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Reinforcement Learning (RL)

> RL - a poster child of
influential crosstalk between
Al and decision neuroscience
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What problem does RL solve?

Computational
problem: Mapping
states to actions

Greydanus & Olah, "The Paths Perspective on Value Learning", Distill, 2019.
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Temporal Difference
Learning

Estimate the value of
being in every state

V(s) = discounted sum of
expected future reward

V(s)) <« + gV (s5p1)

State value Reward Next state value




Temporal Difference
Learning

Estimate the value of

being in every state
V(s)

Update the value through
prediction errors

TD Learning V(St) — V(S,)+a[Rt+1+7V(St+1)—V(St)]

Reward t+1

Previous estimate

TD Target




TD Learning V(St) — V(St)+a[Rt+1+’YV(St+1)_V(St)]

Reward t+1 Discounted value or

Previous es! timate

TD Target

Low value V(s) High value




wieamng V'(S}) < V(Sp)+[Res1+7V (Ses1) =V (Sy)]

Reward t+1 Discounted value or

Previous estimate

TD Target

Low value V(s) High value
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Q-Learning

> Turn a value function into a decision-making
policy

~ Learn an action-value function Q(s,a) for
every state-action pair, take the action with
the highest Q-value

Q(s,a)
=) Q(St, At) = Ri1 + P Q(Sty1,a)

~




Q-Learning

> Turn a value function into a decision-making
policy

~ Learn an action-value function Q(s,a) for
every state-action pair, take the action with
the highest Q-value

> Update Q-values with TD prediction errors

Q(St, At) — Q(St, At) + a[Rt—H + ’YmanaQ(StH, a) - Q(St, At)]

New Former Learning Immediate Discounted Estimate Former
Q-value Q-value  Rate Reward optimal Q-value Q-value
estimation estimation of next state estimation
-
TD Target



Dopamine neurons in the
Ventral Tegmental Area
(VTA) signal reward
Addictive drugs act on
these dopamine regions
VTA projectsto
striatum/nucleus
accumbens and frontal
cortex




Evidence for TD Learning signals in
the brain

Do dopamine neurons report an error

in the prediction of reward?
>~ Dopamine neuron No preciton ,,
responses reflect
prediction errors asin
TD learning algorithm e

Reward occurs

Reward predicted
No reward occurs

Schultzetal., 1997




Evidence for TD Learning signals in
the brain

Correlates of prediction error
signals are found in the
striatum of humans using fMRI

Image from O'Doherty et al., 2004




Classic RL In the brain

> RL theories describe algorithmic solutions
for selecting actions to maximize long-term

reward
> Evidence found for implementation of these
algorithms in the brain




Classic RL breaks In environments with
real-world complexity

> |n the real-world states are not Environment

high-dimensional —
> Animals, humans, and robots have
to use perception to know where
they are
~ Can’t learn about every state
o Have to generalize

discrete @ |
. Action
o They are continuous and \ @




Classic RL theory defines a new state for
any change in sensory input

But, humans can drive a car in new
environments seamlessly, even with novel
sensory input

The brain must construct a lower
dimensional, more abstract state space
that allows it to generalize to new
environments and conditions




The mapping of input -> action becomes highly non-linear
Can we get inspiration from modern deep learning tools?

High-dimensional
stimulus




Atari video games and Deep-Q-Network as a model
for this problem
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Key idea: use a deep neural network to
approximate the Q-value function

-~

Q(s,a;0)

Left Right Fire

84x84x4 Pixel Input

9.7 8.1 10.3




Deep-Q-Network

> Three convolutional layers->one
fully-connected layer->output Q-value for
every action
> Take action with the highest Q-value
o Take random action with € probability for
exploration (e-greedy)

. ACTION ‘




Deep-Q-Network

> Tolearn:use TD target and turn it into
regression problem

r+v maxQ(s’,a’;60;")

\ -
g

target

Loss = (r +ymazy Q(s',a';60') — Q(s, a; 9))2




We want the data to be i.i.d.
But in RL, data points are highly correlated
between time points

t t+1



Experience Replay Buffer

> Run policy to collect S
experiences tostorein =+
replay buffer s
o (s,a,rs) P States
> To train, randomly ( Rewards o ) reare
sample these I .
experiences to —

decorrelate samples



Deep RL in the brain

>~ How does an Al, human, or animal evaluate
actions in a high-dimensional environment?
o Usedeep learning to approximate the
value function and do state
representation
> |s there a network in the brain that
constructs state representations similarly
to deep RL algorithms?




