CS375 / Psych 249: Large-Scale Neural Network Models for Neuroscience

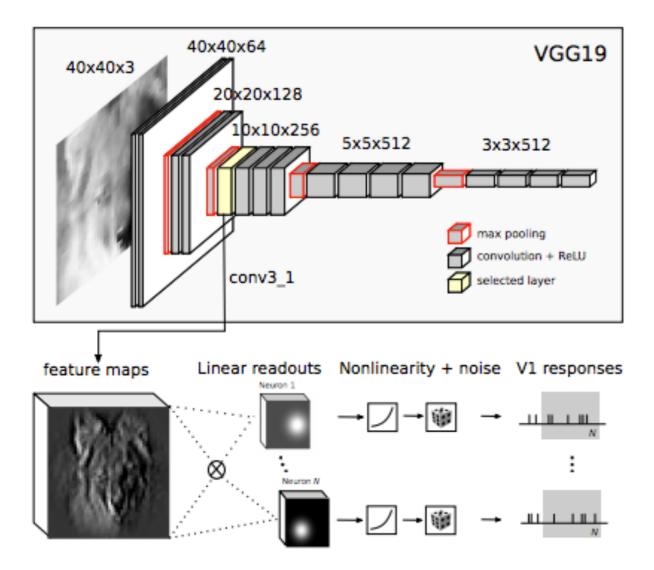
Lecture 4: Deep CNNs and the Ventral Visual Stream — Part 2 2025.01.15

Daniel Yamins Stanford Neurosciences Institute Stanford Artificial Intelligence Laboratory Departments of Psychology and Computer Science Stanford University

Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

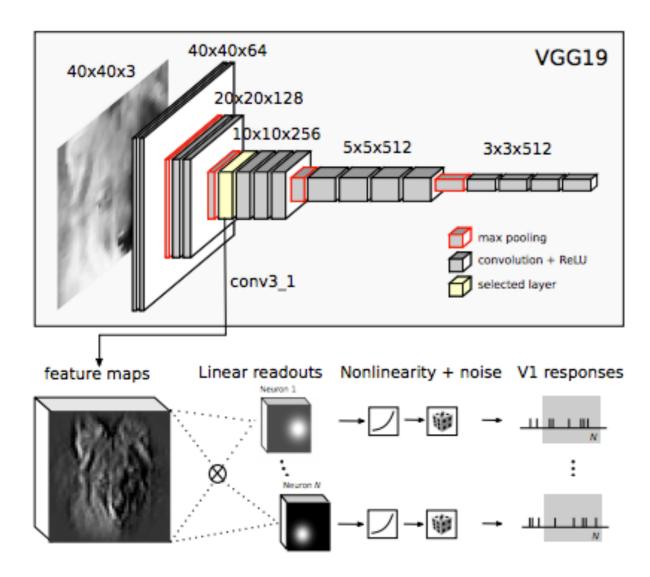
doi: https://doi.org/ 10.1101/201764

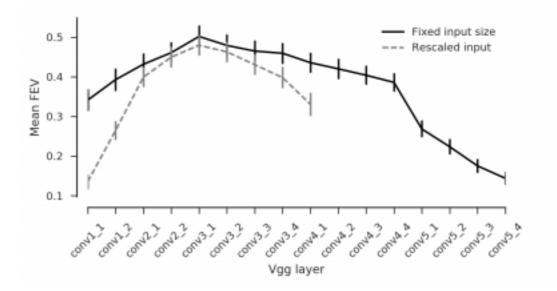


Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764

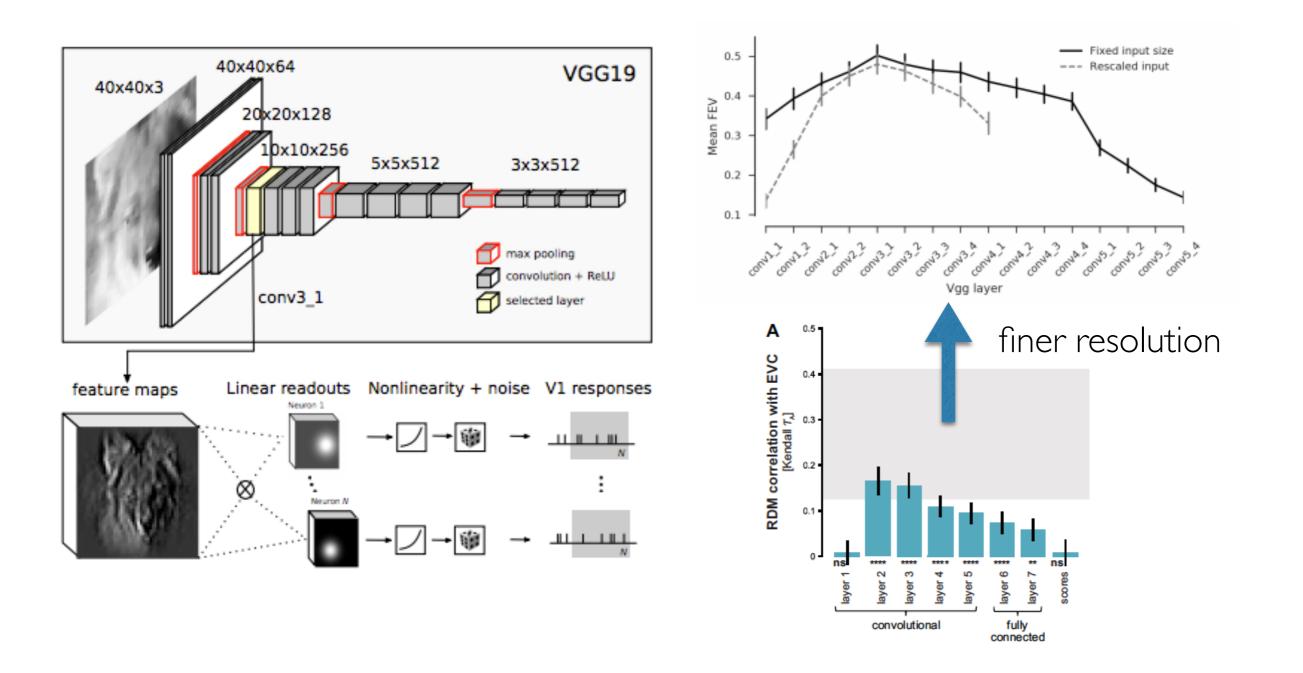




Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764

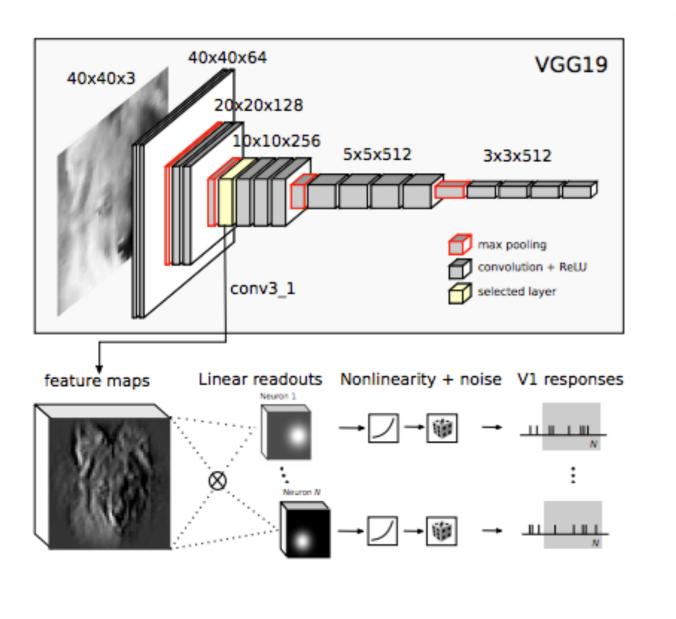


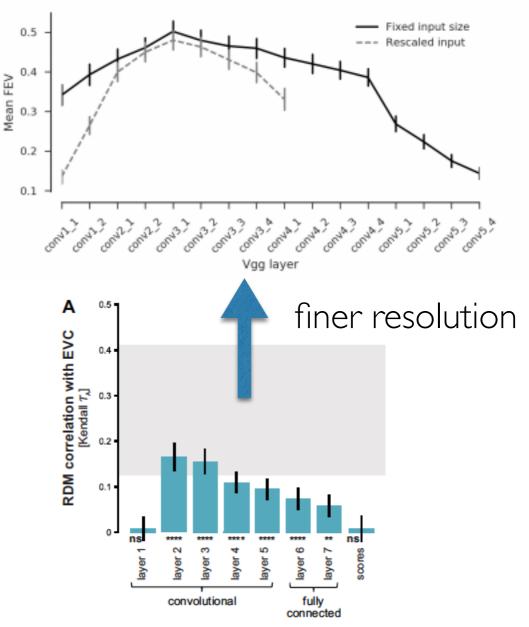
Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764

50% explained variance vs
17% for Linear-Nonlinear-Poisson (with gabor filters)
39% for Berkeley Wavelet Transform



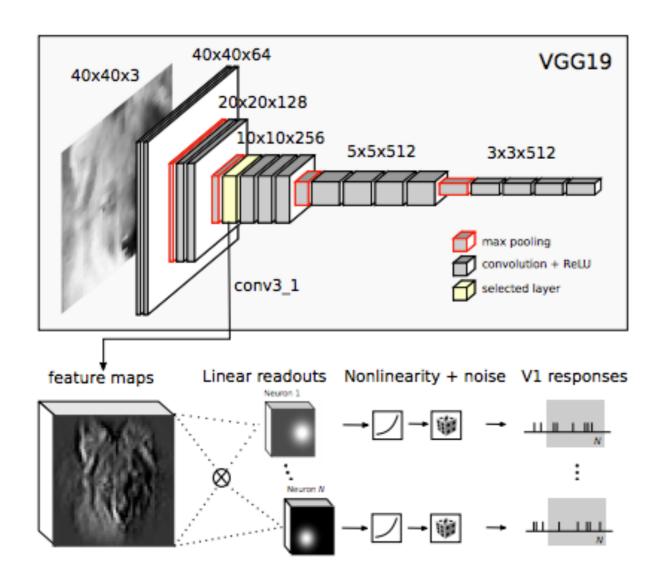


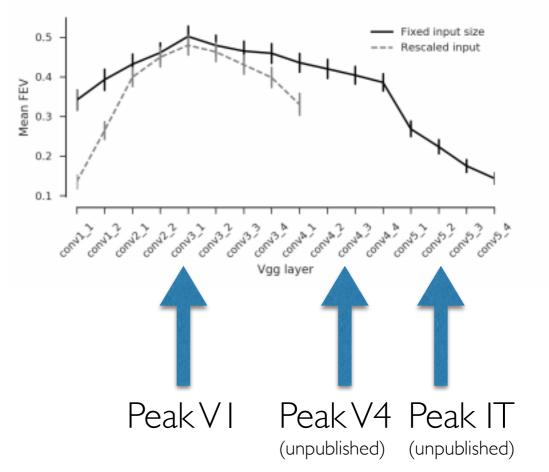
Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764

50% explained variance vs
17% for Linear-Nonlinear-Poisson (with gabor filters)
39% for Berkeley Wavelet Transform



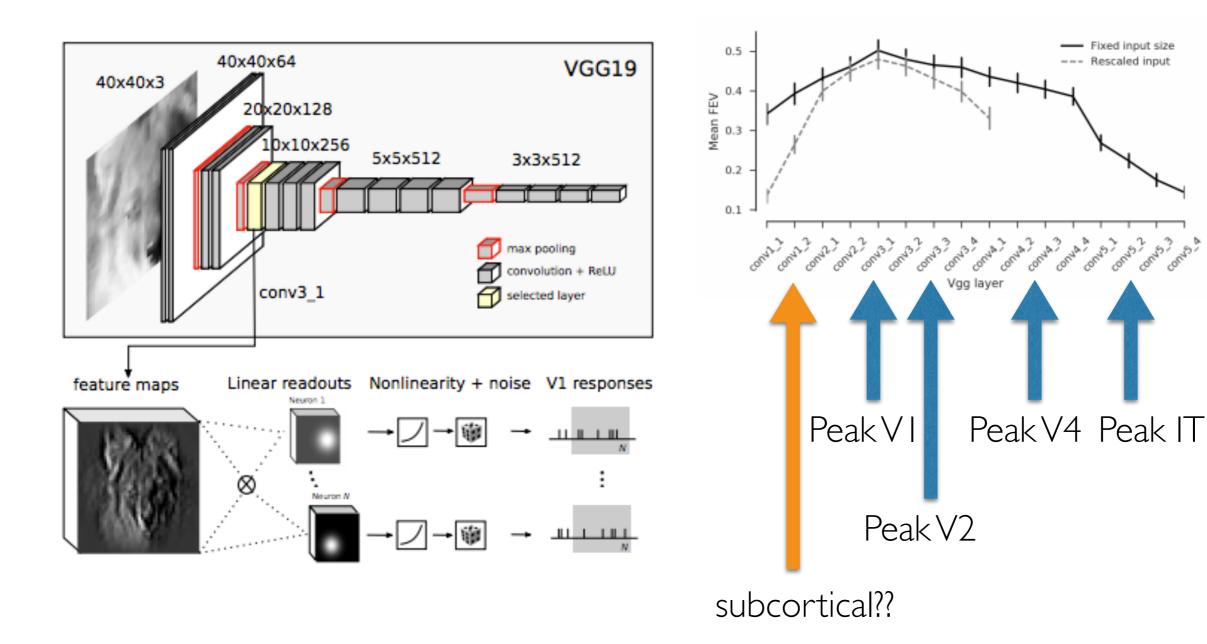


Deep convolutional models improve predictions of macaque VI responses to natural images

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker

doi: https://doi.org/ 10.1101/201764

50% explained variance vs
17% for Linear-Nonlinear-Poisson (with gabor filters)
39% for Berkeley Wavelet Transform



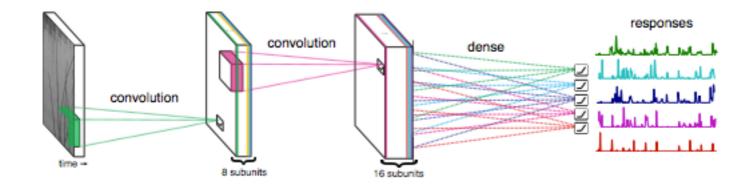
Deep Learning Models of the Retinal Response to Natural Scenes

Lane T. McIntosh^{*1}, Niru Maheswaranathan^{*1}, Aran Nayebi¹, Surya Ganguli^{2,3}, Stephen A. Baccus³ ¹Neurosciences PhD Program, ²Department of Applied Physics, ³Neurobiology Department Stanford University {lmcintosh, nirum, anayebi, sganguli, baccus}@stanford.edu

Deep Learning Models of the Retinal Response to Natural Scenes

Lane T. McIntosh^{*1}, Niru Maheswaranathan^{*1}, Aran Nayebi¹, Surya Ganguli^{2,3}, Stephen A. Baccus³ ¹Neurosciences PhD Program, ²Department of Applied Physics, ³Neurobiology Department Stanford University {lmcintosh, nirum, anayebi, sganguli, baccus}@stanford.edu

Three-layer CNN best fits retinal ganglion cell response patterns to natural images.

