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Understanding complex, noisy data streams is a critical part of cognition.

William James

The baby/ assailed by eyes, ears,
nose, skin, and entrails at once,
feels it all as one great

blooming, buzzing confusion.

AZQUOTES

Without sophisticated parsing and entity extraction, the world would be
"as one great blooming, buzzing confusion” (for babies or otherwise).

"\‘V\‘actually not clearly true for babies ...



Infants must learn to...
parse their sensory input
into meaningful
knowledge




... use their
bodies to
interact with the
objects they

- see




How does intelligent behavior emerge?

... control their own
motion through a
space to interact with
the environment




... language and how
to map words to
referents




How can we

model this? Learn language and
how to map words to

referents




Overview

* Why should we model development?
* How to study infants? What do we know about early life?
« Recent advances in Developmental NeuroAl.

s it fair to say that Al is really like a baby?
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“Nothing in biology makes sense except in light of evolution”

“Nothing

Gordon Shepherd
computational
Nothing inmeuroscience makes sense except in light of St anford

optimization. 7 i







Neuron

Perspective

Neuroscience Needs Behavior:
Correcting a Reductionist Bias

John W. Krakaqer,"f‘ Asif A. Qhazanfar,z Alex Grqmerz-Mrarin,a Malcolm A. Mz:xclver,“ and David Poeppel®-¢

There are ever more compelling tools available for neuroscience research, ranging from selective genetic tar-
geting to optogenetic circuit control to mapping whole connectomes. These approaches are coupled with a
deep-seated, often tacit, belief in the reductionist program for understanding the link between the brain and
behavior. The aim of this program is causal explanation through neural manipulations that allow testing of
necessity and sufficiency claims. We argue, however, that another equally important approach seeks an
alternative form of understanding through careful theoretical and experimental decomposition of behavior.
Specifically, the detailed analysis of tasks and of the behavior they elicit is best suited for discovering compo-
nent processes and their underlying algorithms. In most cases, we argue that study of the neural implemen-
tation of behavior is best investigated after such behavioral work. Thus, we advocate a more pluralistic notion
of neuroscience when it comes to the brain-behavior relationship: behavioral work provides understanding,
whereas neural interventions test causality.



But how does that behavior arise?




Learning to adapt and behave in the
first year of life

What are the mechanisms of neural development and
cognitive function during infancy?




Nature versus Nurture

Nativism

Our development is
preprogrammed by genetics

Plato - our sense data do not
provide sufficient information to
specify the abstract ideas and
knowledge that humans possess

Empiricism

Our environments and experiences
shape our development

Aristotle - our sense data are sufficient
to specify abstract concepts and ideas
and, therefore, that human knowledge is
acquired through everyday experience.



It's not that simple ...

Empirical findings show that this dichotomy is implausible (Lewkowicz, 2011)

Infants possess ragile, specific innate
knowledge

This can be sophisticated knowledge
but might break under seemingly trivial
circumstances

_earning plays the critical role of
optimizing these basic building blocks

Infants possess learning mechanisms
that allow them to quickly acquire
sophisticated knowledge

Experience is important but not
necessary since infants can make
Inferences

These learning and reasoning
mechanisms are innate



It's not that simple ...

Empirical findings show that this dichotomy is implausible (Lewkowicz, 2011)

Infants possess learning mechanisms

Infants possess frac~ ~nanifin inasis : :

: . | to quickly acquire
knowledge We need to figure out nowiedge
This can be sophist the relative nportant but not
SUILEINT SHE 2L LT e infants can make
circumstances importance of each

Learning plays the critical role of

optimizing these basic building blocks UnEss SEing N REEEelT e

mechanisms are innate



How to study preverbal infants?

We can’t ask them to do complex
experimental tasks

We can't interfere with their learning
and development

- Although we can use naturally arising
differences such as preterm birth or twin
studies




How to study preverbal infants?

Figure 1: Faces>objects and hands>objects activations in control and face-deprived

monkeys.
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No controlled rearing like with animal
models Arcaro et al., (2017)

We can’t ask them to do complex
experimental tasks

We can't interfere with their learning
and development

- Although we can use naturally arising
differences such as preterm birth or twin
studies




Could computational models be the answer?