Neuron

Using deep reinforcement learning to reveal how the
brain encodes abstract state-space representations
in high-dimensional environments

Authors

Logan Cross, Jeff Cockburn,
Yisong Yue, John P. O’Doherty



Experimental Design

Subjects freely play Atari video games
in the fMRI scanner
Subjects are scanned in 4 separate
days for a total of 4.5 hours of
gameplay

o N=6
Games

o Enduro

o Pong

o Space Invaders

Crossetal., 2021




Controller

o C @ 0

Move Left
Fire

Move Right




You control arace car that
must avoid other cars and
go as fast as possible

Pass 200 cars before the
day is over

Weather conditions
change throughout the day




Pong
- Youcontrolthe green e I

paddle on the right
> Move the paddle up and
down to hit the white ball
> Get the white ball past
your opponent to be
awarded 1 point




You control a ship that can
move from left to right at the
bottom of a screen

You must destroy enemy
ships above you and avoid
being hit by missiles




Can DQN hidden layers model state-space
representation?

> Four hidden layers
represent the internal
state representations in
DQN

>~ Can human behavior and
brain activity be predicted
from these layers?




Predicting human behavior using
DQN hidden layers

1.

Run human gameplay data through trained
DQN to produce stimulus features
represented by the activations in the hidden
layers

Take 100 principal components from each
layer (400 total features)

Predict human left vs right actions from
these features using logistic regression
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Human Action Decoding Using DQN Hidden
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> Useridge regression to

Predicting brain activity using DQN
hidden layers - Encoding Model

A Deep Q Network

model the response of a
voxel at each timepoint as

a linear combination of e
neural network - e Rl A
activations e

Linear




Pong - Encoding model results

Sub001 Sub006
@zﬁo | @
FDR p < 0.0001 FDR p < 0.0001
-
018 r 0.56 024 r 0.62

Pong regions: Distributed sensorimotor pathway extending from dorsal
visual pathway, posterior parietal cortex (PPC) to premotor cortex



Enduro - Encoding model results

Sub001 Sub006
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X==14

/o X==2
FDR p < 0.001 FDR p < 0.0001

Enduro regions: Distributed sensorimotor pathway extending from dorsal
visual pathway, posterior parietal cortex (PPC), and to premotor cortex



Space Invaders - Encoding model results

Sub001 Sub006

FDR p < 0.0001
.

027 r 0.76

Space Invaders regions: Distributed sensorimotor pathway
extending from dorsal stream, PPC, and prefrontal cortex regions




{(Normalized)

Average Coefficients

Layers 3 & 4 have highest coefficients
even in early visual cortex

Average Encoding Model Coefficient
Magnitude By Layer
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Control Analyses

> |s DQN just picking up on basic visual and
motor responses
> DQN tested against control models
o Variational autoencoder (VAE)
o DAQN trained on another game
o Principal components of pixel space
o Motor regressors




DQN outperformed all control models for all subjects across
games (except one game in one subject)

DQN Model vs. Control Models
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B : 15
1
0.0

VAE Cross Game PCA VAE Cross Game PCA Motor VAE Cross Game PCA Motor
Model Model Model

e
g

Subject
e 1

e
b
e
b

e

g =

e
2
il

o
w

=
~N
s & & o e
2

e
a o

0090
DU s WN

Prediction Accuracy

90th Percentile
Prediction Accuracy

90th Percentile
Prediction Accuracy

90th Percentile

=1

e

g
[
=]
o

)
3
S
2




Control Analyses

> Nonlinear feature representations
outperformed linear ones
o VAE and DQN two best models
> DQN outperforms VAE by linking
perception to action and reward




What exactly is DQN encoding?

> We performed representational similarity
analysis (RSA) on DQN to characterize its
internal representations



RSA on DQN - Pong

> Annotated high-level features for Pong
o Ball position
o Ball velocity
o Paddle positions

> Construct dissimilarity matrices for DQN
layers and compare it to these hand drawn
features
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Early DQN layers
correlated to pixel space
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Later DQN layers
correlated to hand drawn
features
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Representational Similarity Analysis of Pong fMRI Data
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RSA In Pong

The shared task representation between the
brain and DQN in Pong corresponds to a

mutual encoding of the spatial positions of
objects



Are there correlates of DQN's action
value outputs in the brain?

Fuman Gameplay Action Values
Data o B Down HRF
I - <L | Up K
<L B Noop (%9)
—_— —_— 5
Chosen value Model-based

timecourse Action Value
max A(s, a') fMRI regressor

a’




Action Value
Sub001 Sub006

Space
Invaders

// x=0

FWER corr. p <0.001 at cluster level
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Filter Analyses

How can we further interpret

what representation is shared
between the DQN and various
brain regions?