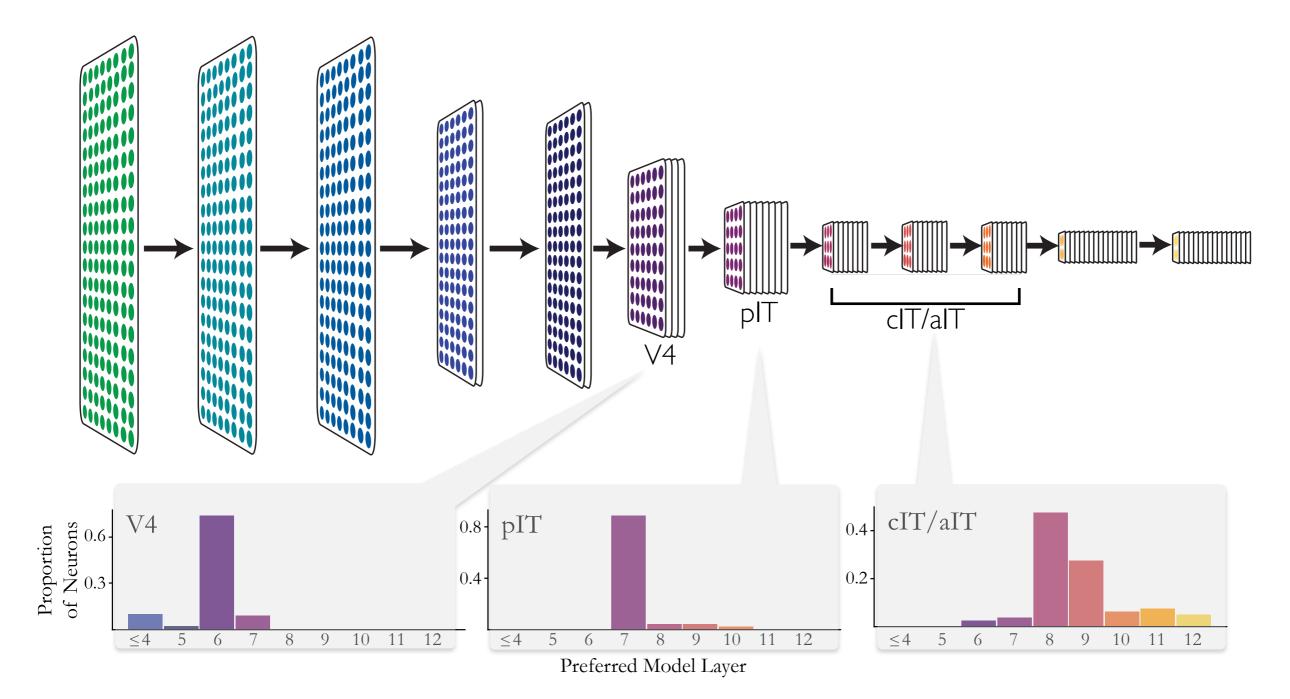


Better models of the ventral visual stream:

- ► V4 at 6th convolutional layer
- ▶ pIT at 7th convolutional layer
- cIT/aIT at layers 8-10, depending on neurons position on A/P axis

Dan Bear

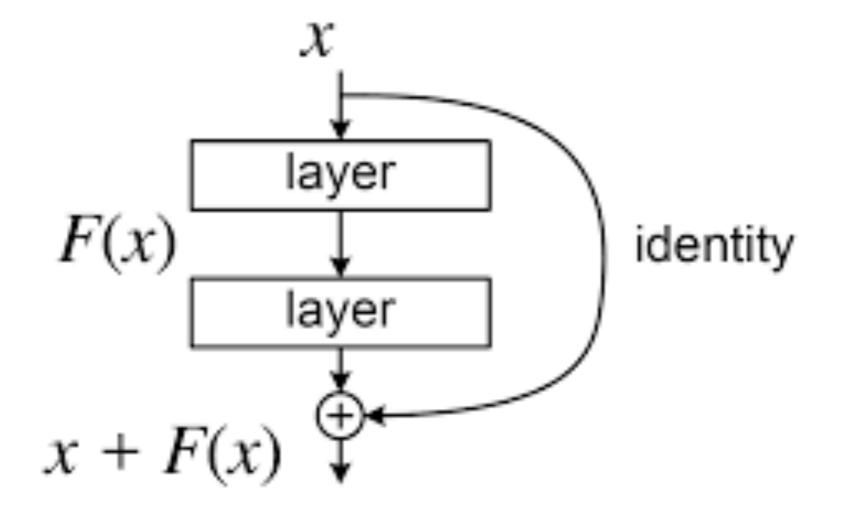
Jonas Kubilius



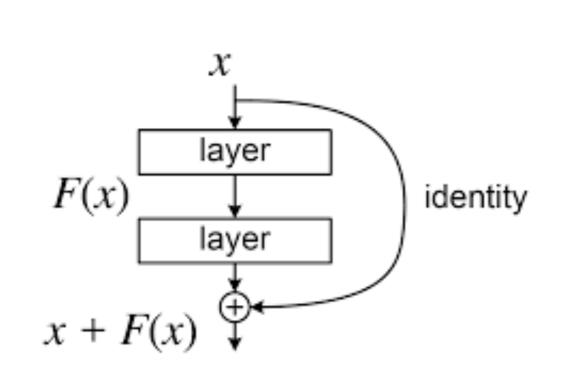
(1) Residual Connections and ResNets

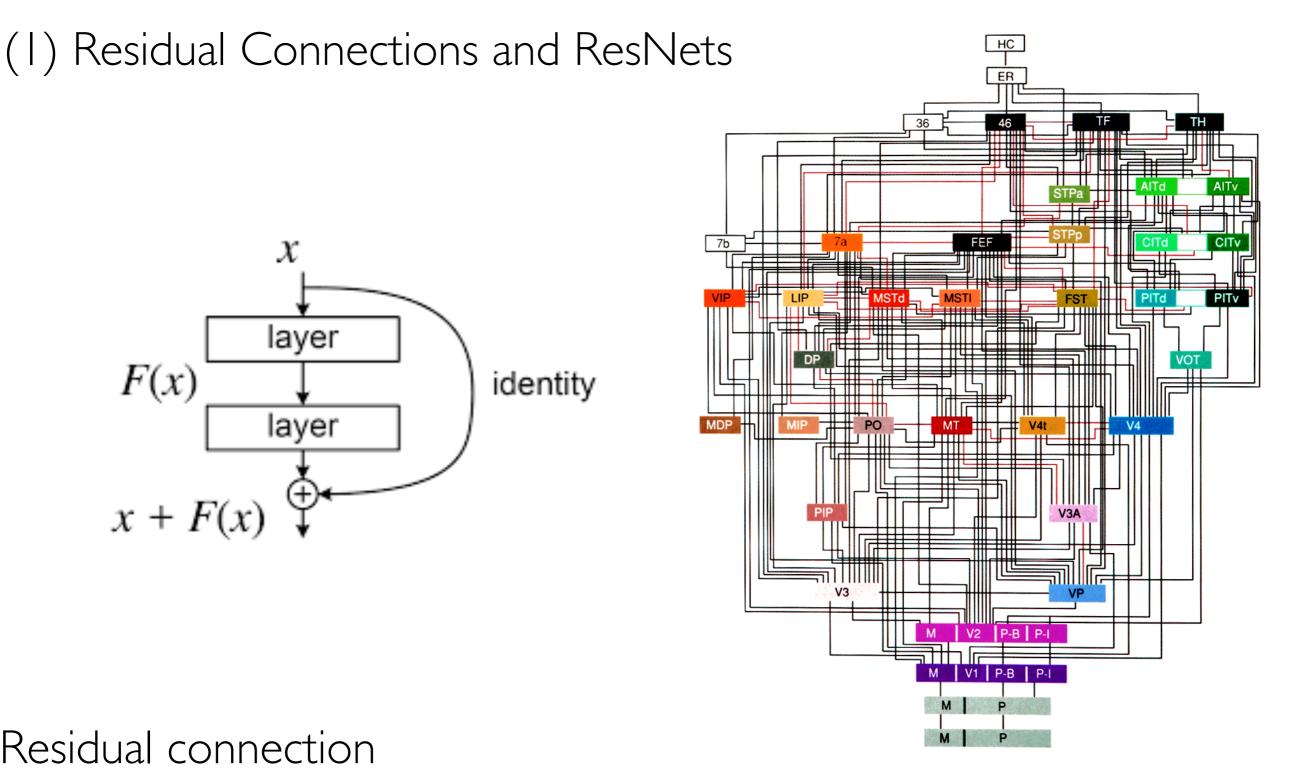
(2) Vision Transformers

(1) Residual Connections and ResNets



Residual connection stabilizes gradient backflow.



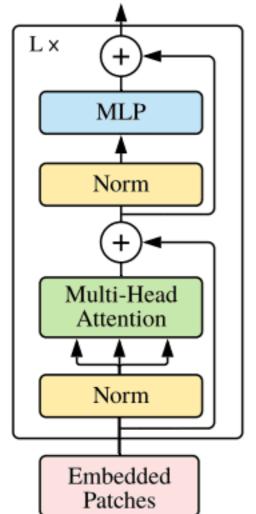


Residual connection stabilizes gradient backflow.

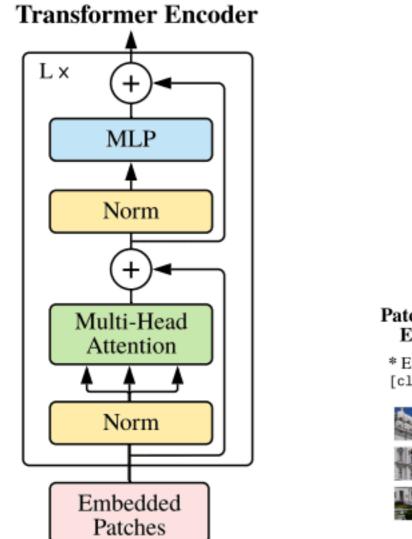
Lots of skip connections present in actual brain.

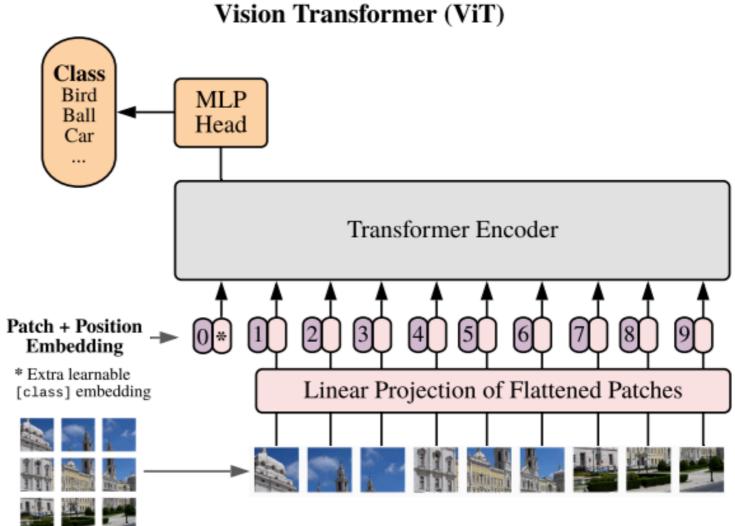
(2) Vision Transformers

Transformer Encoder

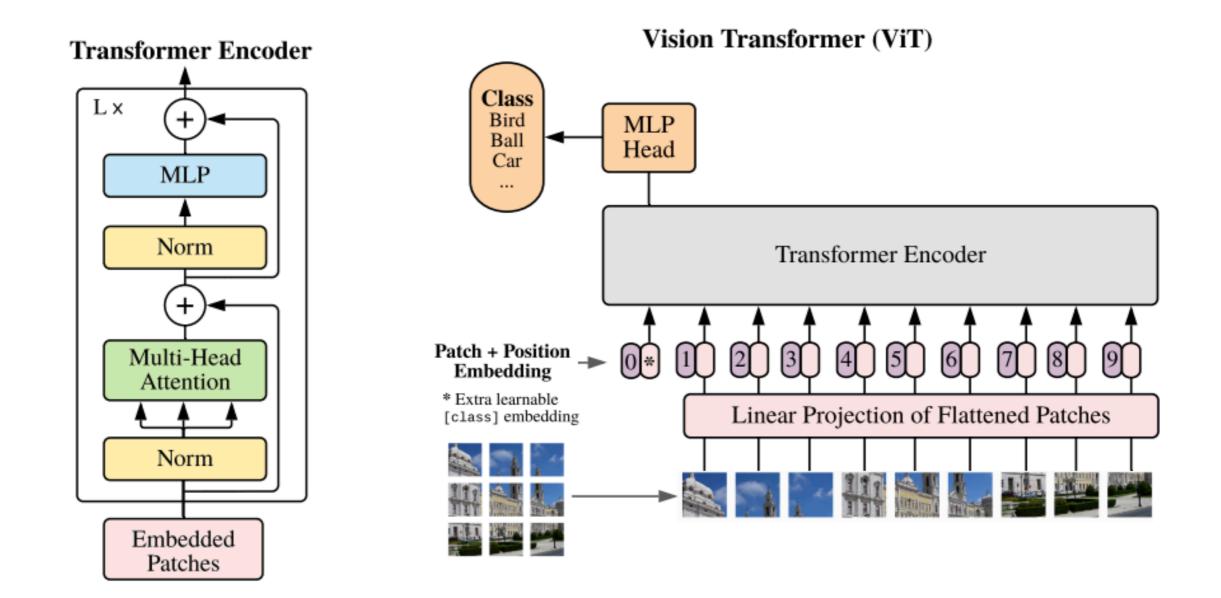


(2) Vision Transformers





(2) Vision Transformers



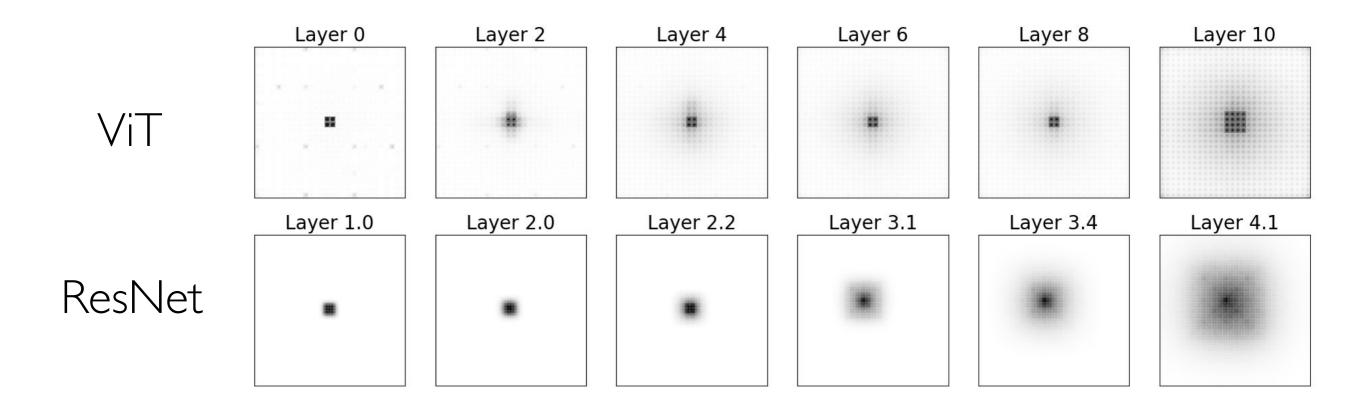
NB: still hierarchical, still with residual connections, potential locality from patches ...