Brain

-am—em

Model




What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don’t
have to be perfect to be useful

2. Open: Being able to access both the training sample and
trained weights Is critical for experimental research

Frank, 2023

Nice to have: Interpretable

Once we have this, we can ask why guestions

Kanwisher, et al., 2023



What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don’t

have to be perfect to be useful

Article Published: 07 March 2024
Learning high-level visual representations froma

child’s perspective without strong inductive biases

A. Emin Orhan 84 & Brenden M. Lake

Nature Machine Intelligence 6, 271-283 (2024) | Cite this article

5322 Accesses | 24 Citations | 1564 Altmetric | Metrics
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What do developmentalists want from models?

1. Fit to data: Models must be good. However, they don’t
have to be perfect to be useful

2. Open: Being able to access both the training sample and
trained weights Is critical for experimental research

Frank, 2023

Nice to have: Interpretable

Once we have this, we can ask why guestions

Kanwisher, et al., 2023



What does development have to offer modelers?

( Original data )

Data preparation

[ Validation set 7] Test set

CPredictive model) <




Headcam data from infants

( Original data ;
v

Data preparation

[ Validation set _'J Test set

(Predictive model) <




Headcam data from infants

( Original data ;
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Preprocess with developmental constraints
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Headcam data from infants

( Original data ;
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Canthe model do what
an infant can do?




Headcam data from infants

( Original data

Y
Data preparation

[ Validation set _'J Test set

Preprocess with developmental constraints

Canthe model do what
an infant can do?

(Predictive model ) ¢

Does the model match
the infant brain?




Biologically plausible /

learning objective

Headcam data from infants

( Original data
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an infant can do?

Does the model match
the infant brain?




Headcam data from infants

( Original data

Y
Data preparation

) " Validation set ' ] Test set

Preprocess with developmental constraints

Developmental curriculum

Biologically plausible /

learning objective

Canthe model do what
an infant can do?

(Predictive model ) ¢

Does the model match
the infant brain?




Encoding Decoding
a Stimulus

Cognitive
Computational Neuroscience
\ : /z/wq@
Deep neural network modelling of object SN am = B

recognition and high-level vision.

Yamins & DiCarlo, 2016



Learning to recognise in the first year
of life

What are the mechanisms of neural development and
visual function during infancy?

Cognitive
Computational Neuroscience

Deep neural network modelling of object
recognition and high-level vision.

Yamins & DiCarlo, 2016



Learning to recognise in the first year
of life

What are the mechanisms of neural development and
visual function during infancy?

Developmental Cognitive
Computational Neuroscience

Deep neural network modelling of object
recognition and high-level vision.

Yamins & DiCarlo, 2016



Overview

* Why should we model development?
* How to study infants? What can we do in early life?
* Recent advances in Developmental NeuroAl.

s it fair to say that Al is really like a baby?




How to study preverbal infants?

Where we look reveals something about what we know

Expected Unexpected

D— @

a Habituation

——( P —

Physics

New path and New path and platform,
platform with no support

63 A L&

New barrier and path  New barrier, old path
and inefficient action

Psychology

Fig. 1a, Kunin et al. (2024)
Nature Human Behavior




Infants possess fragile, specific innate
knowledge

This can be sophisticated knowledge
but might break under seemingly trivial
circumstances

_earning plays the critical role of
optimizing these basic building blocks

Infants possess learning mechanisms
that allow them to quickly acquire
sophisticated knowledge

Experience is important but not
necessary since infants can make
Inferences

These learning and reasoning
mechanisms are innate



Core knowledge

Infants are born with knowledge for domains that
are evolutionarily important for foundational skills

Elizabeth Spelke

Cohesion

Continuity

-5

|

Contact

Support

-

l;\ l.\ (B
- 7 w s N7

Objects stay whole/solid

Objects persist over space
and time

Objects do not move on their
own

Objects will fall if not supported

Plus: Forms, social
reasoning...




Statistical learning

A foundational, rapid cognitive mechanism
enabling babies to detect structure, patterns, and

probabilities in their environment
Jenny Saffran

Statistical Learning by 8-Month-Old Infants
Jenny R. Saffran, Richard N. Aslin, Elissa L. Newport

Learners rely on a combination of experience-independent and experience-dependent
mechanisms to extract information from the environment. Language acquisition involves
both types of mechanisms, but most theorists emphasize the relative importance of
experience-independent mechanisms. The present study shows that a fundamental task
of language acquisition, segmentation of words from fluent speech, can be accom-
plished by 8-month-old infants based solely on the statistical relationships between
neighboring speech sounds. Moreover, this word segmentation was based on statistical
learning from only 2 minutes of exposure, suggesting that infants have access to a
powerful mechanism for the computation of statistical properties of the language input.

