
Reinforcement Learning in 
the Brain

Logan Cross, Postdoctoral Scholar



Decision Neuroscience: How do brains 
learn to make decisions?



Reinforcement Learning (RL)

▷ RL - a poster child of 
influential crosstalk between 
AI and decision neuroscience



Computational 
problem: Mapping 
states to actions

Greydanus & Olah, "The Paths Perspective on Value Learning", Distill, 2019.

What problem does RL solve?
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Temporal Difference 
Learning

Estimate the value of 
being in every state

V(s) = discounted sum of 
expected future reward



Temporal Difference 
Learning

Estimate the value of 
being in every state

V(s)

Update the value through 
prediction errors
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Q-Learning
▷ Turn a value function into a decision-making 

policy
▷ Learn an action-value function Q(s,a) for 

every state-action pair, take the action with 
the highest Q-value



Q-Learning
▷ Turn a value function into a decision-making 

policy
▷ Learn an action-value function Q(s,a) for 

every state-action pair, take the action with 
the highest Q-value

▷ Update Q-values with TD prediction errors 



Dopamine and the reward circuit

▷ Dopamine neurons in the 
Ventral Tegmental Area 
(VTA) signal reward

▷ Addictive drugs act on 
these dopamine regions

▷ VTA projects to 
striatum/nucleus 
accumbens and frontal 
cortex



▷ Dopamine neuron 
responses reflect 
prediction errors as in 
TD learning algorithm

Evidence for TD Learning signals in 
the brain

Schultz et al., 1997



Evidence for TD Learning signals in 
the brain

Correlates of prediction error 
signals are found in the 
striatum of humans using fMRI

Image from O’Doherty et al., 2004



Classic RL in the brain

▷ RL theories describe algorithmic solutions 
for selecting actions to maximize long-term 
reward

▷ Evidence found for implementation of these 
algorithms in the brain



Classic RL breaks in environments with 
real-world complexity

?

▷ In the real-world states are not 
discrete
○ They are continuous and 

high-dimensional
▷ Animals, humans, and robots have 

to use perception to know where 
they are

▷ Can’t learn about every state
○ Have to generalize



What does the brain do in environments of real-world 
complexity?

▷ Classic RL theory defines a new state for 
any change in sensory input

▷ But, humans can drive a car in new 
environments seamlessly, even with novel 
sensory input 

▷ The brain must construct a lower 
dimensional, more abstract state space 
that allows it to generalize to new 
environments and conditions



Action

High-dimensional 
stimulus

▷ The mapping of input -> action becomes highly non-linear
▷ Can we get inspiration from modern deep learning tools?

What does the brain do in environments of real-world 
complexity?



Atari video games and Deep-Q-Network as a model 
for this problem

From Mnih et al., 2015





Deep-Q-Network

▷ Key idea: use a deep neural network to 
approximate the Q-value function

84x84x4 Pixel Input

Left Right Fire

9.7 8.1 10.3



Deep-Q-Network
▷ Three convolutional layers->one 

fully-connected layer->output Q-value for 
every action

▷ Take action with the highest Q-value 
○ Take random action with ε probability for 

exploration (ε-greedy)



Deep-Q-Network

▷ To learn: use TD target and turn it into 
regression problem



Other Challenges that DQN solves

▷ We want the data to be i.i.d.
▷ But in RL, data points are highly correlated 

between time points

t t+1



Experience Replay Buffer

▷ Run policy to collect 
experiences to store in 
replay buffer
○ (s,a, r, s’)

▷ To train, randomly 
sample these 
experiences to 
decorrelate samples



Deep RL in the brain

▷ How does an AI, human, or animal evaluate 
actions in a high-dimensional environment?
○ Use deep learning to approximate the 

value function and do state 
representation

▷ Is there a network in the brain that 
constructs state representations similarly 
to deep RL algorithms?





Experimental Design

▷ Subjects freely play Atari video games 
in the fMRI scanner

▷ Subjects are scanned in 4 separate 
days for a total of 4.5 hours of 
gameplay
○ N=6

▷ Games
○ Enduro
○ Pong
○ Space Invaders

Cross et al., 2021



Controller

Move Left

Move Right

Fire



Enduro
▷ You control a race car that 

must avoid other cars and 
go as fast as possible

▷ Pass 200 cars before the 
day is over

▷ Weather conditions 
change throughout the day 



Pong
▷ You control the green 

paddle on the right
▷ Move the paddle up and 

down to hit the white ball
▷ Get the white ball past 

your opponent to be 
awarded 1 point



Space Invaders
▷ You control a ship that can 

move from left to right at the 
bottom of a screen

▷ You must destroy enemy 
ships above you and avoid 
being hit by missiles



Can DQN hidden layers model state-space 
representation?

▷ Four hidden layers 
represent the internal 
state representations in 
DQN

▷ Can human behavior and 
brain activity be predicted 
from these layers? 