(2) Vision Transformers

Looking at receptive field analysis of ViTs vs ResNet:

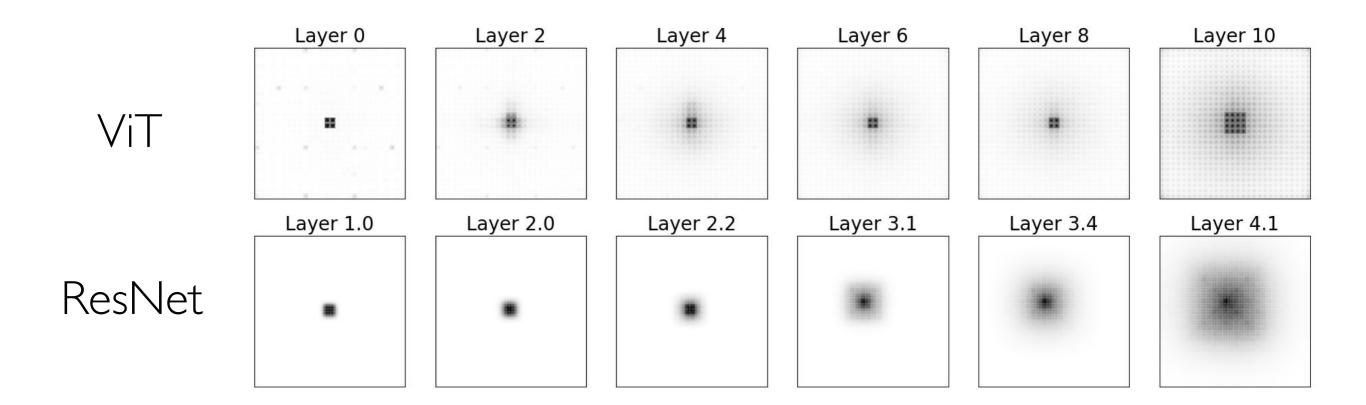
(2) Vision Transformers

Looking at receptive field analysis of ViTs vs ResNet:



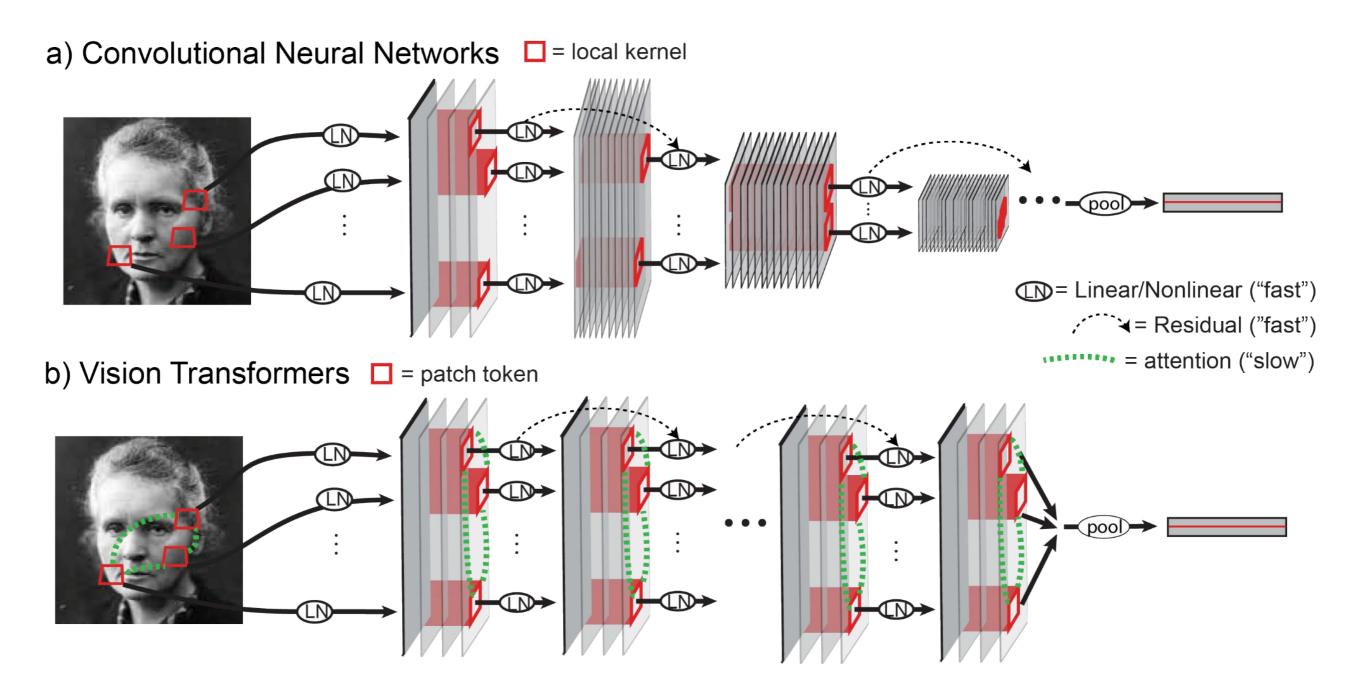
(2) Vision Transformers

Looking at receptive field analysis of ViTs vs ResNet:



... we see learned ViT is <u>mostly local</u>, with increasing receptive field sizes.

(2) Vision Transformers



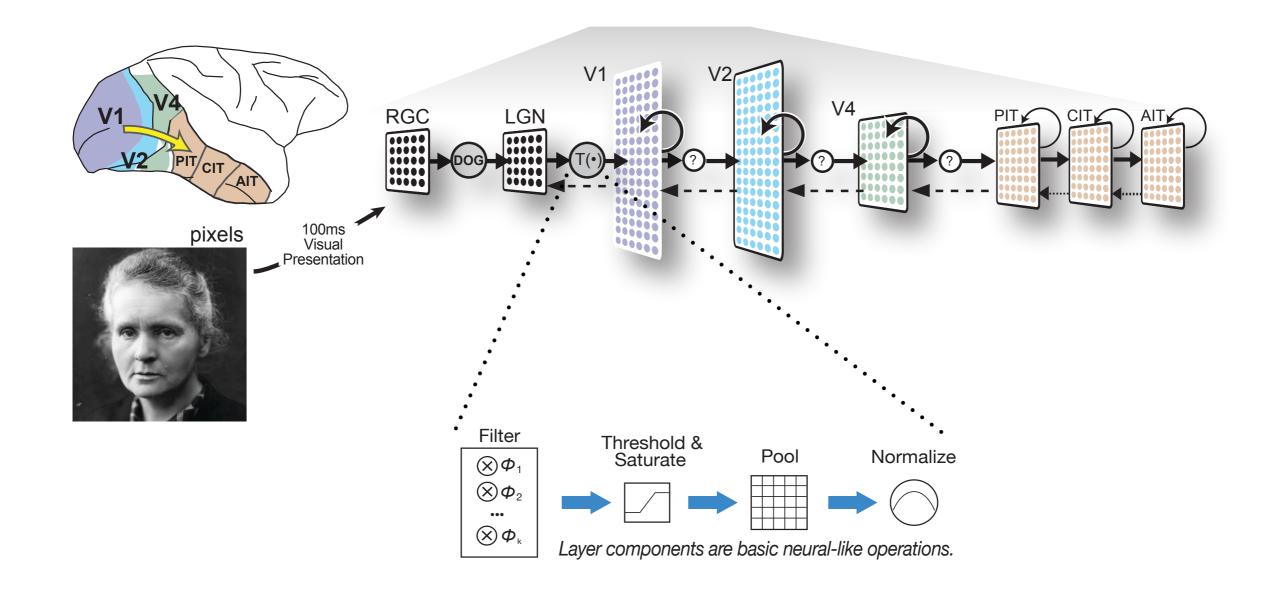
VIT is a bit like a CNN with sparse global connections.

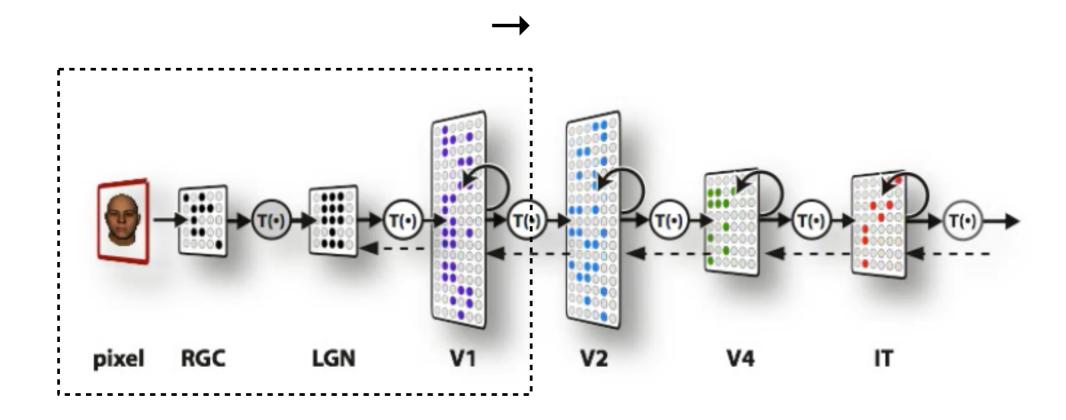
Principles of Visual Architecture

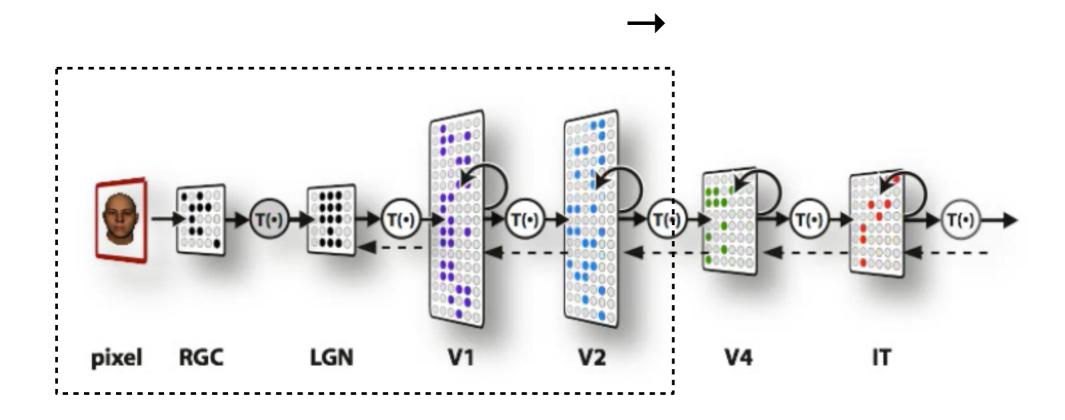
(1) Hierarchical (2) Mostly local (3) Rectification-like nonlinearity