Science, 1996

1155 5511 5151

o)
122 5 4545 5544 5454

Plunkett et al., 2008

Learning an underlying distributional
structure — labels can interact with the
perceptual learning




Unique perception in infants

Visual acuity and color perception are poor

Newbon f




Unique perception in infants

Infants see few objects/faces often

. . . . Toddler Parent ImageNet
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Smithetal., 2018 Bambach, et al., 2018; Jayaraman, et al., 2019




Unique perception in infants

Visual acuity and color perception are poor . _

S
o
|

@
a

Infants see few objects/faces often

w
o
1
g8s
a

n
o
1
-
ﬁowam

000600

Frequency (% samples)

They are lying on their backs most of the
time

o
|

o
|

Franchak, et al., 2019




Headcam studies

This is more like what real visual experience looks like:

Clerkin, Hart, Rehg, Yu, & Smith (2017)



The Developing Infant Creates a Curriculum for Statistical
Learning

Age 12-18 months



Unique perception in infants

a Adult-directed

Visual acuity and color perception are poor

Infants see few objects/faces often

Infant-directed

They are lying on their backs most of the

o [
Hme = ’f\.J..\J \f\ \

Infant directed speech is unique

Fernald & Kuhl, 1987



: _ Infants possess learning mechanisms
Infants possess fragile. specific innate + T em to quickly acquire

knowledge We need to figure  d knowledge

Tiscmposopnsies out the relative  mporant ut o
R |mportance of each 3ince infants can make

R

|_earning plays the critical role of
optimizing these basic building blocks

These learning and reasoning
mechanisms are innate

But how does that behavior arise?



Infants possess fragile. specific innate Inf

knowledge We need to fi

This can be sophistica out the relati

but might break under . f

croumstances mportance ot does that behavior arise?
Learning plays the critical role of ™ ]

optimizing these basic building blocks

LGN

Retina

Developmental Cognitive Neuroscience




Infant neuroimaging

EEG MEG fNIRS

» Good temporal  Temporal + » Better tolerated,
resolution spatial easier to use in
« Poor spatial  Emerging naturalistic setting
resolution technology in * Localisation not
OPM-MEG great

Fig. 1c, Corvilain et al. (2025) Fig. 2c, Gervain et al. (2023)
Imaging Neurosci Neurophotonics



ZSimple Decision Rule

Feature represen

These methods make it difficult to study representations
on the ventral surface of the brain
- But is MR feasible in awake, behaving infants?




Infant 1 (6 mo, 59 mins data)

Retinotopic mapping in human infants with fMRI

Horizontal vs. vertical orientation High vs. low spatial frequency

Striate and extrastriate areas

.// \
3| A g
5] N\ Inflated g
£l \ surface =
V3A/B
V3vavi PGt .
P'_.s i—_
2 4 S
V4 v3 v P A
L R L R
[ I E 1
Vertical Horizontal Low High
Representative maps from a 5.5 month old
(one of 17 sessions with infants 5-23 months)
Deen et al., 2017 Ellis et al., 2020

Kosakowski et al., 2022 Ellis at al., 2021



EEG

Good temporal
resolution

MEG

 Temporal +
spatial

« Emerging
technology in
OPM-MEG

Fig. 1c, Corvilain et al. (2025)
Imaging Neurosci

fNIRS

Better tolerated,
easier to use in
naturalistic
setting

Fig. 2c, Gervain et al. (2023)
Neurophotonics

MRI

High spatial
resolution and
access to deep
brain structures




Brain Model

. representation read-out )
Stimulus — Neurons — > Behavior

Madame
Curie!

; _Fitter Threshold & =
®R e, Saturate Pool Normalize

] ©2 | wp /] d®)

®2 Layer components are basic neural-like operations.
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* How to study infants? What can we do in early life?
» Recent advances in Developmental NeuroAl.

s it fair to say that Al is really like a baby?




