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Layer-area correspondence

50% explained variance vs 
‣ 17% for Linear-Nonlinear-

Poisson (with gabor filters)
‣ 39% for Berkeley Wavelet 

Transform

Peak ITPeak V4

Peak V2

subcortical??

Peak V1



Layer-area correspondence



Layer-area correspondence

Three-layer CNN best fits retinal ganglion cell response patterns to natural images. 



Better models of the ventral visual stream:

‣  V4 at 6th convolutional layer
‣  pIT at 7th convolutional layer
‣  cIT/aIT at layers 8-10, depending on neurons position on A/P axis

V4

V4 pIT cIT/aIT 

0.2

0.4

0.4

0.8

0.3

0.6

Pr
op

or
tio

n
of

 N
eu

ro
ns

4 5 6 7 8 9 10 11 12
Preferred Model Layer

≤4 5 6 7 8 9 10 11 12≤4 5 6 7 8 9 10 11 12≤

Jonas KubiliusDan Bear

pIT cIT/aIT

Layer-area correspondence



Post-AlexNet Developments
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(2) Vision Transformers
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Residual connection stabilizes gradient backflow. 



Post-AlexNet Developments

(1) Residual Connections and ResNets

Lots of skip connections present in 
actual brain. 

Residual connection 
stabilizes gradient 
backflow. 



Post-AlexNet Developments
(2) Vision Transformers



Post-AlexNet Developments
(2) Vision Transformers



Post-AlexNet Developments
(2) Vision Transformers

NB:  still hierarchical, still with residual connections, potential 
locality from patches . . . 



Post-AlexNet Developments
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Looking at receptive field analysis of  ViTs vs ResNet:
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Post-AlexNet Developments
(2) Vision Transformers

ViT

ResNet

. . . we see learned ViT is mostly local, with increasing receptive field 
sizes.

Looking at receptive field analysis of  ViTs vs ResNet:



Post-AlexNet Developments
(2) Vision Transformers

ViT is a bit like a CNN with sparse global connections.



Principles of  Visual Architecture
(1) Hierarchical (2) Mostly local (3) Rectification-like nonlinearity 

(4) Some residual connections (5) Normalization
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Layer components are basic neural-like operations.
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Complement standard “from below” approach … with behavioral constraints

Behavioral “Top-Down” constraints



Beyond categorization
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Beyond categorization

Category

Identity

3-D Object Scale

Perimeter

2-D Retinal Area

 plane

f16

rz

rx ry

Bounding Box 

Aspect Ratio

Major Axis Length

Major Axis Angle

X and Y Axis
Position

Pose in 
each axis

We can quickly assess the scene as a whole. 



Where and how are all these properties coded neurally? 
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Aggregation over identity-preserving 
transformations, e.g. translation.
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“Standard word model” predicts:  not at the top of the ventral 
stream. 
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“Standard word model” predicts:  not at the top of the ventral 
stream. 

Aggregation over identity-preserving 
transformations, e.g. translation.
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Beyond categorization

“Standard word model” predicts:  not at the top of the ventral 
stream. 

V2

V4

IT

V1

Receptive Field Size  ↑

Category Invariance ↑

(e.g.) Position Sensitivity ↓

position / size estimation

pose?

categorization
Aggregation over identity-preserving 
transformations, e.g. translation.



Where and how are all these properties coded neurally? 

rz

rx ry

Category

Identity

 plane

f16

Position

Size

Bounding Box

Pose

Aspect and Angle

 

V1

ITV2

V4 earlier visual areas? 

dorsal stream?



Somewhat newish ideas about IT? 
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Multiple hypotheses consistent with
the existing data . . . 
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(known)

H1: Tolerance / 
sensitivity 
tradeoff? 



Somewhat newish ideas about IT? 
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(increasing receptive field size →)

??????

State of knowledge
from previous studies . . .

H1 H2
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Multiple hypotheses consistent with
the existing data . . . 
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H3: Information 
preservation?



Beyond categorization
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Unexpected observation: 

Training on 
categorization task

Increased performance on 
position estimation task.

even though the goal was to become INVARIANT to position

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Category optimization → improved performance on non-categorical tasks. 

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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Beyond categorization

Unexpected observation #2: 

Increased performance on 
position estimation task

at each model layer.
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Beyond categorization

Performance on non-categorical tasks increases at each layer. 

For all tasks of visual interest we could measure in our test dataset:



Beyond categorization

What do the data say? 



Population Decoding

IT cortex V4 cortex
V1-like model pixel control
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Population Decoding

 V4 >  V1    for most tasks IT > V4,  V1   for all tasks 

Categorization Identification
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Best single position-encoding sites.
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heat map value at x, y =
     response averaged over all
     images where object center is in 
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Population Decoding

“Standard” receptive field-mapping stimuli w/ position and orientation variation:

X-position

Y-position

Orientation



Population Decoding

  V1 > V4, IT    for “standard” tasks

X-Position Y Position
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Orientation
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0.4

IT cortex V4 cortex
V1-like model pixel control

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Human Psychophysical Measurements



Monkey Neurons vs Humans 

performance  ~ k * log(N)
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Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Monkey Neurons vs Humans 

Basic Categorization
Subordinate Identification

X-axis Position
Y-axis Position

Bounding Box Size
X-axis Size 
Y-axis Size
3-D Object Scale
Major Axis Length
Aspect Ratio 
Major Axis Angle

Z-axis Rotation
Y-axis Rotation
X-axis Rotation  

Pix

—
—

—
—

—
—

—

IT

773 ± 185
496 ± 93
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918 ± 309

322 ± 90
256 ± 87

237 ± 87
401 ± 90
201 ± 70
163 ± 61
804 ± 136

1932 ± 1061
369 ± 115

1570 ± 530
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4.4 × 106
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951 ± 59
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—
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6.5 × 103

—

—
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—

—
—
—
—

—
—
—

= more than 10 billion sites required —

3.2 × 106

Mean over tasks, human-parity for IT is at ~700 multi-unit trial-averaged sites.
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)
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3.2 × 106

Mean over tasks, human-parity for IT is at ~350000 single-unit single-trial neurons.
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Somewhat newish ideas about IT? 