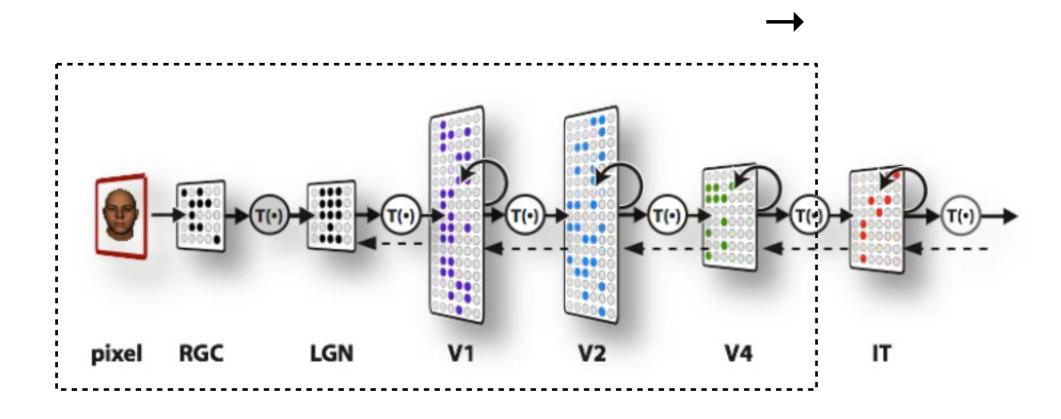
(4) Some residual connections

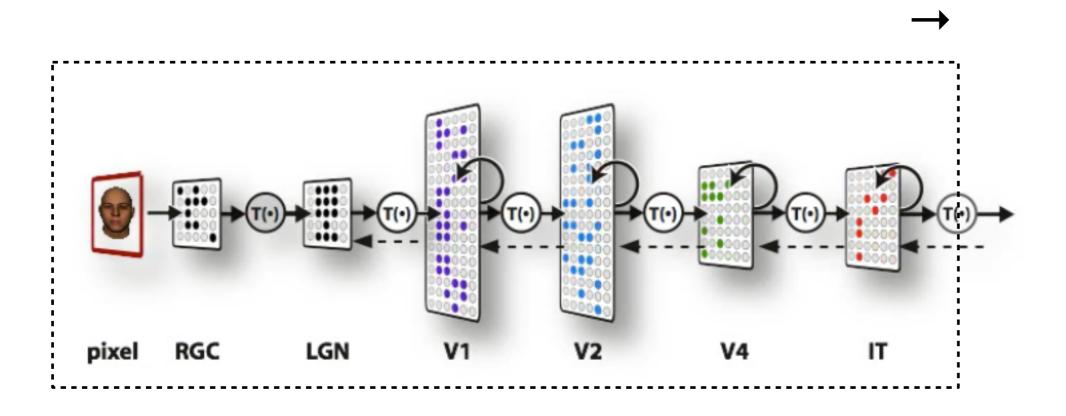
(5) Normalization

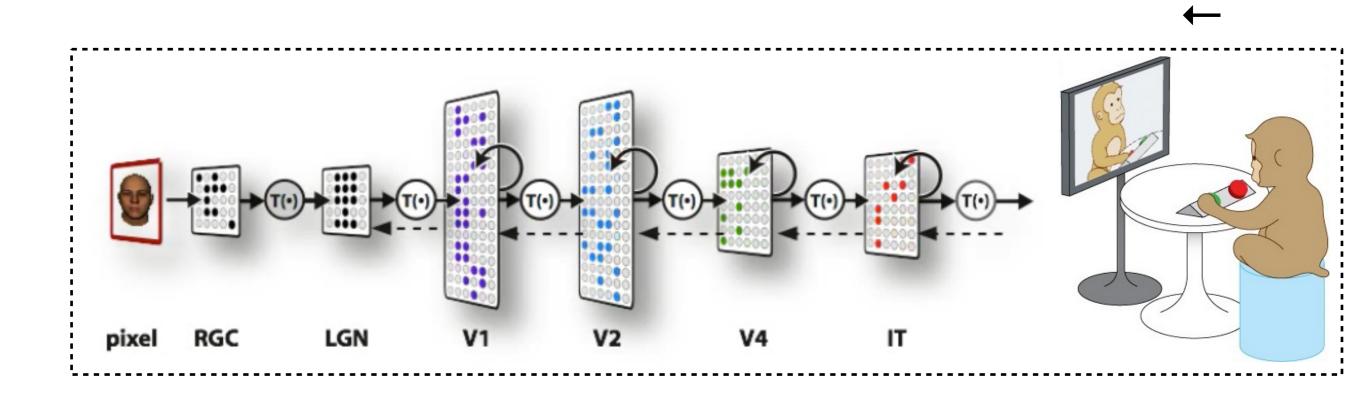


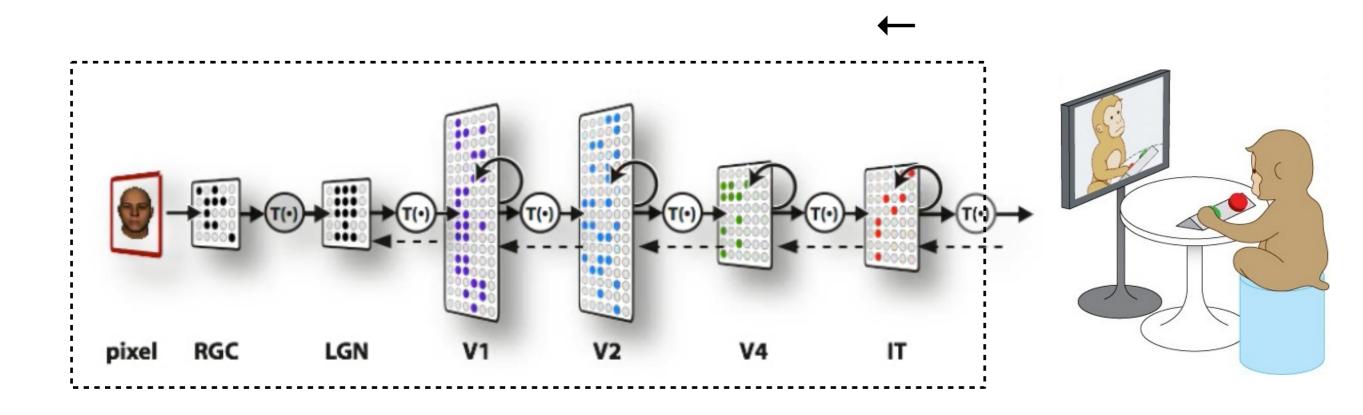


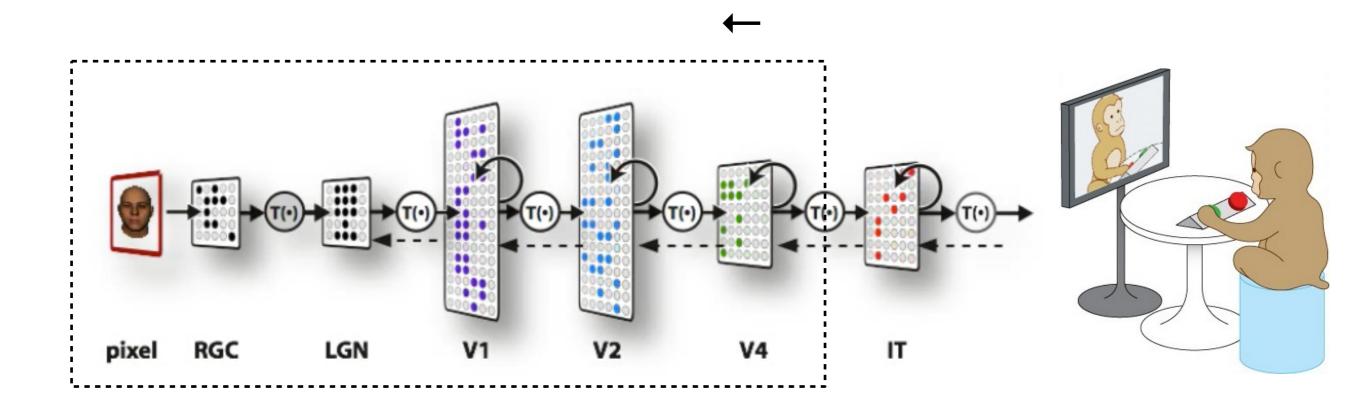


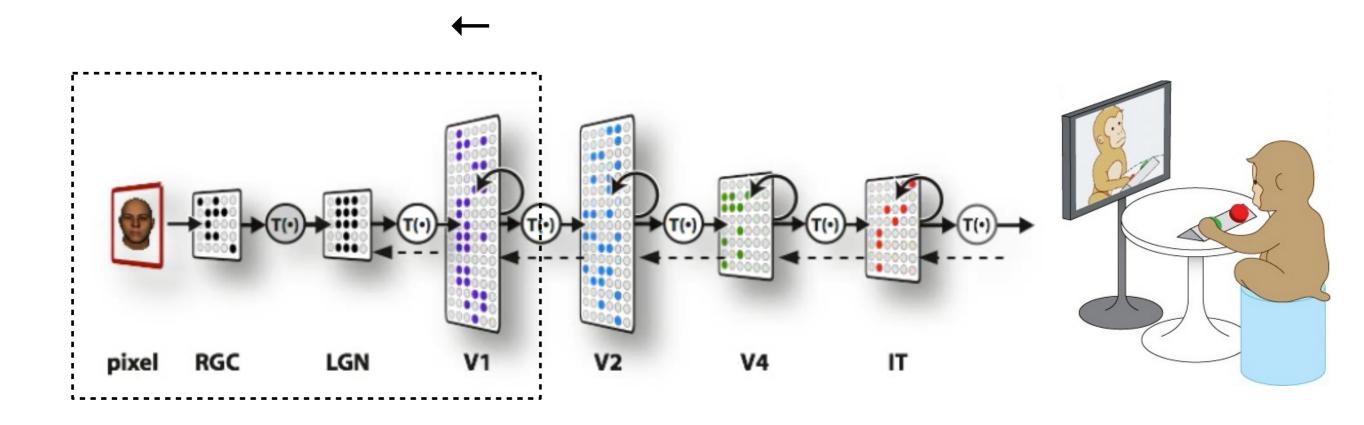


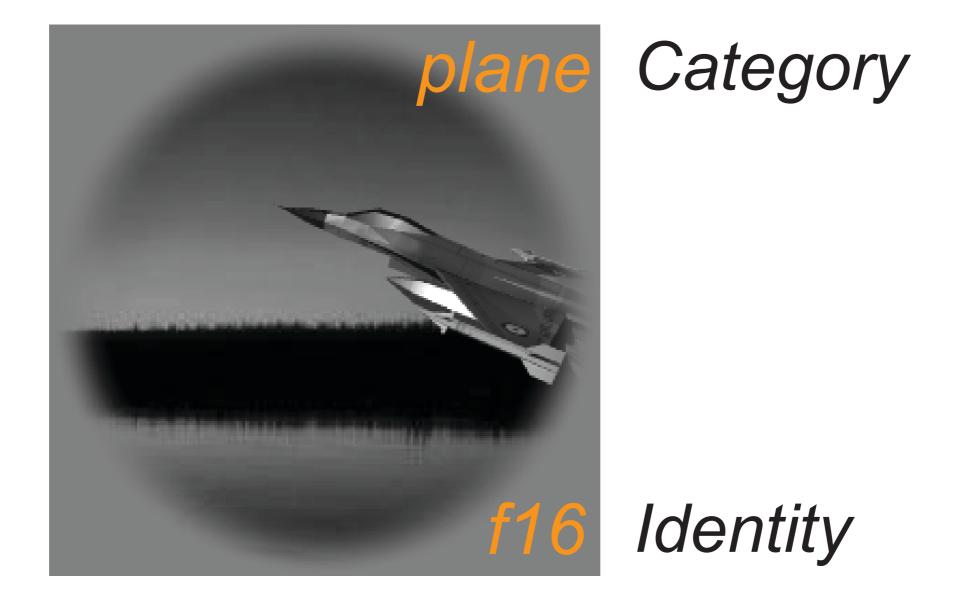


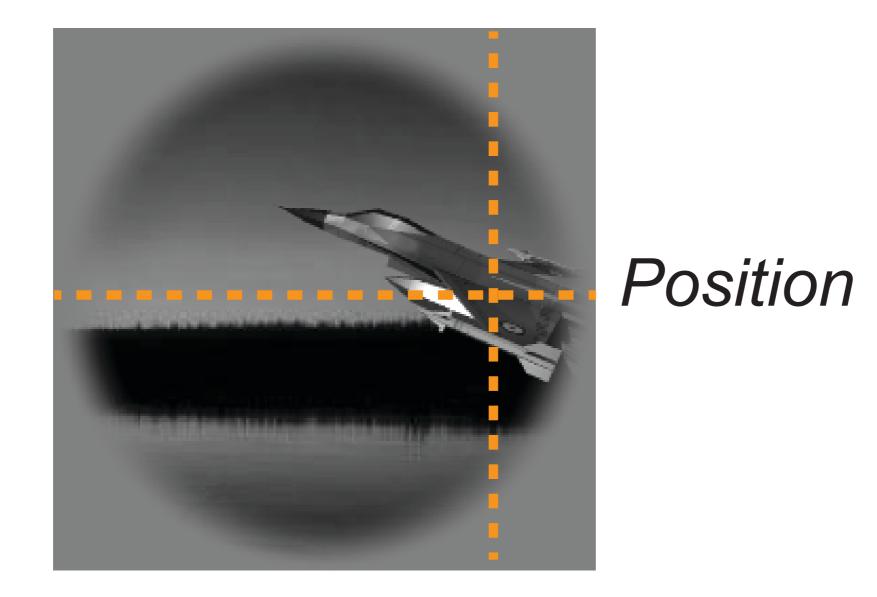




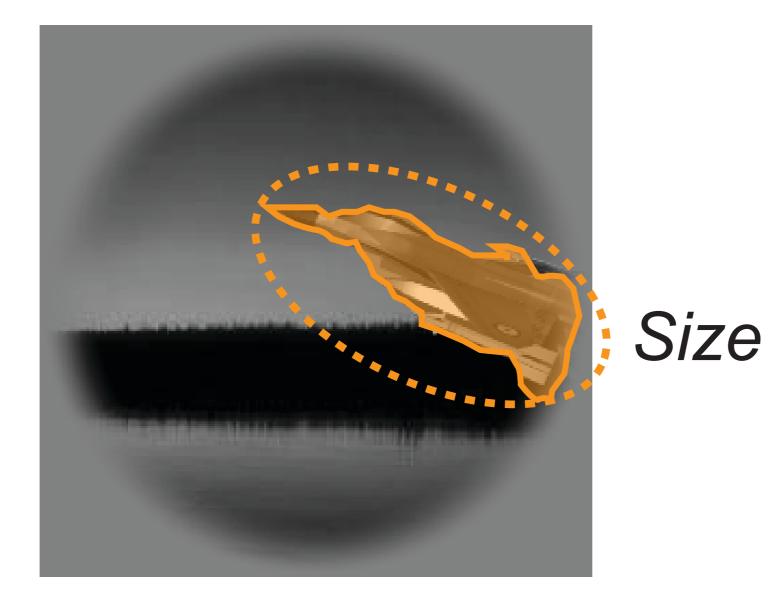


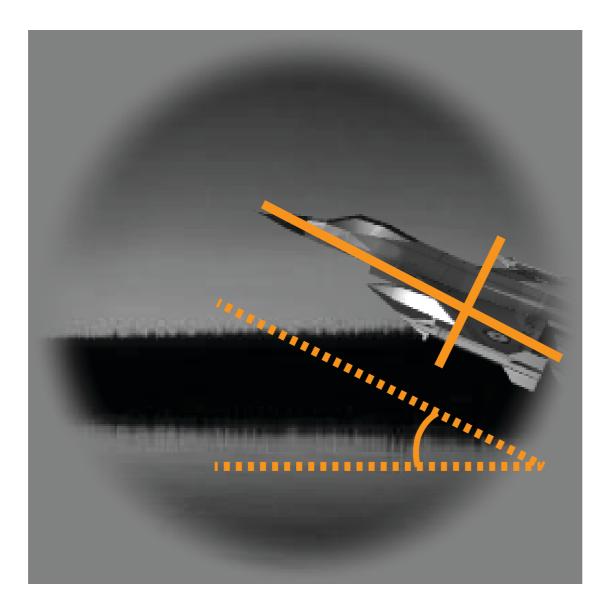






Beyond categorization





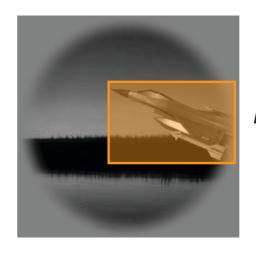
Aspect Ratio and Angle

Beyond categorization

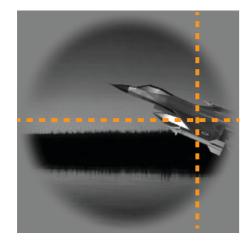
We can quickly assess the scene as a whole.

Category

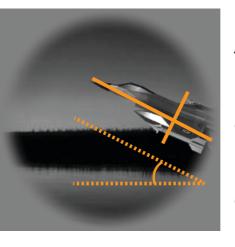
Identity



Bounding Box



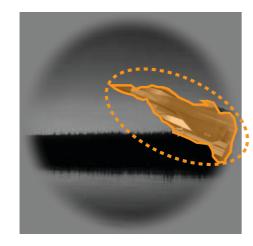
X and Y Axis Position



Aspect Ratio

Major Axis Length

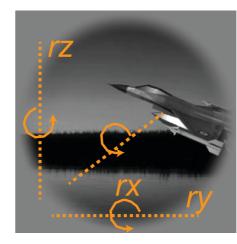
Major Axis Angle



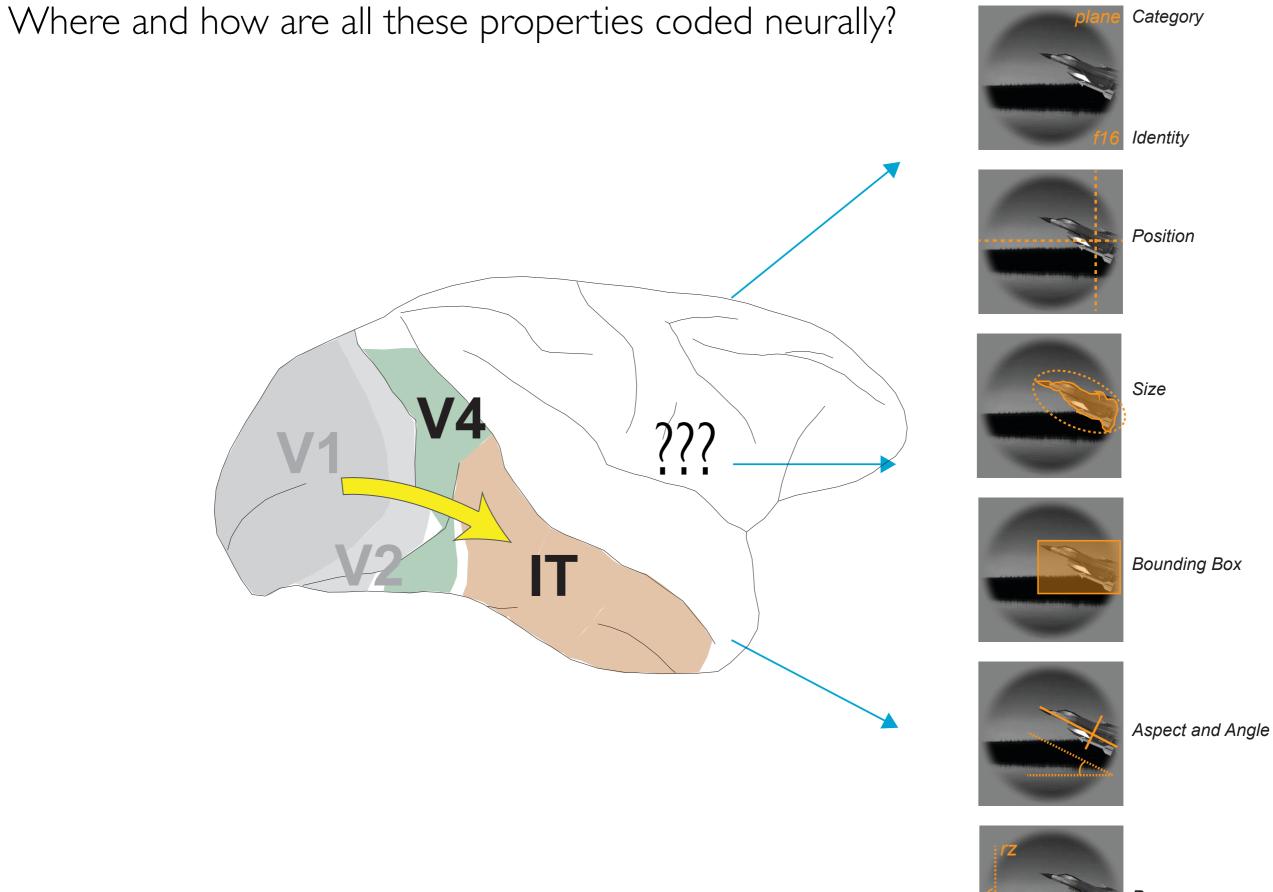
Perimeter

2-D Retinal Area

3-D Object Scale



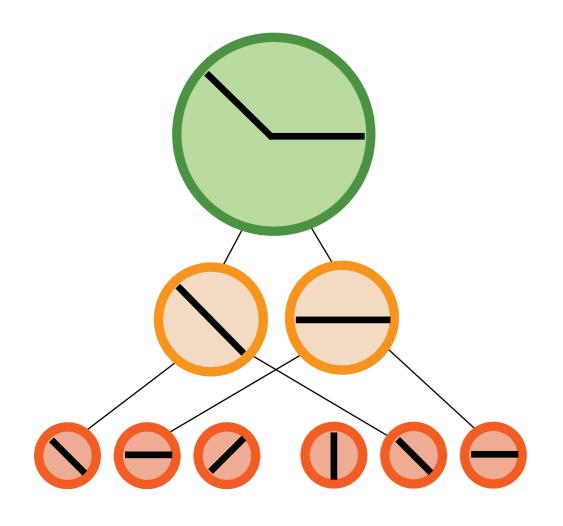
Pose in each axis



Pose

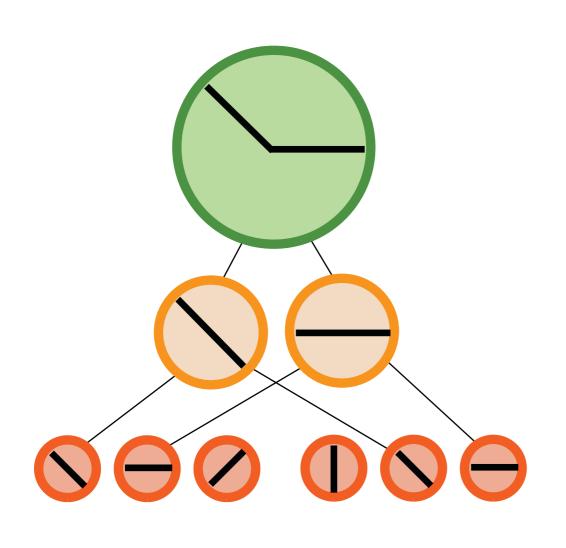
"Standard word model" predicts: **not at the top of the ventral stream**.

Aggregation over identity-preserving transformations, e.g. translation.



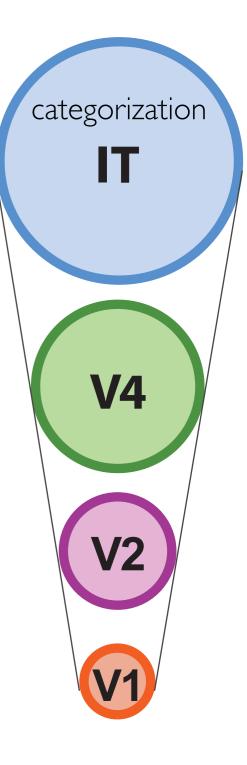
"Standard word model" predicts: **not at the top of the ventral stream**.

Aggregation over identity-preserving transformations, e.g. translation.