Overview

* Why should we model development?
* How to study infants? What can we do in early life?
* Recent advances in Developmental NeuroAl.*** abridged version

s it fair to say that Al is really like a baby?




Foundations
of Cognition

www.foundcog.org

{
S

% Longitudinal awake infant fMRI

‘ curation + BIDS formatting

l motion correction

.
\ )
)

)

{? 2-months (n=130)

l

9-months (n=65) . kS l distortion correction

{? £ § 2 l normalisation
(®] Q
3 § 2 l censoring + motion threshold
O S > .

{? adults (n=18) § : l ROI selection

l GLM / beta estimates

O’Doherty et al., (2026) Nature Neuroscience



Foundations
of Cognition

I nfa nt Sca n Setu p ‘;;w.foundcog.org

Facial camera recording

 real time monitoring

» retrospective tagging of
attentive state

Flexible Task switching

Inspired by Deen et al., 2017; Ellis et al., 2020
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Pictures task for MVPA

« 36 images
« 12 categories (x3 exemplar each)
« Chosen across a variety of viewpoints

6-months-old Adult

 Each relates to video contexts in another task Simulation using our display parameters (Dineen et al., in prep)
x4 categories per animate, inanimate small, - Tiny Eyes, Alex Wade University of York

. . - https://github.com/wadelab/VischeckTinyeyes
inanimate large

« Images loom towards the infant
« 3 s presentation, separated by jittered fixation

o ﬁkm@‘é@é
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EVC | untrained EVC | supervised EVC | self-supervise
twomonth

DNN Modelling 05 7 - - inemny

AlexNet trained on
ImageNet

0.2 — - -
Random initialisation,
supervised and self-
supervised contrastive
learning

0.1 - -

0.0 = T T T T T T T T T T T T T T T T T T T T
convl conv2 conv3 conv4 conv5 fc6 fc7 convl conv2 conv3 conv4 conv5 fc6 fc7 convl conv2 conv3 conv4 conv5 fc6 fc7

VVC | untrained VVC | supervised VVC | self-supervised
0.5 - -

Expected hierarchical
correspondence between
layer and visual hierarchy

0.4 - - -

correlation to neural response pattern

0.3 - - -

0.2 - - -

0.1 - -

0.0 = T T T T T T I T T T T T T T T I T T T T
convl conv2 conv3 conv4 conv5 fc6 fc7 convl conv2 conv3 conv4 conv5 fc6 fc7 convl conv2 conv3 conv4 conv5 fc6 fc7

O’Doherty et al., (2026) Nature Neuroscience



DNN Modelling

AlexNet trained on
ImageNet

Random initialisation,
supervised and self-
supervised contrastive
learning

Expected hierarchical
correspondence between
layer and visual hierarchy

correlation to neural response pattern

EVC | untrained

0.5 -

0.4 —

0.3 -

0.2 —

0.1 -

EVC | supervised EVC | self-supervised

twomonth

ninemonth
adult

| I I | | |
convl conv2 conv3 conv4 conv5 fc6
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fc7
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O’Donherty et al., (2026) Nature Neuroscience



Large-Scale Neural Network Models for Neuroscience

Stimulus encoding Neurons decodnd 5 Behavior

5 _~Category

D1/v Location
2

D4 Pose
D

"

pixels  Rapid Visual
Presentation

Operations in Linear-Nonlinear Layer
Spatial Convolution @0
@@,
over Image Input @ &, w E.E-’@
—~———— Filtelr Threshold Pool  Normalize:




Large-Scale Neural Network Models for Neuroscience

I encoding decoding :
Stimulus > Neurons >  Behavior
i Category
CIT AT i
/Dz/v Location
403** Size
\D
o \D4\A Pose
bixes  fepc s :
——
Operations in Linear-Nonlinear Layer
Spatial Convolution i
over Image Input @ . E-’E.@
~— > Filtor Threshold Pool  Normalize!

5 Works for babies too!



Headcam data from infants

( Original data

Y
Data preparation

) " Validation set ' ] Test set

Preprocess with developmental constraints

Developmental curriculum

Biologically plausible /

learning objective

Canthe model do what
an infant can do?

(Predictive model ) ¢

Does the model match
the infant brain?




( Original data )

Data preparation

[ Validation set j

Test set

(Predictive model ) <
Does the model match
the infant brain?