Investigate the filters in the
convolutional layers




Enduro 1st Convolutional Layer - Detects Edges
Feature Map 0 Feature Map 1




Enduro 2nd Convolutional Layer - Detects Object Parts

Feature Map 0 Feature Map 1




Enduro 3rd Convolutional Layer - Detects Cars and Road

Feature Map 0 Feature Map 1




Which filters best explain brain
activity?

> Retrained encoding model on each
convolutional filter in the last convolutional
layer separately (layer 3, 64 filters)

> Each filter gets a Neural Predictivity score
based on how well it predicts voxel
responses in aregion of interest




In Pong, the most neurally predictive
filters encode the hand drawn features
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The most neurally predictive filters are
also predictive of behavior

Correlation of Filter Predictivity for Modeling Actions and Voxels
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Good filter example: Bad filter example:

Layer 3 Filter 40 in Enduro Layer 3 Filter 56 in Enduro
detects side of the road and cars detects score on bottom of screen
Neural Predictivity Rank: 5 Neural Predictivity Rank: 56
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Abstract State-Spaces

> Abstract state-representations should be
invariant to irrelevant sensory information

> For Pong, this involves encoding spatial
features about the relevant objects in the
game

> Can we get metrics for abstract
representations for Enduro and Space
Invaders?




Nuisance Invariance

Nuisance: Any random variable that affects the data x; but is irrelevant to the task y
y Al n, or equivalently I(y;n) = 0.

Translation Invariance Size Invariance

Illumination Invariance

Rotation/Viewpoint Invariance

em 2 me QA &
4 R Ia




In Enduro, weather/time of day is a nuisance

I(human action; weather) =0
Dramatic changes in pixel space is independent of how agent should
act
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Nuisance Invariance Score

> Estimate each filters nuisance invariance to
weather with mutual information
~ Correlate this metric with that filter’s

neural predictivity in a region
o Negative correlation suggests more
representation of weather in a region
o High correlation suggests more nuisance
invariance in a region



Filters mapped to posterior parietal
cortex have less representation of

weather

Supramarginal gyrus, superior
parietal lobule, precuneus
Less representation of
weather suggests a more
abstract representation in
these regions that are
invariant to nuisances like
color of pixels
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In Space Invaders, the number of invaders on the screen does not have
much effect on actions (what the invaders near you are doing is what

matters)
I(human action; number of invaders) = 0.07
Dramatic changes in pixel space is independent of how agent should act




Filters mapped to posterior parietal
cortex have less representation of
the number of invaders

e Supramarginal gyrus, superior
parietal lobule, precuneus

e Less representation of the
number of invaders suggests
a more abstract
representation in these
regions

Nuisance Invariance Score
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Representation learning in the artificial and biological
neural networks underlying sensorimotor integration

Ahmad Suhaimi, Amos W. H. Lim, Xin Wei Chia, Chunyue Li, Hiroshi Makino*

Science Advances, 2022

Compares deep RL agents and mouse brains performing
the same sensorimotor task

Deep RL agent: A2C




Aside: What is Advantage Actor
Critic? (A2C)

| RL Algorithms 1
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(_J

1 3
Q-Learning J [ Learn the Model ’

i

Given the Model

Policy Gradient < I DQN World Models AlphaZero

HER MBVE

=)
—

Policy OptimizatlonJ

e

i
:
i




Policy-Based Reinforcement Learning

> Rather than learning a value function,
directly optimize a policy to maximize the
objective of expected reward

J(mg) = E [R(7)]

T~V




Output of network is a policy - a probability
distribution over actions

84x84x4 Pixel Input \\ me (a't | St)

Left Right Fire

0.3 0.2 0.5




Policy Gradient/REINFORCE Algorithm
> Use gradient ascent to optimize objective
max J(79) = Broury [R(7)]

6« 0+ aVeJ(ms)

\

Policy gradient term




Policy Gradient/REINFORCE Algorithm

> Use gradient ascent to optimize objective

max J(mo) = EBrnmy [R(T)]

0 «— 0+ aVeJ(ms)

Policy gradient term

T
T VoJ(mg) = Ermn, [ZRt(T)Vo log g (ay |st)]
t=0




Policy Gradient/REINFORCE Algorithm

- Probability of action rre(atlst) increases if R,
>0

- Probability of action 1 (a |s,) decreases if R,
<0

J §
VoJ(m8) = Errme [E R(7)Vglogme(ay | st)]
t=0




Policy Gradient/REINFORCE Algorithm

> Known as on-policy RL because you have to
train using data from current policy

> Datais thrown away after training step

> This makes training more inefficient and

makes high variance gradients







Policy-Based vs Value-Based RL

- Policy-based
o Pros:
m General class of optimization
m Canbe applied to any domain like continuous action
spaces
m PG Theorem guarantees convergence
o Cons:
m Sample inefficient/slow learning because you throw
away data (on-policy)
m Highvariance