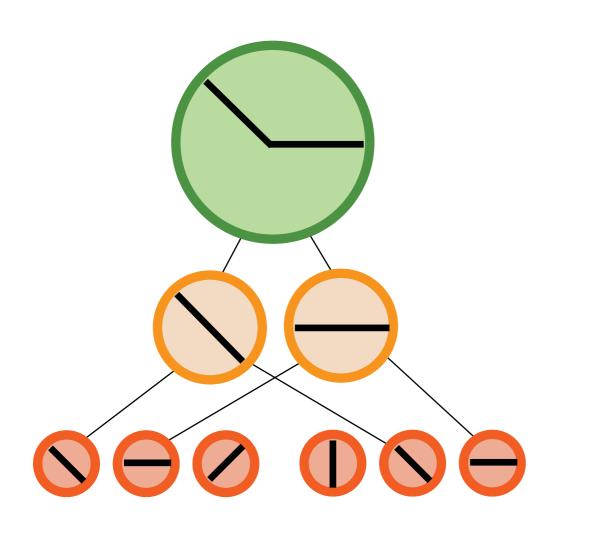
Receptive Field Size 1

Category Invariance 1



"Standard word model" predicts: **not at the top of the ventral stream**.

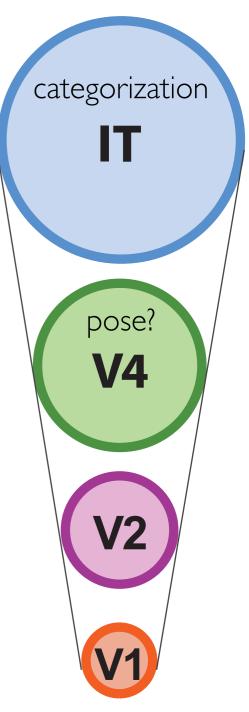
Aggregation over identity-preserving transformations, e.g. translation.



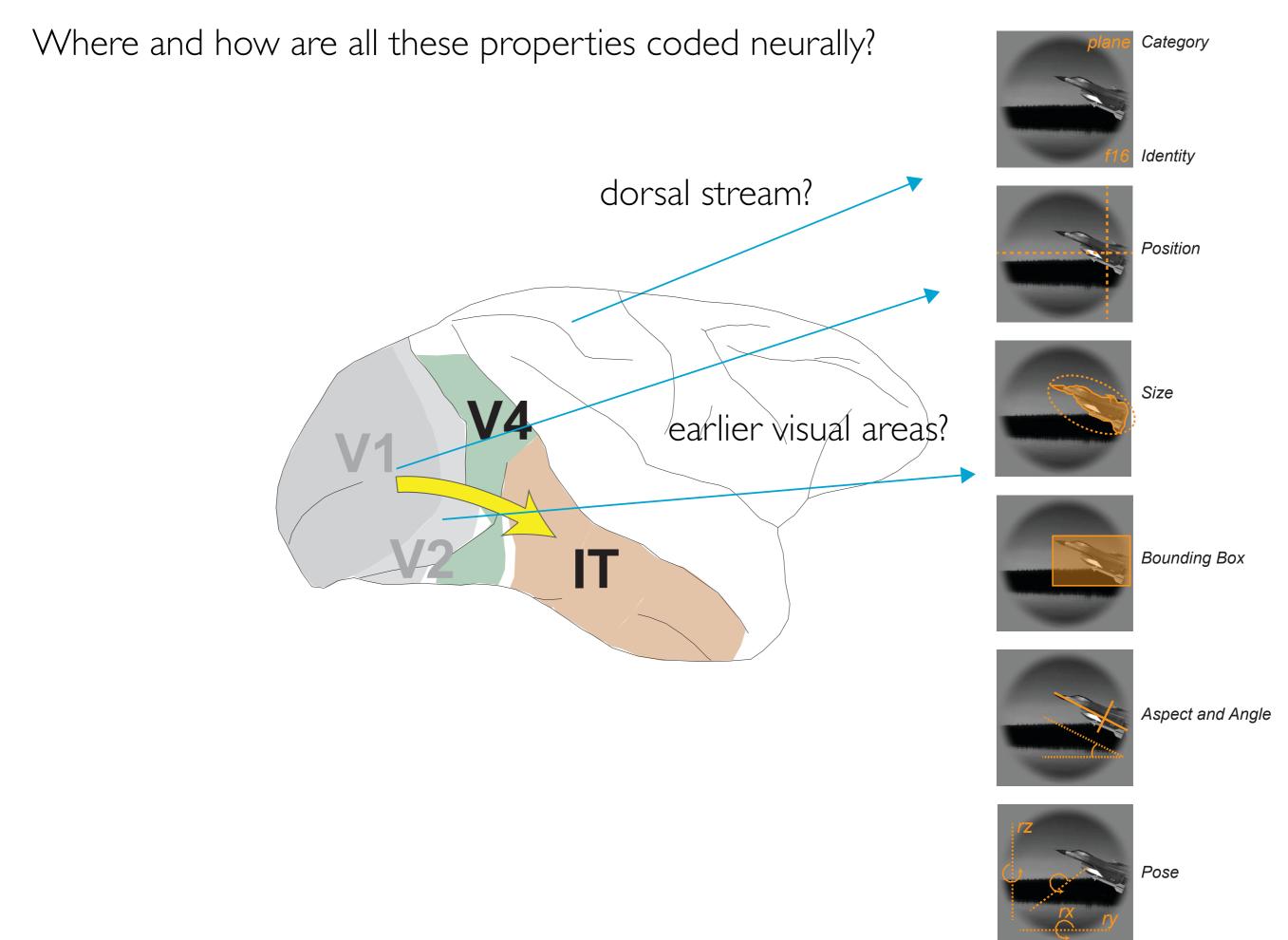
Receptive Field Size 1

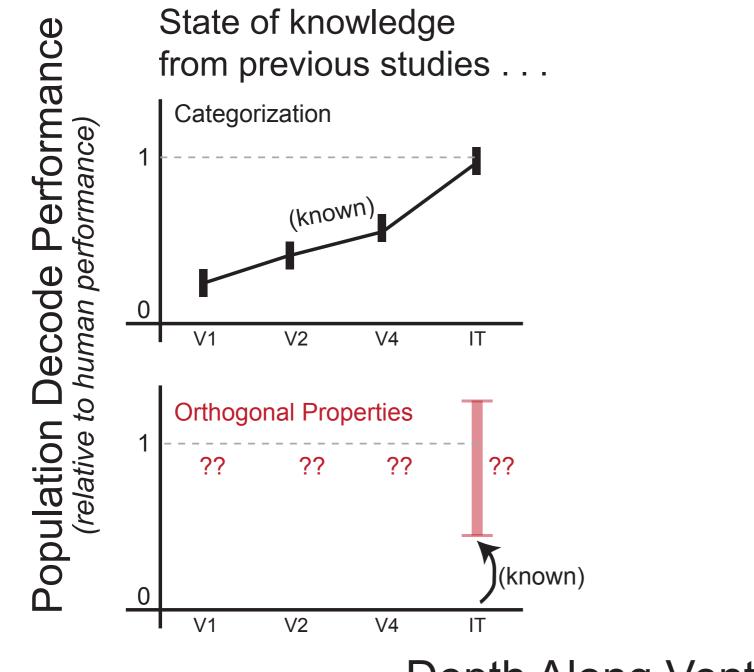
Category Invariance 1

(e.g.) Position Sensitivity ${\downarrow}$

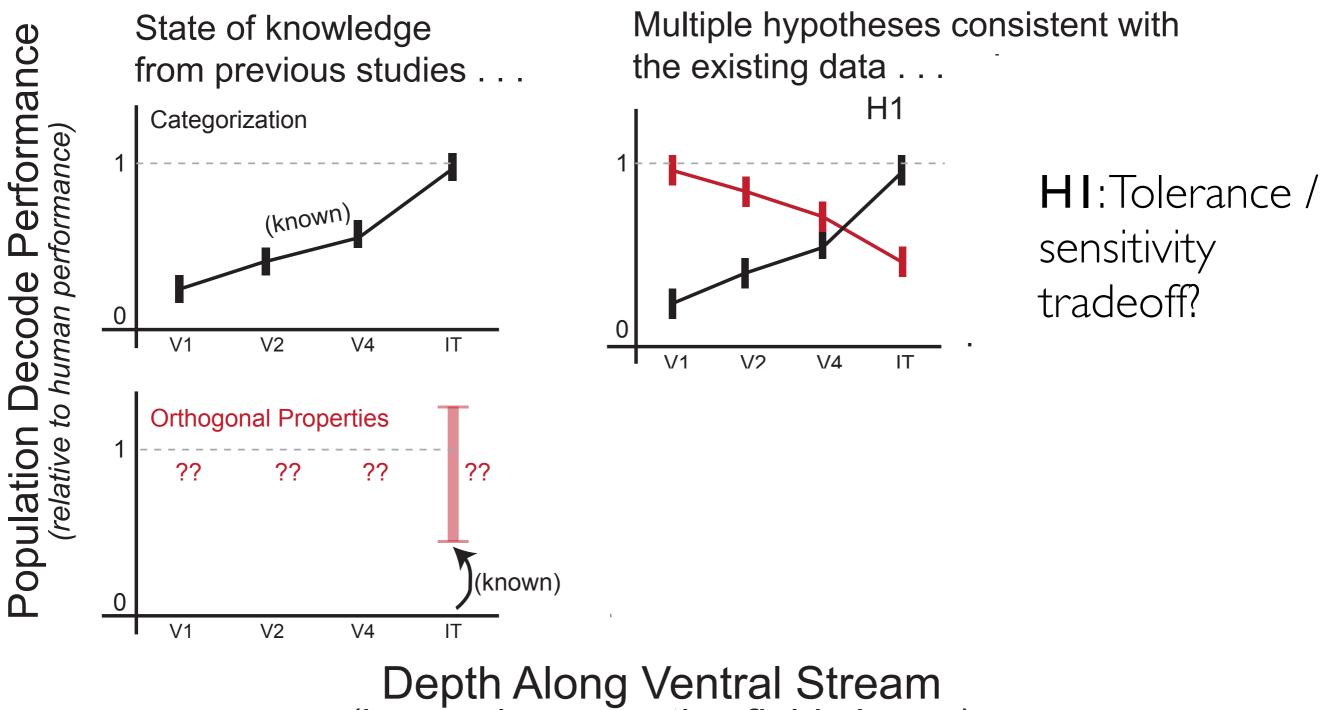


position / size estimation

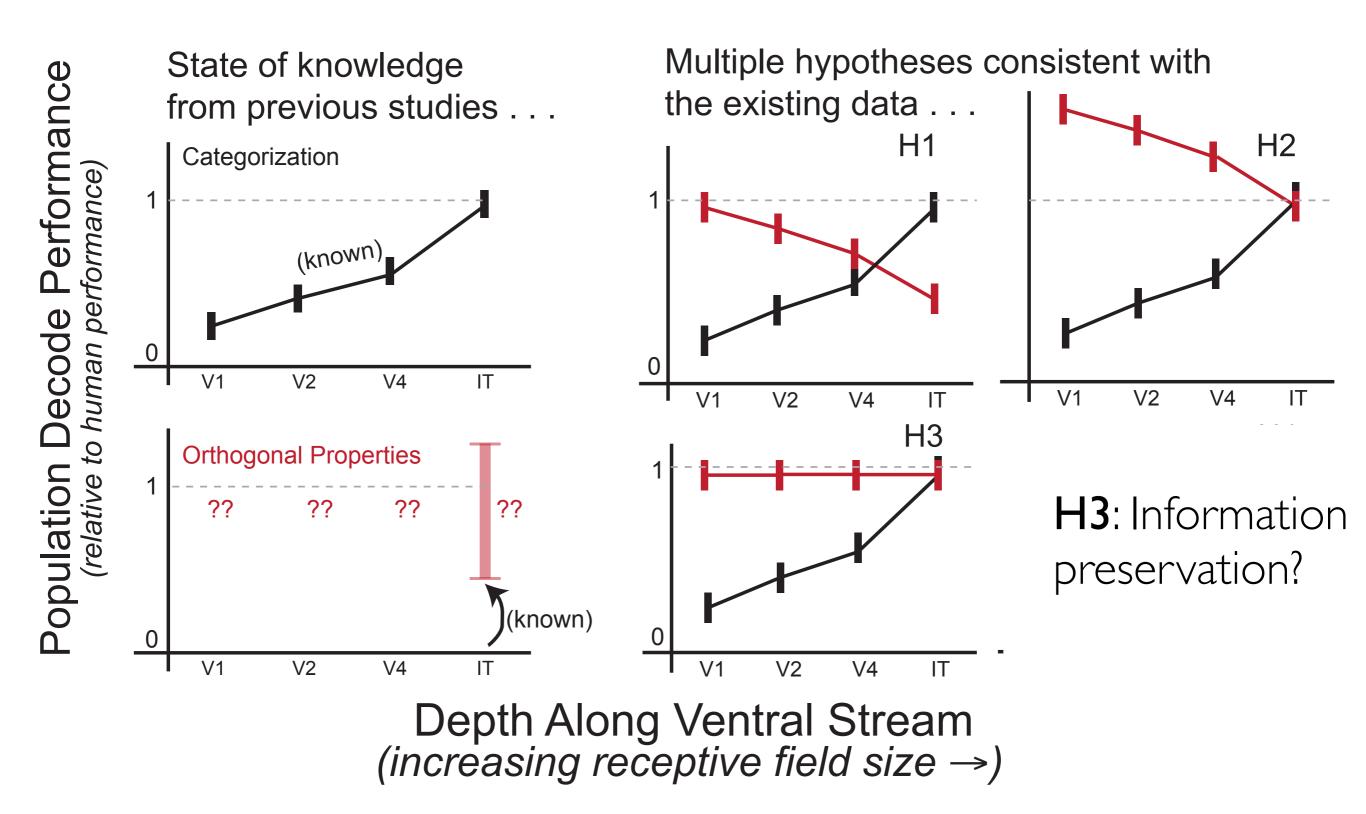




Depth Along Ventral Stream (increasing receptive field size →)

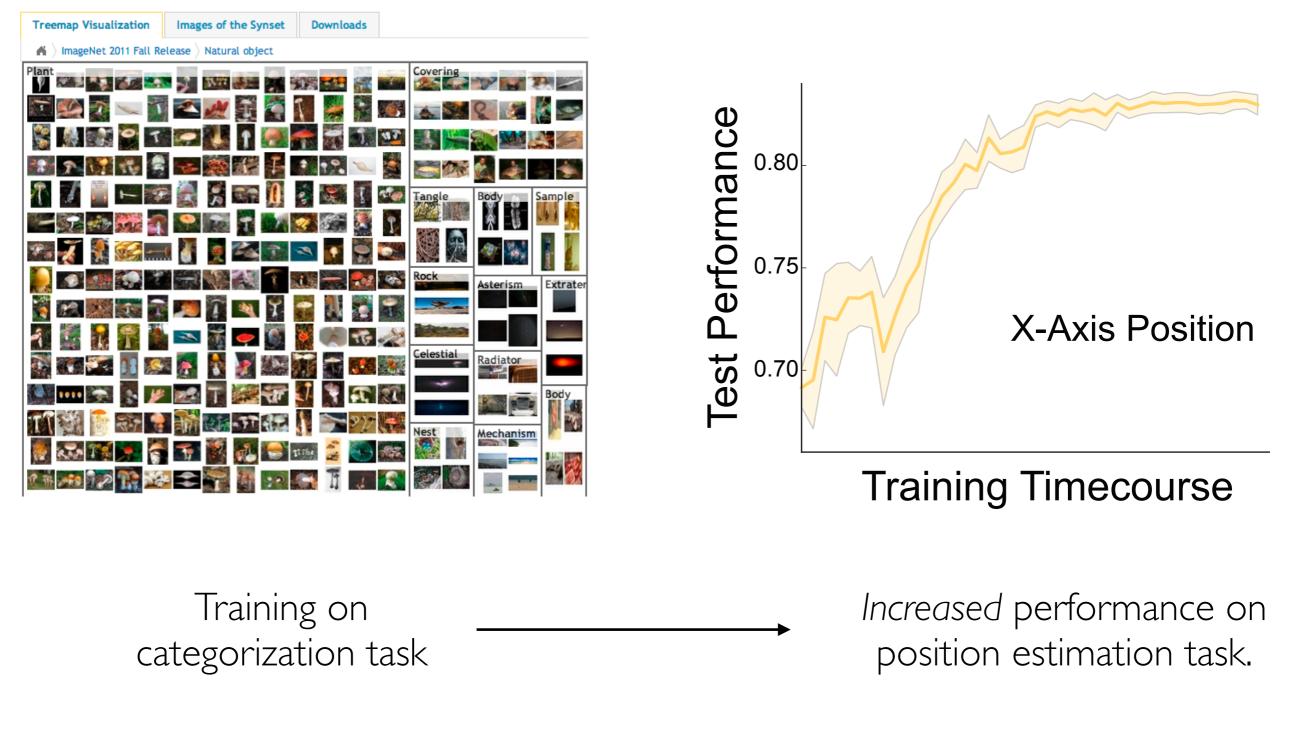


(increasing receptive field size \rightarrow)