Headcam data from infants

( Original data ;
v

Data preparation

[ Validation set _'J Test set

(Predictive model ) <

Does the model match
the infant brain?




Infants generate interesting
datasets for visual learning

b Example frames

The
BabyView
Camera

BabyView Dataset
1 to 3 months

SAYCam Long et al. (2025)
8 to 10 months

12 to 24 months Sullivan etal. (2021)
Smith & Slone (2017)




MACHINE LEARNING

Grounded language acquisition through the eyes
and ears of a single child

Wai Keen Vong'*, Wentao Wang’, A. Emin Orhan’, Brenden M. Lake'2

* Image-text model
* ViT encoder head

* Pretrained on headcam data

Vision
Encoder

. fo

c

(@]

(]

c

Q /

@ /cos(v,u)
“ / COS V, u
Look Language ~

Utterance ;
W there'sa ——> | Encoder | — u

baby” Ty

Vision
Encoder

Jo

Scene Two

Language
Encoder

7

Utterance “Now it is

w’ a big ball”

4 Attract

<+— Repel



Time: 0:41 Time: 0:44 Time: 0:48 Time: 0:52 Time: 1:13 - Time: 2:00 Time: 2:06

Utterance: You see Utterance: It goes Utterance: Boop Utterance: Hey look  Utterance: Yeah Utterance: You like Utterance: You
this block the in here the string want the blocks too
triangle
o CVCL

600,000 video frames paired with 37,500
transcribed utterances (extracted from 61
hours of video

s CLIP

400 million image-text pairs from the web

Task: Which one is the ball? )
Can word-referent mappings be

Assessed on a more dev psych type task learned with this amount of data?
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Limitations .. ® @
The model is unrealistic:
i ES <=
Using transcribed speech

Task: Which one is the ball?

Training is not continuous

8

This is just testing noun learning, not grammar or
non-nouns

~
o,

Classification Accuracy
) & 3
L 1 L 1
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Neural networks are biased towards
texture, not shape like humans

What interventions will correct for ot
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Children who are born with
cataracts and then sight is later
restored

- Visual acuity recovers

p | - Configural processing of faces is
| impacted

- Although some resilience in
ventrotemporal cortex Mattioni et
al. 2025
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Potential downside of high initial visual acuity
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LWL (1.5-2.5y0)

“ball” “aloe” (Response: - s
(Response: looking time) (Response: choice) - word associate) (Response: looking time)

WAT VOC (0.3-1.6y0)
(5-10yo + adults)

W (3-12yo + adults)

“before”

TROG (11-12yo0) WG (adults) THINGS (adults)

Ry ‘

» i “the white dogis on
HieReythe dog cha§es Isbig the brown couch” (Response: odd-one-out choice)
(Response: choice)

(Response: match/no match)

Table 2: Model characteristics and performance across all tasks, demonstrating variation across
models. Arrows indicate the direction of better performance (i.e., lower is better vs. higher is better).
Bolded results indicate most human-like result on a task.

Lexicon Syntax Semantics
Model #params #images LWL(]) VV({) TROG({) WG({) WAT({) VOC(T) THINGS (1)
CLIP-base [48] 149M 400M 0.014 0.205 0.732 0.256 0.495 -0.081 0.397
CLIP-large [48] 428M 400M 0.013 0.179 0.692 0.256 0.495 0.005 0.246
ViLT [49] 8™ 4. 1M 0.009 0.326 0.682 0.252 0.495 -0.053 0.127
FLAVA [50] 350M 70M 0.013 0.197 0.912 0.254 0.495 -0.042 0.189
BLIP [51] 252M 14M 0.010 0.193 0.576 0.259 0.495 -0.104 0.185
BridgeTower [52] 333M 4M 0.008 0.265 0.584 0.250 0.495 -0.095 0.345
OpenCLIP-H [53] 1.0B 32B 0.012 0.188 0.683 0.255 0.495 0.031 0.227
SigLIP [54] 800M 9B 0.067 0.612 0.888 0.258 0.495 -0.028 0.192
CVCL [4] 26M 600K 0.060 0.740 0.911 0.258 0.495 0.138 0.175
Human 0.010 0.091 0.028 0.251
Random (OpenCLIP) 1.0B 0 0.087 0.740 0.908 0.258 0.495 0.246 0.054 D ev B en Ch

Tan et al. NeurlPS 2024
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