Policy-Based vs Value-Based RL

- Value-based
o Pros:
m More sample efficient because data is reused through
replay buffer (off-policy)
m Lowervariance
o Cons:
m Stabletraining requires numerous practical tricks
m Highbias
e Overestimation of value function




Actor-critic methods

> Combine policy-based and value-based
methods to get the best of both worlds
> Learn two components
o Actor: Learn a policy
o Critic: Learn the value of states and
provide reinforcing signal to actor




Actor-critic methods

> How can we solve the high variance
problem in policy—based methods?

VoS (mg) Eremg Z Ryi(7)/ glog my(at|st)]

2l

This reward to go term is highly
variable from trajectory to trajectory
making the gradients unstable



Actor-critic methods

> How can we solve the high variance
problem in policy—based methods?

Vo (mg) Eremg Z Ryi(7)/ glog my(at|st)]

2

Also this term is not normalized

What if reward is always negative?
Every action will be negatively

reinforced
L .. 00000000000



Actor-critic methods

> Solution: use an action value function as the
reinforcing signal

T
Vo (T6) = Brr, Y Qlst, ar)Volog mo(ay|sy)]

-

Separately learn Q-value function



Actor-critic methods

> Solution: use an action value function as the
reinforcing signal

Vo (mp) TN:g[Z[ Q(s¢, ar) ]Va[ogﬂ'e (at|st)] ]

t=0  Critic Actor
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Actor-critic methods

>~ Can we do even better?
> Reinforce actions that produce outcomes
that are better than other actions



Advantage Actor-critic (A2C)

> Reinforce actions that produce outcomes
that are better than other actions
> Use the advantage function

A(s,a) = Q(s,a) — V(s)

g value for action a average
in state s value
of that

state




Advantage Actor-critic (A2C)

>~ We want to reinforce actions relative to
how the perform vs the other actions -
independent of the value of a state

QW(S, a) =110, V‘"(s) = 100, A"(s, a) = 10

Q"(s,a) = —90, V7(s)=—-100, A"(s,a)=10




Advantage Actor-critic (A2C)

> Use the advantage function as reinforcing
signal

Ve (7o) TN:g[Z[ St,at] 6[108776' (ar|st)] ]

t=0  Critic Actor




Advantage Actor-critic (A2C)

- Probability of action rre(atlst) increases if
A(st,at) >0

- Probability of action 1 (a [s,) decreases if
A(st,at) <0

T
Vo () Z[A (st, at) ]vt{log ol at|5t)]]

t=0  Critic Actor




Representation learning in the artificial and biological
neural networks underlying sensorimotor integration

Ahmad Suhaimi, Amos W. H. Lim, Xin Wei Chia, Chunyue Li, Hiroshi Makino*

Science Advances, 2022

Compares deep RL agents and mouse brains performing
the same sensorimotor task

Deep RL agent: A2C




Novel sensorimotor task designed for both
mice and deep RL agents (A2C)

Task: Control object with joystick/actions to
reach reward zone

A
Two-photon RAM 1em Object trajectory
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Target (LED) , S ate
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Control T Arena Target
Computer <+—— Joystlck Top view 2 \/ Early




Recorded from

~ Motor cortex (M1 and M2)

> Primary Somatosensory cortex
(S1)

- Retrosplenial cortex (RSC)

~ Posterior Parietal Cortex (PPC)
o Anterior visual cortex (VISa)

o Anteromedial visual cortex
(VISam)




RL Task: Control object with actions to reach
reward zone

- Continuous input space (x, y coords)
- High-dimensional action space (64): 8 speed
X 8 direction bins

1cm

Target

Top view




RL Task: Control object with actions to reach
reward zone

- Continuous input space (x, y coords)
- High-dimensional action space (64): 8 speed
X 8 direction bins

1cm

Target

Top view
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State-Value Neurons
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Summary

>

RL has a long history of interaction with neuroscience and
psychology
To scale the RL framework up to real-world environments, we
need to combine them with modern tools like deep learning
Features from deep RL algorithms can be used to significantly
predict brain responses in sensorimotor regions during
naturalistic tasks
Deep RL and the brain converge to similar representations

o Encoding an abstract state representation in PPC

o Representing state-value and policy information in PPC




1

Thank you for listening!