Unexpected observation:

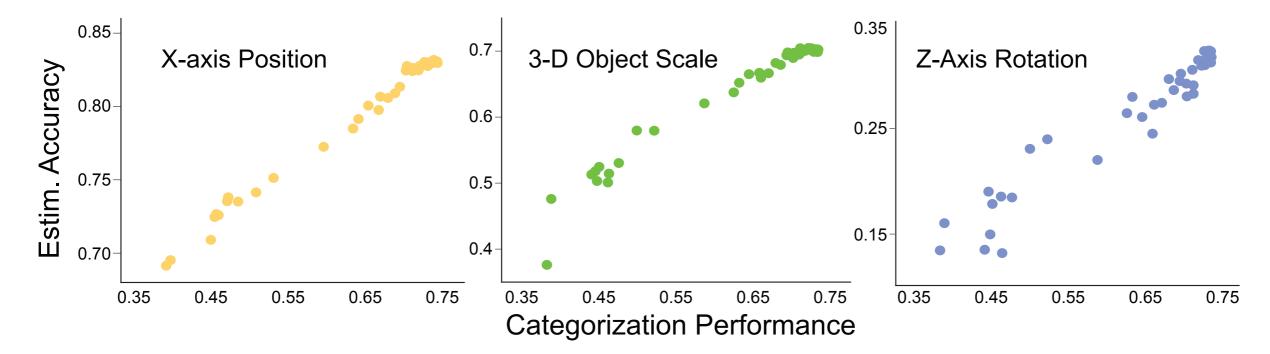
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



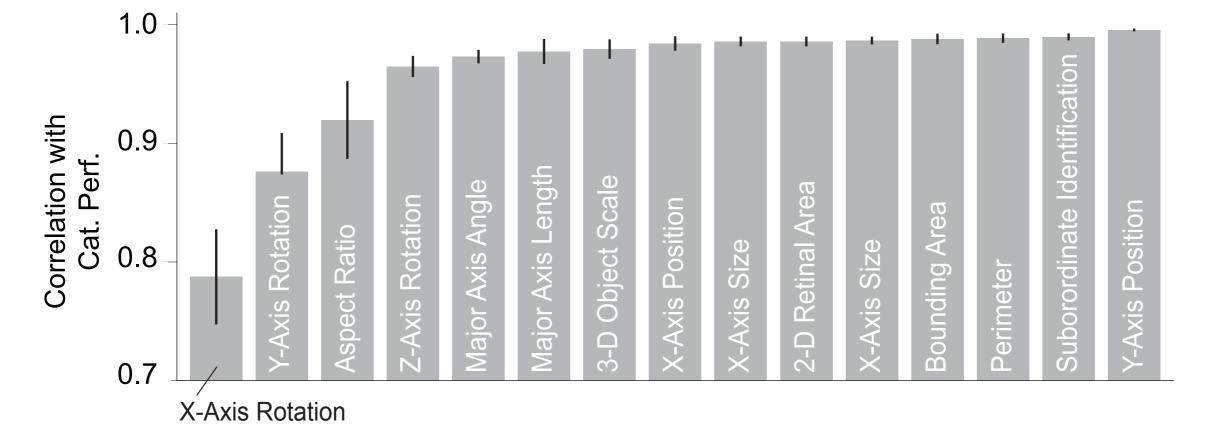
even though the goal was to become INVARIANT to position

Beyond categorization

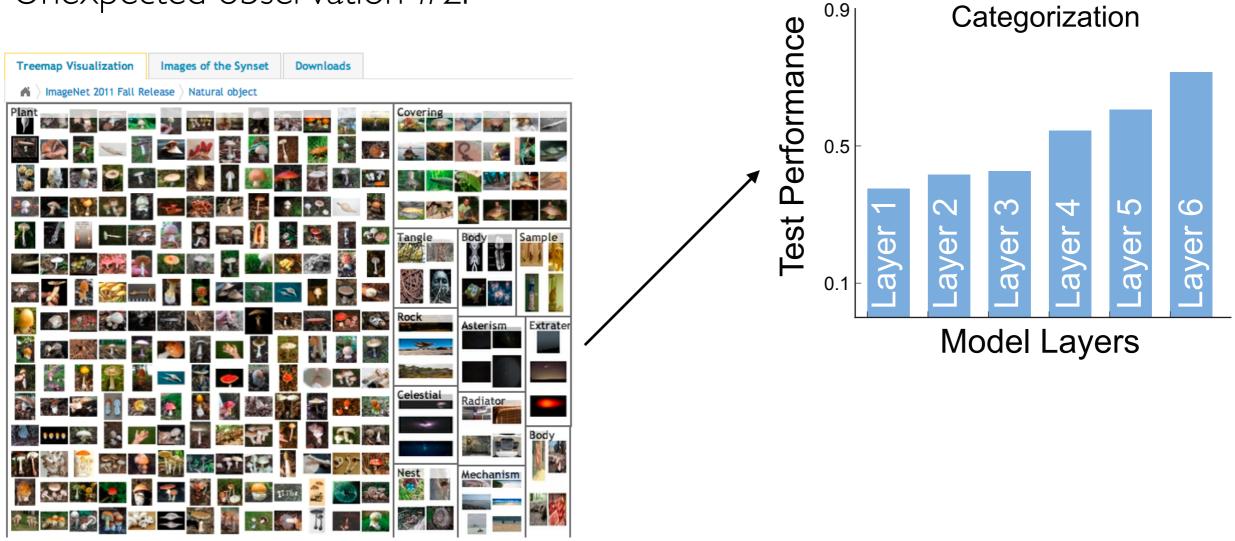
Category optimization \rightarrow improved performance on non-categorical tasks.



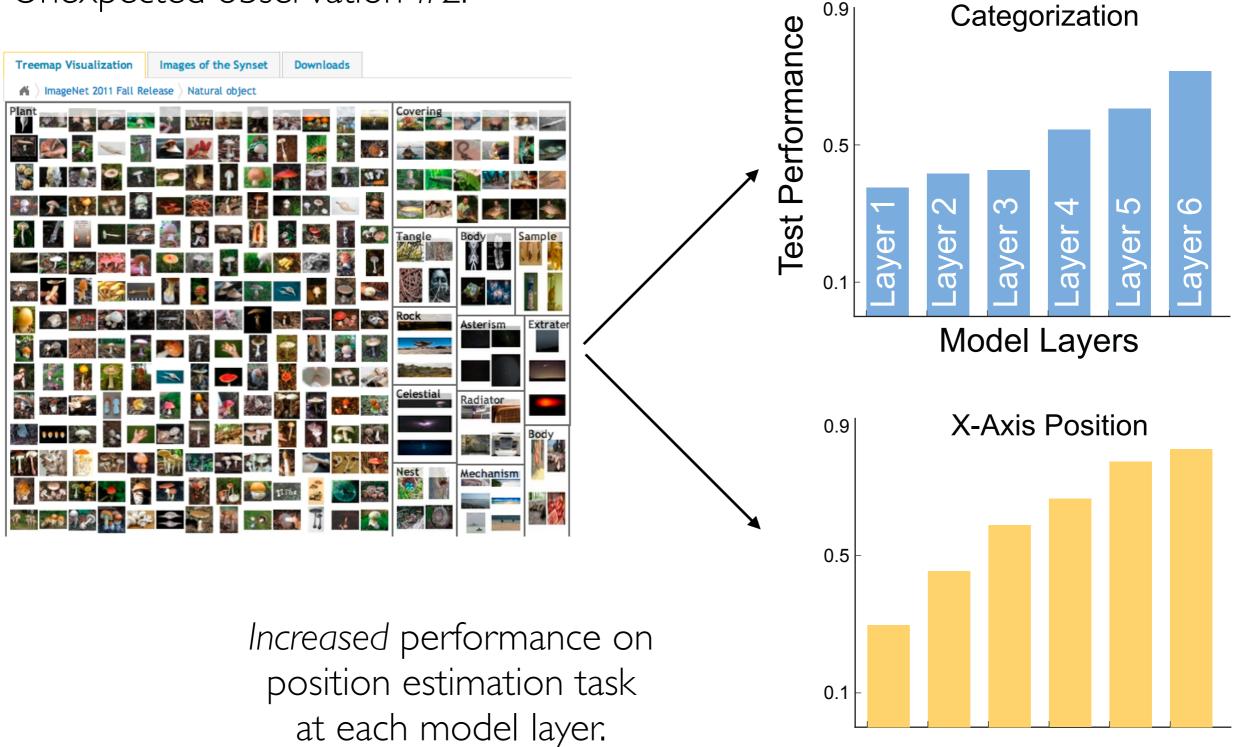
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)



Unexpected observation #2:



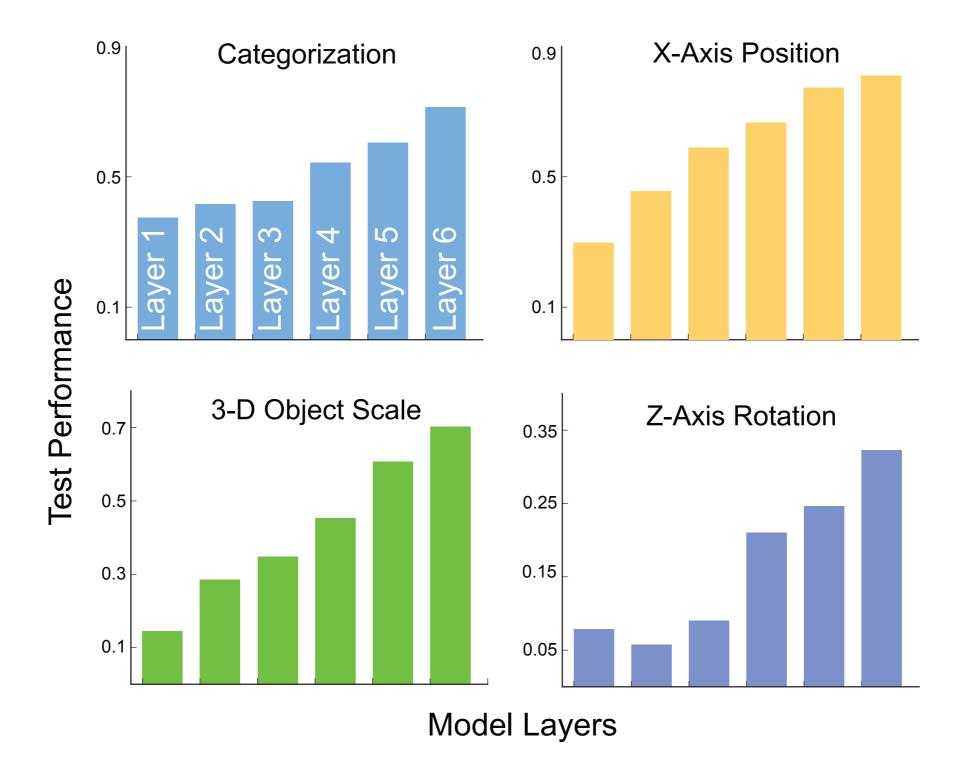
Unexpected observation #2:



Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Beyond categorization

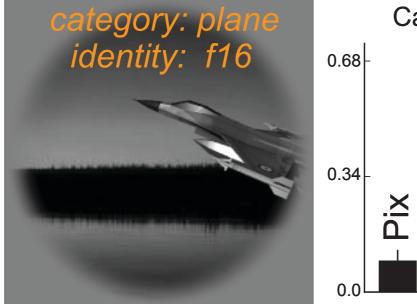
For all tasks of visual interest we could measure in our test dataset:

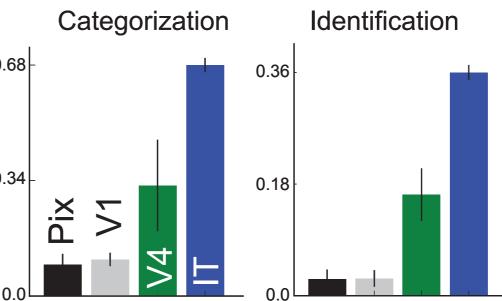


Performance on non-categorical tasks increases at each layer.

What do the data say?

Population Decoding



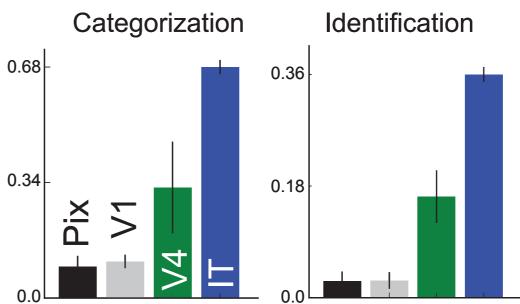


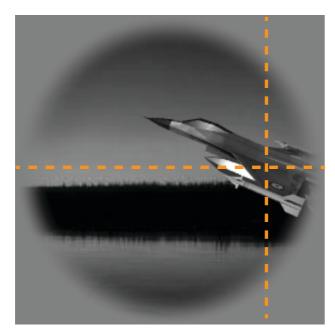
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

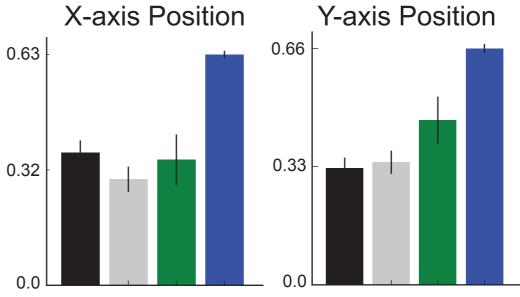
IT cortex VI-like model V4 cortex

pixel control

Population Decoding







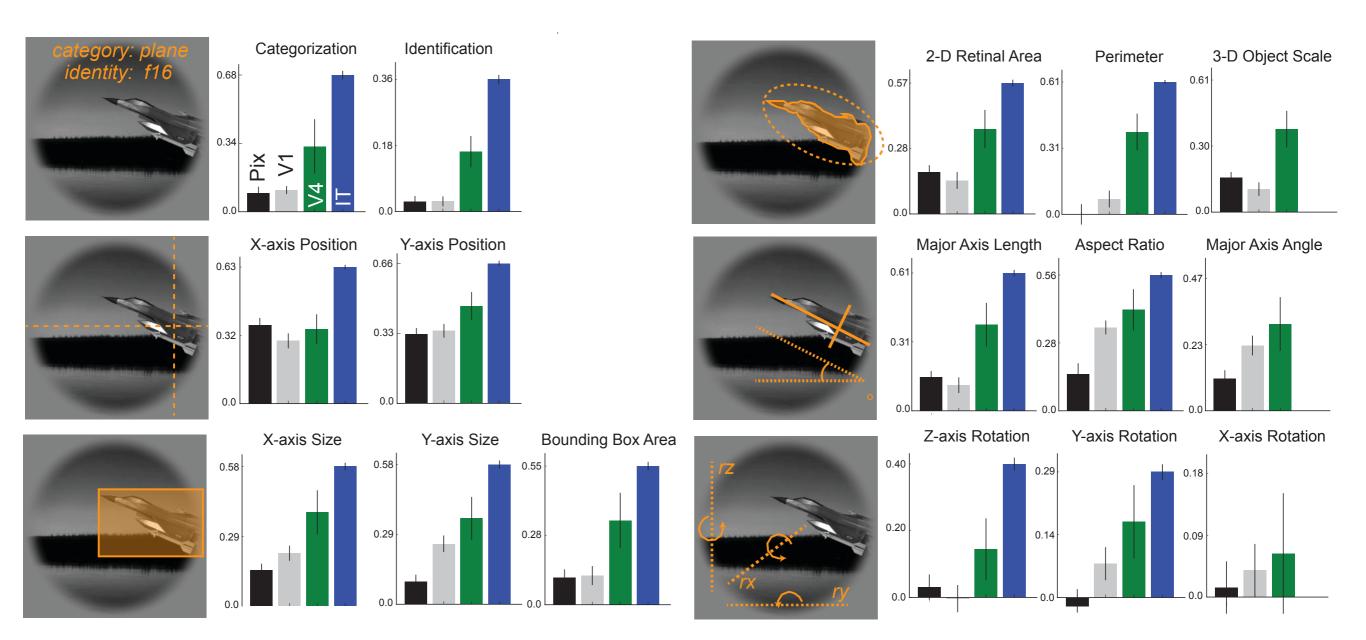
Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