Predicting human behavior using 
DQN hidden layers

1. Run human gameplay data through trained 
DQN to produce stimulus features 
represented by the activations in the hidden 
layers

2. Take 100 principal components from each 
layer (400 total features)

3. Predict human left vs right actions from 
these features using logistic regression





▷ Use ridge regression to 
model the response of a 
voxel at each timepoint as 
a linear combination of 
neural network 
activations

Predicting brain activity using DQN 
hidden layers - Encoding Model



Pong - Encoding model results

Sub001 Sub006

Pong regions: Distributed sensorimotor pathway extending from dorsal 
visual pathway, posterior parietal cortex (PPC) to premotor cortex



Enduro - Encoding model results

Sub001 Sub006

Enduro regions: Distributed sensorimotor pathway extending from dorsal 
visual pathway, posterior parietal cortex (PPC), and to premotor cortex



Space Invaders - Encoding model results

Sub001 Sub006

Space Invaders regions: Distributed sensorimotor pathway 
extending from dorsal stream, PPC, and prefrontal cortex regions



Layers 3 & 4 have highest coefficients 
even in early visual cortex

*PPC = posterior parietal cortex



Control Analyses

▷ Is DQN just picking up on basic visual and 
motor responses

▷ DQN tested against control models
○ Variational autoencoder (VAE)
○ DQN trained on another game
○ Principal components of pixel space
○ Motor regressors



DQN outperformed all control models for all subjects across 
games (except one game in one subject) 



Control Analyses

▷ Nonlinear feature representations 
outperformed linear ones
○ VAE and DQN two best models

▷ DQN outperforms VAE by linking 
perception to action and reward 



What exactly is DQN encoding?

▷ We performed representational similarity 
analysis (RSA) on DQN to characterize its 
internal representations



RSA on DQN - Pong

▷ Annotated high-level features for Pong
○ Ball position
○ Ball velocity
○ Paddle positions

▷ Construct dissimilarity matrices for DQN 
layers and compare it to these hand drawn 
features





Early DQN layers 
correlated to pixel space

Later DQN layers 
correlated to hand drawn 
features







RSA in Pong

The shared task representation between the 
brain and DQN in Pong corresponds to a 
mutual encoding of the spatial positions of 
objects



Are there correlates of DQN’s action 
value outputs in the brain?





Filter Analyses
How can we further interpret 
what representation is shared 
between the DQN and various 
brain regions?

Investigate the filters in the 
convolutional layers



Use deconvolution to visualize the 
filters

Enduro 1st Convolutional Layer - Detects Edges



Enduro 2nd Convolutional Layer - Detects Object Parts



Enduro 3rd Convolutional Layer - Detects Cars and Road



Which filters best explain brain 
activity?

▷ Retrained encoding model on each 
convolutional filter in the last convolutional 
layer separately (layer 3, 64 filters)

▷ Each filter gets a Neural Predictivity score 
based on how well it predicts voxel 
responses in a region of interest 



In Pong, the most neurally predictive 
filters encode the hand drawn features



The most neurally predictive filters are 
also predictive of behavior





More heterogeneity of filter selectivity across regions 
for Enduro and Space Invaders



Abstract State-Spaces

▷ Abstract state-representations should be 
invariant to irrelevant sensory information

▷ For Pong, this involves encoding spatial 
features about the relevant objects in the 
game

▷ Can we get metrics for abstract 
representations for Enduro and Space 
Invaders?



Nuisance Invariance



Nuisance Invariance
In Enduro, weather/time of day is a nuisance

I(human action; weather) = 0

Dramatic changes in pixel space is independent of how agent should 
act





Nuisance Invariance Score

▷ Estimate each filters nuisance invariance to 
weather with mutual information

▷ Correlate this metric with that filter’s 
neural predictivity in a region
○ Negative correlation suggests more 

representation of weather in a region
○ High correlation suggests more nuisance 

invariance in a region



Filters mapped to posterior parietal 
cortex have less representation of 
weather

● Supramarginal gyrus, superior 
parietal lobule, precuneus

● Less representation of 
weather suggests a more 
abstract representation in 
these regions that are 
invariant to nuisances like 
color of pixels



Nuisance Invariance
In Space Invaders, the number of invaders on the screen does not have 
much effect on actions (what the invaders near you are doing is what 
matters)

I(human action; number of invaders) = 0.07

Dramatic changes in pixel space is independent of how agent should act



Filters mapped to posterior parietal 
cortex have less representation of 
the number of invaders

● Supramarginal gyrus, superior 
parietal lobule, precuneus

● Less representation of the 
number of invaders suggests 
a more abstract 
representation in these 
regions



Science Advances, 2022

Compares deep RL agents and mouse brains performing 
the same sensorimotor task

Deep RL agent: A2C



Aside: What is Advantage Actor 
Critic? (A2C)



