)

Infants generate interesting 
datasets for visual learning



• Image-text model
• ViT encoder head
• Pretrained on headcam data



Assessed on a more dev psych type task

CVCL
600,000 video frames paired with 37,500 
transcribed utterances (extracted from 61 
hours of video
CLIP
400 million image-text pairs from the web

Can word-referent mappings be 
learned with this amount of data?







Developmental DNNs for modelling the developing brain

O’Doherty et al., (in prep)
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Headcam data from infants

Does the model match 
the infant brain?

To model the infant 
brain, we should use 

data from infants’ 
experience



Preprocess with developmental constraints



Neural networks are biased towards 
texture, not shape like humans

What interventions will correct for 
this shape bias?
Lu et al., arXiv preprint 2025



Lu et al., arXiv preprint 2025



Developmental curriculum



Children who are born with 
cataracts and then sight is later 
restored
- Visual acuity recovers
- Configural processing of faces is 

impacted
- Although some resilience in 

ventrotemporal cortex Mattioni et 
al. 2025



Initial blurry exposure allows 
for larger receptive fields – 
ability to integrate 
information over a larger 
visual area

Even limited exposure to 
blur stabilises receptive 
fields and allows for better 
face classification 

Is blurry vision 
adaptive?



Can the model do what 
an infant can do?



Tan et al. NeurIPS 2024

DevBench



Vankatesh et al. arXiv 2025

SpelkeBench



Headcam data from infants

Preprocess with developmental constraints

Can the model do what 
an infant can do?

Does the model match 
the infant brain?

Biologically plausible 
learning objective

Developmental curriculum
To model the infant 

brain, we should use 
data from infants’ 

experience
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Visual 
representations 

from group 
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month-olds to 36 

images
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As much of a 
single child’s 

awake 
experience 
recorded as 

possible

Visual 
representations 

from group 
average of 101 2-
month-olds to 36 

images

No comparison 
of child vs model 

word learning

Neural data 
collection from 
the same child, 

throughout 
infancy

Measure of word 
learning in the 
same infant to 

evaluate model 
task 

performance
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Dense sample of the 
brain’s

response to audiovisual 
static

and dynamic stimuli

Brain



Project Simsom

Dense sample of the 
brain’s

response to audiovisual 
static

and dynamic stimuli

Dense sample of visual 
and

auditory experiences, plus
minor interventions to 

change
experiences 

experimentally

Dense sample of noun-
label knowledge that is 

expected
to show longitudinal 

change

BrainExperience Behavior



As much of a 
single child’s 

awake 
experience 
recorded as 

possible

Visual 
representations 

from group 
average of 101 2-
month-olds to 36 

images

No comparison 
of child vs model 

word learning

Neural data 
collection from 
the same child, 

throughout 
infancy

Measure of 
word learning in 
the same infant 

to evaluate 
model task 

performance
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