V1 V2 V4 IT
0

1

Categorization

V1 V2 V4 IT
0

1
Orthogonal Properties

??

V1 V2 V4 IT
0

1

V1 V2 V4 IT

V1 V2 V4 ITV1 V2 V4 IT

P
op

ul
at

io
n 

D
ec

od
e 

P
er

fo
rm

an
ce

(r
el

at
iv

e 
to

 h
um

an
 p

er
fo

rm
an

ce
) 

Depth Along Ventral Stream 
(increasing receptive field size →)

??????

State of knowledge
from previous studies . . .

H1 H2

H3 H4

Multiple hypotheses consistent with
the existing data . . . 

(known)

0

1

(known)

H4: Simultaneous build-up of encoding



Somewhat newish ideas about IT? 

Provides support to a hypothesis for what IT does:  

“Inverting the generative model of the scene”

2. “Lower-level” properties are not that low-level — at least, with complex objects 
and backgrounds.  

1. IT is NOT invariant. Strict generalization of simple-to-complex cells:  no.   

3. Categorization and non-categorical properties “go together” — not just that 
“not all (e.g.) position information is lost” (MacEvoy 2013, DiCarlo 2003)



But what type of understanding is this? 



But what type of understanding is this? 

LN

...

LN

LN

not saying this type of understanding is impossible … 



Principle of “Goal-Driven Modeling”
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Model Architecture Class

Deeper networks ...

...
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> Formulate 
comprehensive 
model class (CNNs)

Yamins & DiCarlo.  
Nat. Neuro. (2016)
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Yamins & DiCarlo.  
Nat. Neuro. (2016)
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Localization

Model Architecture Class

Deeper networks Categorization
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> Implement generic 
learning rules (gradient 
descent)

> Formulate 
comprehensive 
model class (CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)

Yamins & DiCarlo.  
Nat. Neuro. (2016)



> Map to brain data. (ventral stream)
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Yamins & DiCarlo.  
Nat. Neuro. (2016)

> Formulate 
comprehensive 
model class (CNNs)

> Choose challenging, 
ethologically-valid tasks 
(categorization)

> Implement generic 
learning rules (gradient 
descent)
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A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:
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A = architecture class = circuit neuro-
                                   anatomy   

1.

2.
T = task/objective = ecological niche

3.
D = dataset = environment

4.
L = learning rule = natural selection 
                    +  synaptic plasticity

Four Principles of Goal-Driven Modeling

solving

situated in

updating according to

A = ConvNets of reasonable depth

T = multi-way object categorization 

D = ImageNet images

L = evolutionary architecture search + 
filter learning through gradient descent

Best proxies thus far for ventral stream:
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“Nothing in biology makes sense except in light of evolution”

Theo Dobzhansky

“Nothing in neuroscience makes sense except in light of behavior”

Gordon Shepherd

Nothing in neuroscience makes sense except in light of 
optimization.

computational

Restated:

Behavior is highly constraining of the brain.
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Principle of “Goal-Driven Modeling”

Heuristic of “Goal-Driven Modeling”

… after all at some point, for any given task, 
you’ll probably “go over the hump”  …

perhaps when you exceed human 
performance or overfit on that task
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“Mercedes behind 
Lamborghini, on a field 
in front of mountains.”

“Hannah is good at 
compromising”

visual
cortex

auditory
cortex

Can we go beyond vision?



V1

. . .

primary auditory cortex

. . .

“Mercedes behind 
Lamborghini, on a field in 

front of mountains.”

“Hannah is good at 
compromising”

Can we go beyond vision?



> Map to brain data. (Parietal cortex, PFC)

Primary 

Belt

Parabelt

...

...

...

...

Localization

Model Architecture Class

Deeper networks Categorization

Word recognition

...

...

...

...

...

...

...

...

??

??

??

??

 
PITV2

V4V1

CIT
AIT

> Formulate 
comprehensive 
model class (RNNs)

> Choose challenging, 
ethologically-valid tasks 
(task switching/
memory)

> Implement generic 
learning rules (??)

Yamins & DiCarlo.  
Nat. Neuro. (2016)
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Big Problems in Each Area *bad = obviously deeply wrong as model of the brain
or behavior

A = architecture class                   

1.

2.
T = task/objective

3.
D = dataset

4.
L = learning rule

❌bad

❌bad

❌bad

❌bad

PROBLEM

TOO MUCH LABELLED DATA REQUIRED!!?

BACKPROP AND ITS DISCONTENTS

REAL NOISY VIDEO DATASTREAMS vs 
STEREOTYPED CLEAN STILL IMAGES

e.g. CNNs

e.g. Object Categorization

e.g. ImageNet
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So far, we’ve done the basic idea

Basic idea



Next we’ll fix some of the problems . . .

Fixing 
problems

Basic idea



. . . and then go beyond vision.

Fixing 
problems

Basic idea

Beyond
Vision