Policy-Based Reinforcement Learning

▷ Rather than learning a value function, 
directly optimize a policy to maximize the 
objective of expected reward



Policy Gradient/REINFORCE Algorithm

▷ Output of network is a policy - a probability 
distribution over actions

84x84x4 Pixel Input

Left Right Fire

0.3 0.2 0.5



Policy Gradient/REINFORCE Algorithm

▷ Use gradient ascent to optimize objective

Policy gradient term



Policy Gradient/REINFORCE Algorithm

▷ Use gradient ascent to optimize objective

Policy gradient term



Policy Gradient/REINFORCE Algorithm

▷ Probability of action πθ(a
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Policy Gradient/REINFORCE Algorithm

▷ Known as on-policy RL because you have to 
train using data from current policy

▷ Data is thrown away after training step
▷ This makes training more inefficient and 

makes high variance gradients



Policy Gradients Useful for Continuous 
Action Spaces



Policy-Based vs Value-Based RL

▷ Policy-based
○ Pros: 

■ General class of optimization 
■ Can be applied to any domain like continuous action 

spaces
■ PG Theorem guarantees convergence

○ Cons:
■ Sample inefficient/slow learning because you throw 

away data (on-policy)
■ High variance



Policy-Based vs Value-Based RL

▷ Value-based
○ Pros: 

■ More sample efficient because data is reused through 
replay buffer (off-policy)

■ Lower variance
○ Cons:

■ Stable training requires numerous practical tricks
■ High bias 

● Overestimation of value function



Actor-critic methods

▷ Combine policy-based and value-based 
methods to get the best of both worlds

▷ Learn two components
○ Actor: Learn a policy
○ Critic: Learn the value of states and 

provide reinforcing signal to actor



Actor-critic methods

▷ How can we solve the high variance 
problem in policy-based methods?

This reward to go term is highly 
variable from trajectory to trajectory 

making the gradients unstable 



Actor-critic methods

▷ How can we solve the high variance 
problem in policy-based methods?

Also this term is not normalized

What if reward is always negative? 
Every action will be negatively 

reinforced 



Actor-critic methods

▷ Solution: use an action value function as the 
reinforcing signal

Separately learn Q-value function



Actor-critic methods

▷ Solution: use an action value function as the 
reinforcing signal

Critic Actor



Critic Actor





Actor-critic methods

▷ Can we do even better?
▷ Reinforce actions that produce outcomes 

that are better than other actions



Advantage Actor-critic (A2C)

▷ Reinforce actions that produce outcomes 
that are better than other actions

▷ Use the advantage function



Advantage Actor-critic (A2C)

▷ We want to reinforce actions relative to 
how the perform vs the other actions - 
independent of the value of a state



Advantage Actor-critic (A2C)

▷ Use the advantage function as reinforcing 
signal

Critic Actor



Advantage Actor-critic (A2C)

▷ Probability of action πθ(a
t
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Science Advances, 2022

Compares deep RL agents and mouse brains performing 
the same sensorimotor task

Deep RL agent: A2C



Novel sensorimotor task designed for both 
mice and deep RL agents (A2C)

Task: Control object with joystick/actions to 
reach reward zone



Recorded from

▷ Motor cortex (M1 and M2)
▷ Primary Somatosensory cortex 

(S1)
▷ Retrosplenial cortex (RSC)
▷ Posterior Parietal Cortex (PPC)

○ Anterior visual cortex (VISa)
○ Anteromedial visual cortex 

(VISam)



RL Task: Control object with actions to reach 
reward zone

▷ Continuous input space (x, y coords)
▷ High-dimensional action space (64): 8 speed 

x 8 direction bins



RL Task: Control object with actions to reach 
reward zone

▷ Continuous input space (x, y coords)
▷ High-dimensional action space (64): 8 speed 

x 8 direction bins



State-Value Neurons



State-Value Neurons



Policy Neurons



Policy Neurons



Causal Manipulations



Causal Manipulations

Optogenetic inhibition of 
neural activity



Causal Manipulations



Summary
▷ RL has a long history of interaction with neuroscience and 

psychology
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need to combine them with modern tools like deep learning



Summary
▷ RL has a long history of interaction with neuroscience and 

psychology
▷ To scale the RL framework up to real-world environments, we 

need to combine them with modern tools like deep learning
▷ Features from deep RL algorithms can be used to significantly 

predict brain responses in sensorimotor regions during 
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Summary
▷ RL has a long history of interaction with neuroscience and 

psychology
▷ To scale the RL framework up to real-world environments, we 

need to combine them with modern tools like deep learning
▷ Features from deep RL algorithms can be used to significantly 

predict brain responses in sensorimotor regions during 
naturalistic tasks

▷ Deep RL and the brain converge to similar representations
○ Encoding an abstract state representation in PPC
○ Representing state-value and policy information in PPC



“
Thank you for listening!