IT cortex VI-like model

V4 cortex

pixel control

|T > V4, V| for all tasks V4 > V| for most tasks

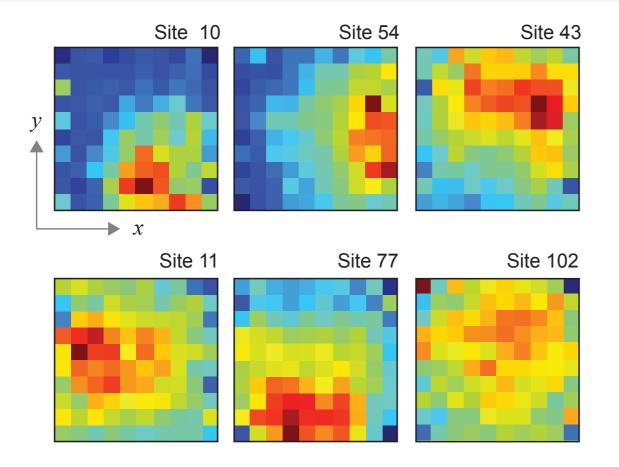


Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

V4 cortex

pixel control

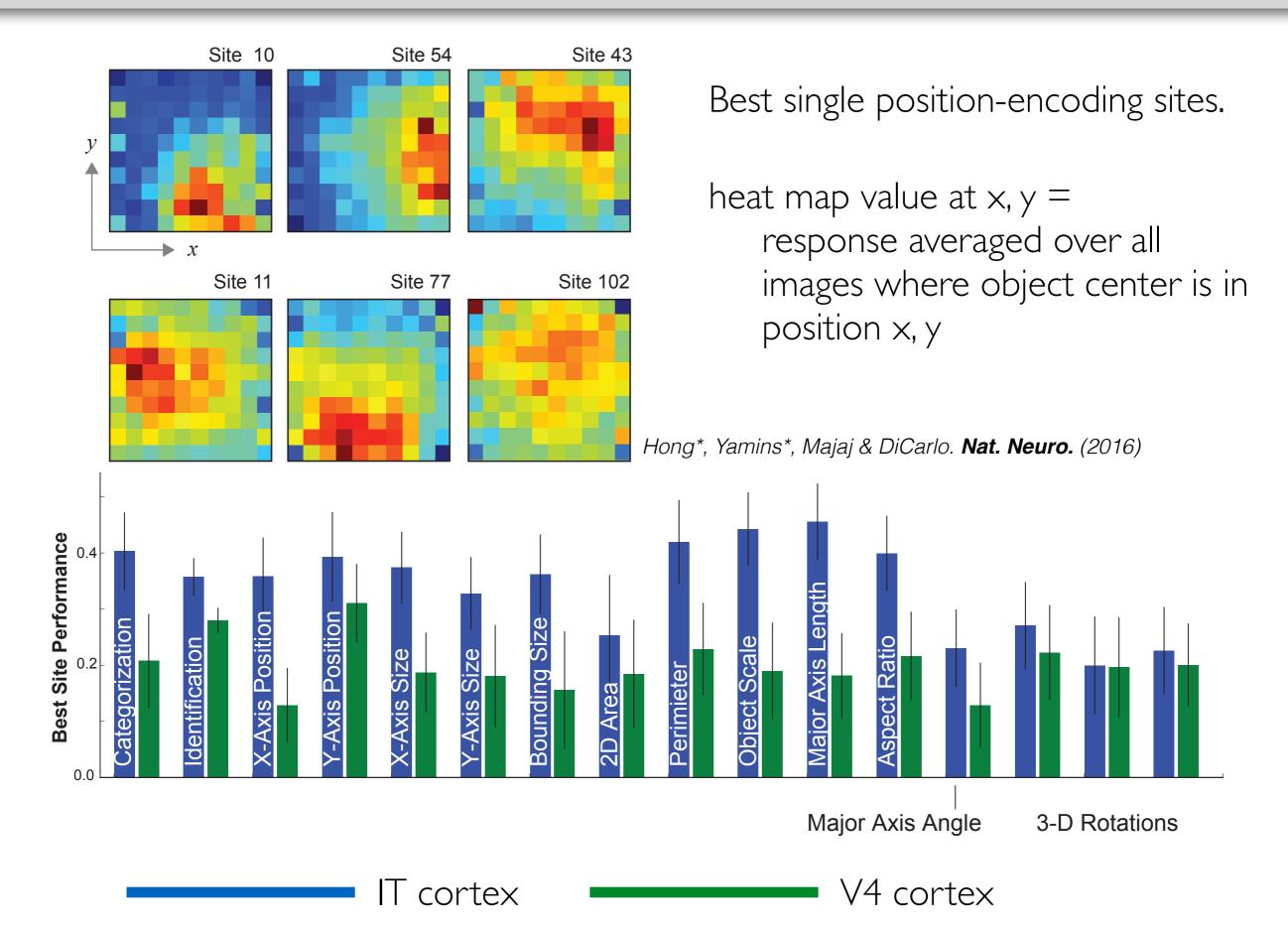
Single Site Responses



Best single position-encoding sites.

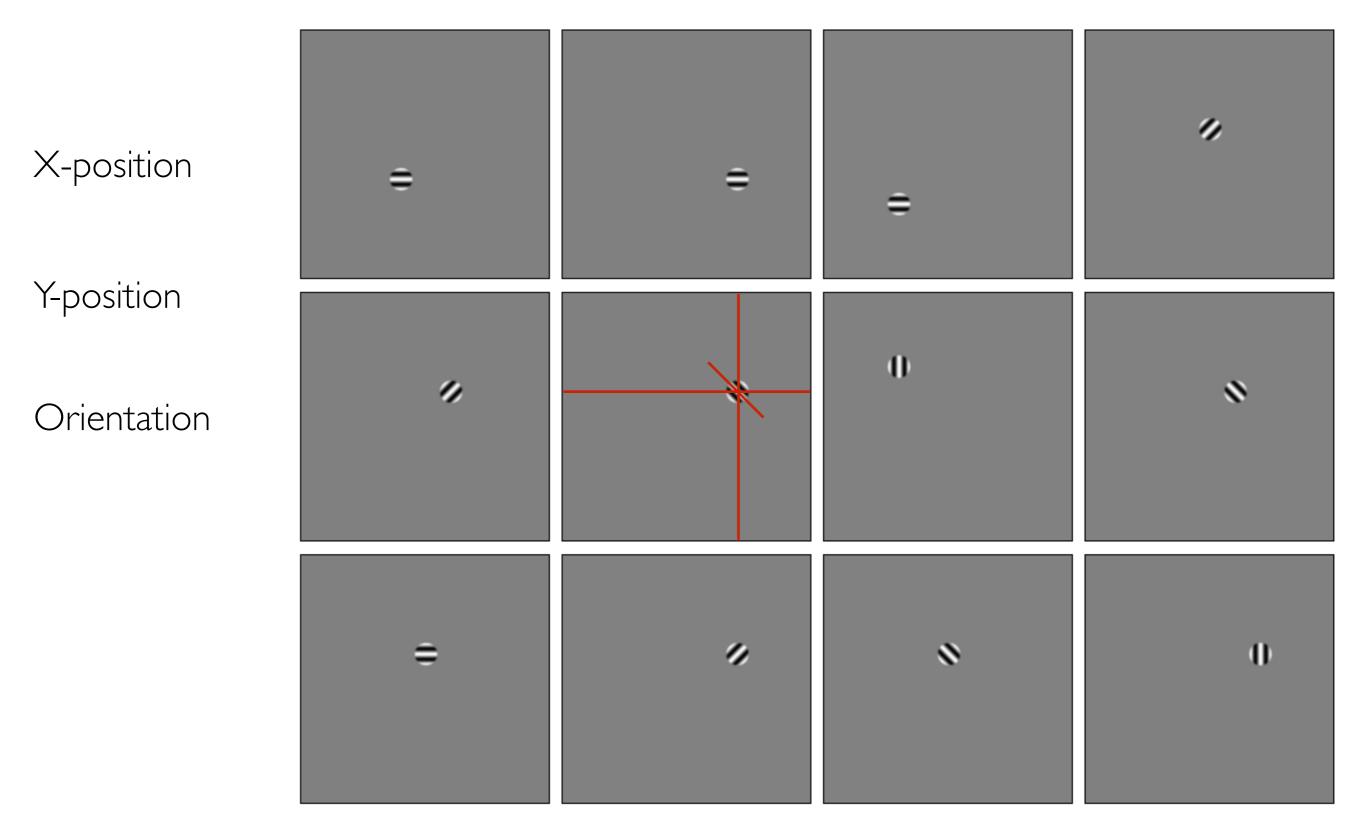
heat map value at x, y = response averaged over all images where object center is in position x, y

Single Site Responses

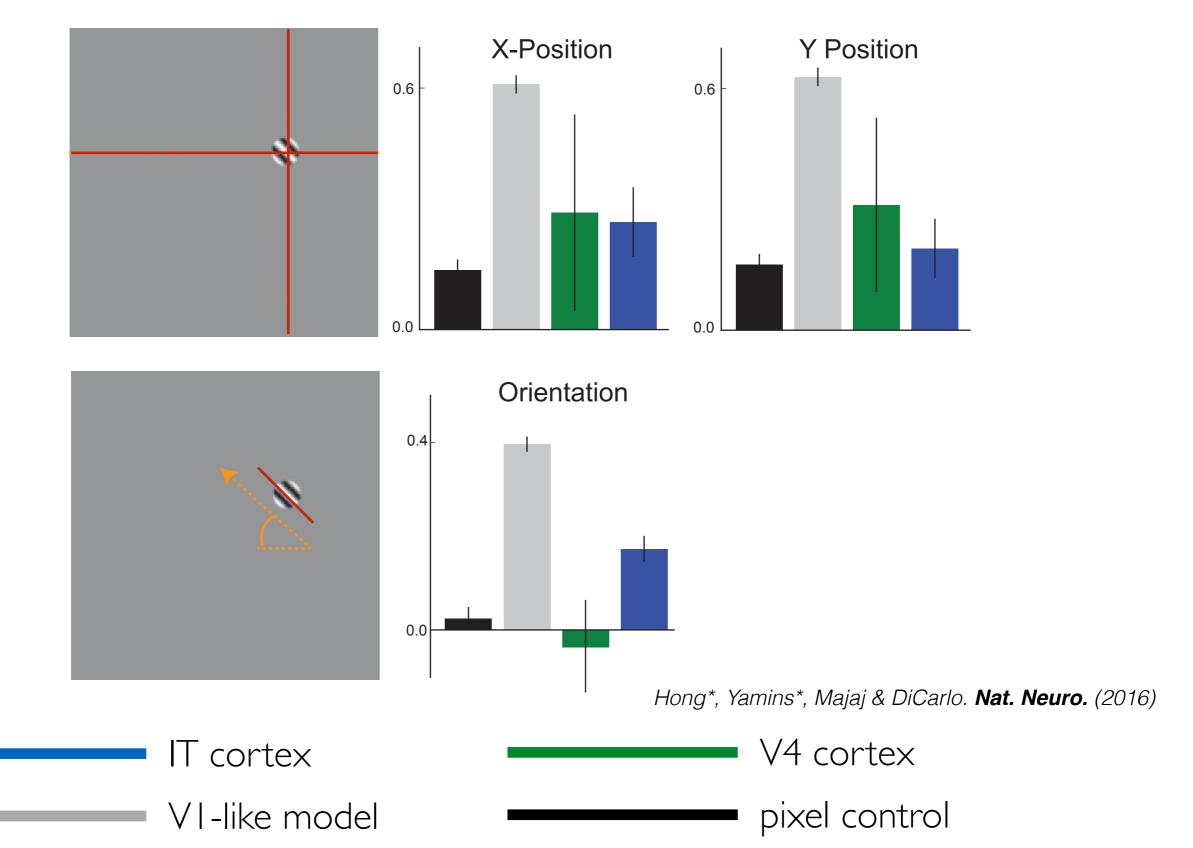


Population Decoding

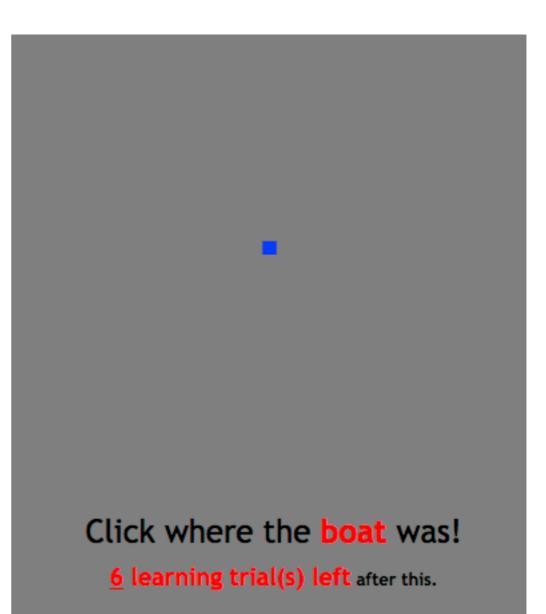
"Standard" receptive field-mapping stimuli w/ position and orientation variation:

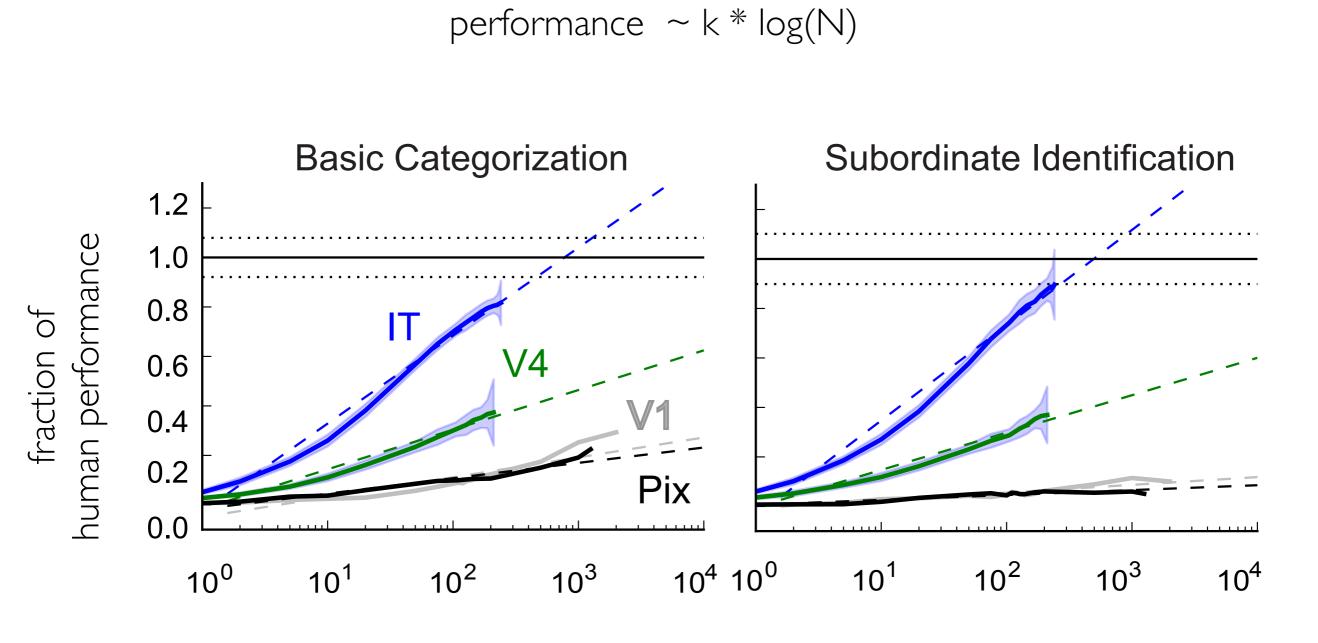


Population Decoding



Human Psychophysical Measurements

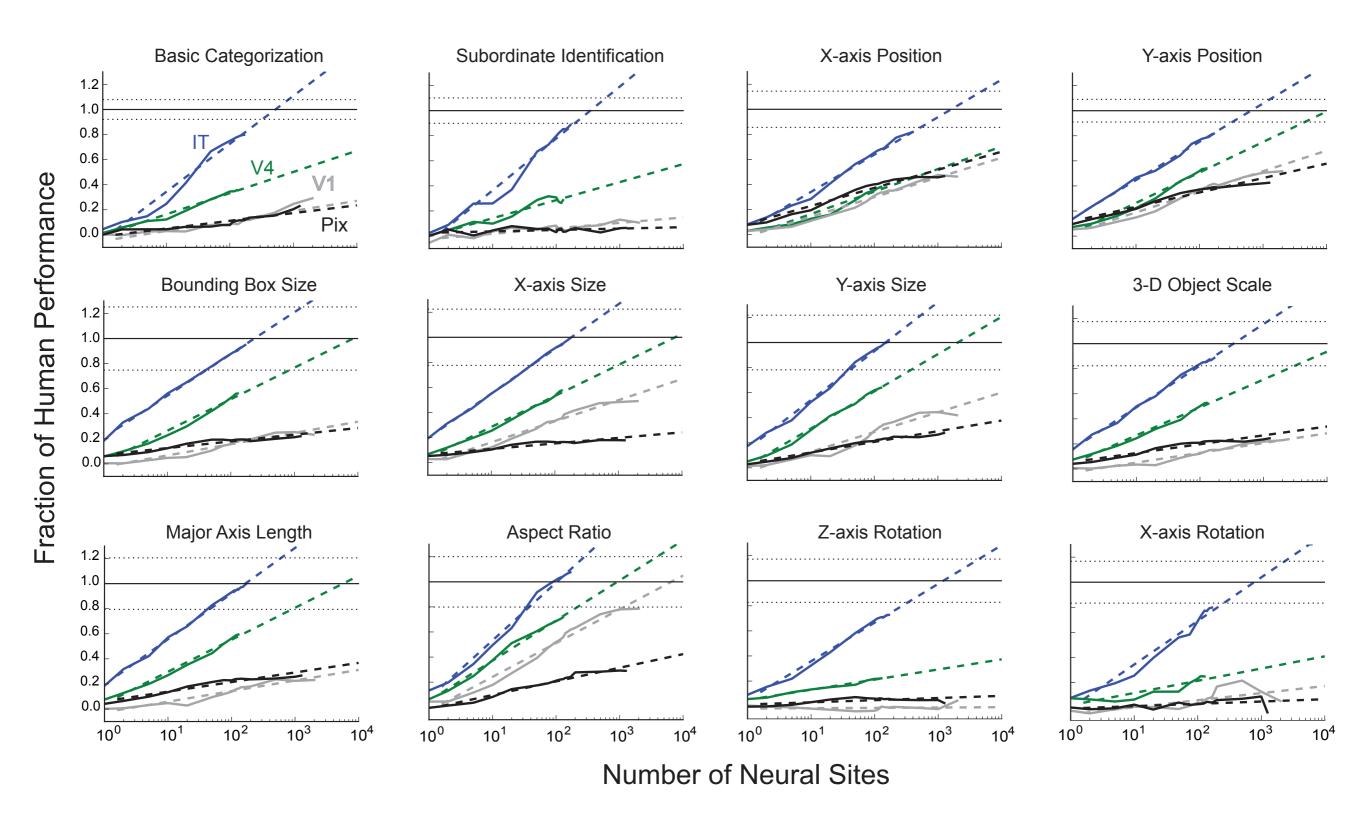




number of neural sites

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Monkey Neurons vs Humans



Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Monkey Neurons vs Humans

	IT	V4	V1	Pix
Basic Categorization	773 ± 185	2.2 × 10 ⁶	_	
Subordinate Identification	496 ± 93	4.4×10^{6}	—	
X-axis Position	1414 ± 403	5.2 × 10⁵	3.0×10^{7}	
Y-axis Position	918 ± 309	2.5×10^4	8.7 × 10 ⁶	
Bounding Box Size	322 ± 90	1.7 × 10 ⁴	_	
X-axis Size	256 ± 87	9.8 × 10 ³	3.4×10^{7}	
Y-axis Size	237 ± 87	3.8 × 10 ³	9.5×10^{6}	
3-D Object Scale	401 ± 90	3.2 × 10 ⁴	_	
Major Axis Length	201 ± 70	1.1 × 10 ⁴	_	
Aspect Ratio	163 ± 61	951 ± 59	6.5 × 10 ³	
Major Axis Angle	804 ± 136	3.2×10^{6}	—	—
Z-axis Rotation	1932 ± 1061	_	_	
Y-axis Rotation	369 ± 115	2.8 × 10⁵	—	
X-axis Rotation	1570 ± 530		—	

— = more than 10 billion sites required

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Mean over tasks, human-parity for IT is at \sim **700** multi-unit trial-averaged sites.

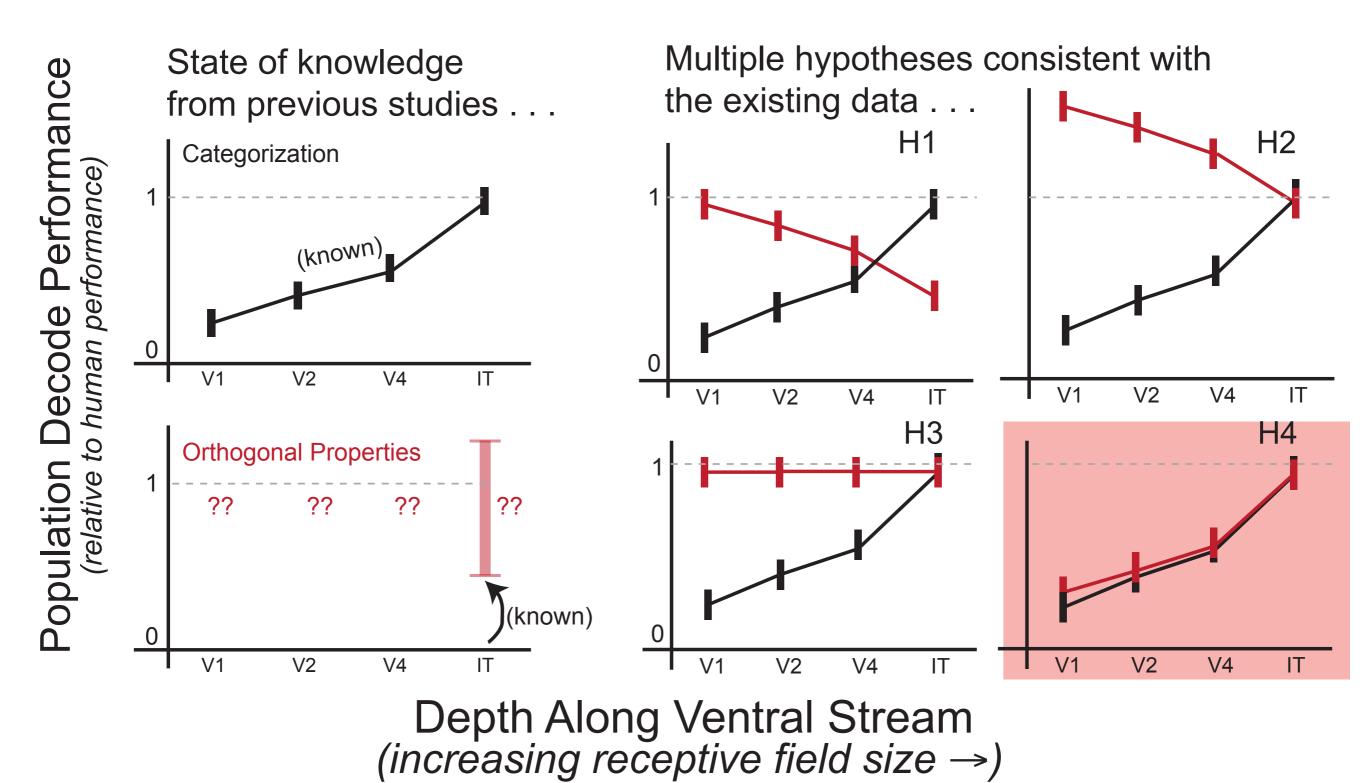
Monkey Neurons vs Humans

	IT	V4	V1	Pix
Basic Categorization	773 ± 185	2.2 × 10 ⁶		
Subordinate Identification	496 ± 93	4.4×10^{6}	—	
X-axis Position	1414 ± 403	5.2 × 10⁵	3.0 × 10 ⁷	
Y-axis Position	918 ± 309	2.5×10^{4}	8.7 × 10 ⁶	_
Bounding Box Size	322 ± 90	1.7 × 104	_	
X-axis Size	256 ± 87	9.8 × 10 ³	3.4×10^{7}	
Y-axis Size	237 ± 87	3.8 × 10 ³	9.5×10^{6}	
3-D Object Scale	401 ± 90	3.2×10^4		
Major Axis Length	201 ± 70	1.1 × 10 ⁴	_	
Aspect Ratio	163 ± 61	951 ± 59	6.5 × 10 ³	
Major Axis Angle	804 ± 136	3.2 × 10 ⁶	—	
Z-axis Rotation	1932 ± 1061	_	_	
Y-axis Rotation	369 ± 115	2.8 × 10⁵		
X-axis Rotation	1570 ± 530		—	

— = more than 10 billion sites required

Hong*, Yamins*, Majaj & DiCarlo. Nat. Neuro. (2016)

Mean over tasks, human-parity for IT is at \sim **350000** single-unit single-trial neurons.



H4: Simultaneous build-up of encoding

I. IT is *NOT* invariant. Strict generalization of simple-to-complex cells: **no**.

2. "Lower-level" properties are not that low-level — at least, with complex objects and backgrounds.

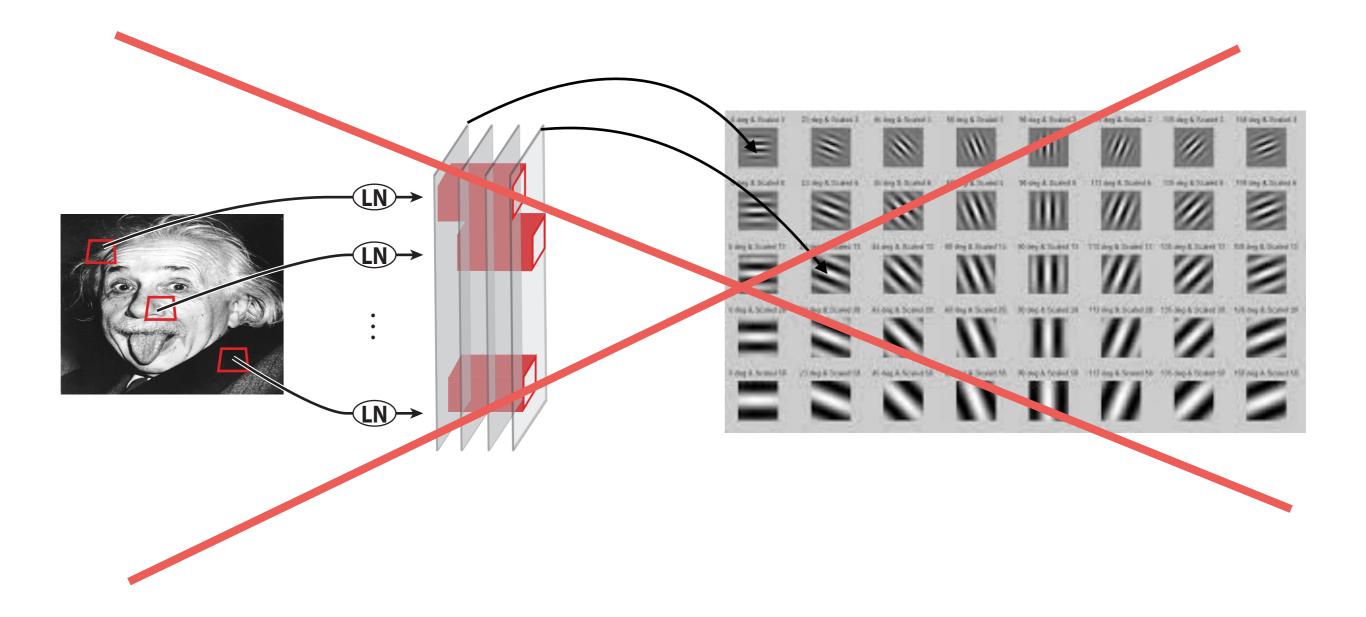
3. Categorization and non-categorical properties ''go together'' — *not* just that ''not all (e.g.) position information is lost'' (MacEvoy 2013, DiCarlo 2003)

Provides support to a hypothesis for what IT does:

"Inverting the generative model of the scene"

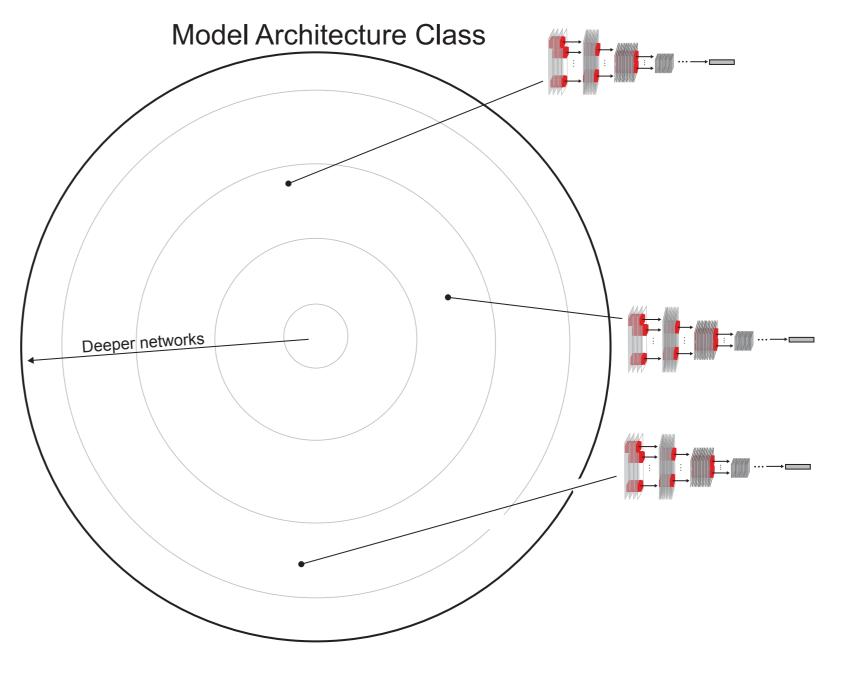
But what type of understanding is this?

But what type of understanding is this?



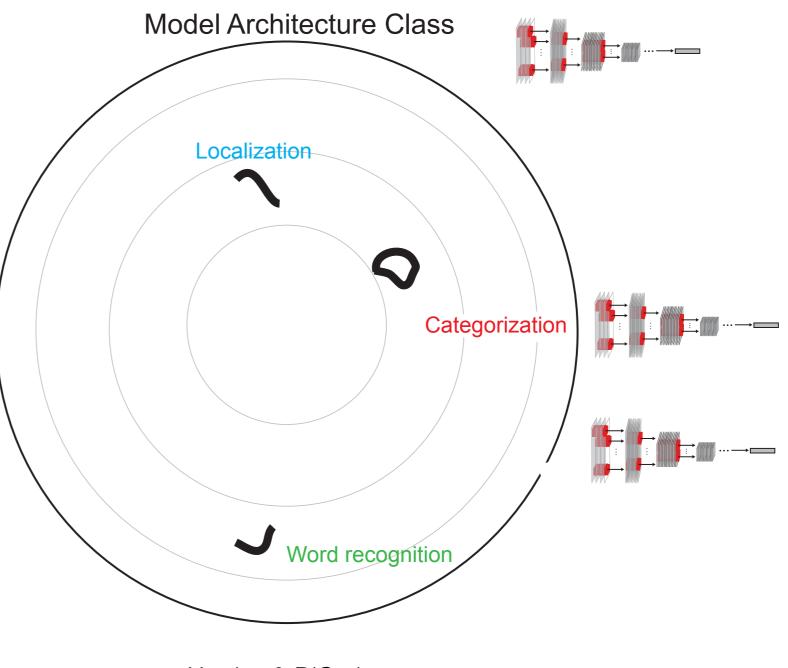
not saying this type of understanding is impossible ...

Principle of "Goal-Driven Modeling"



Yamins & DiCarlo. **Nat. Neuro.** (2016)

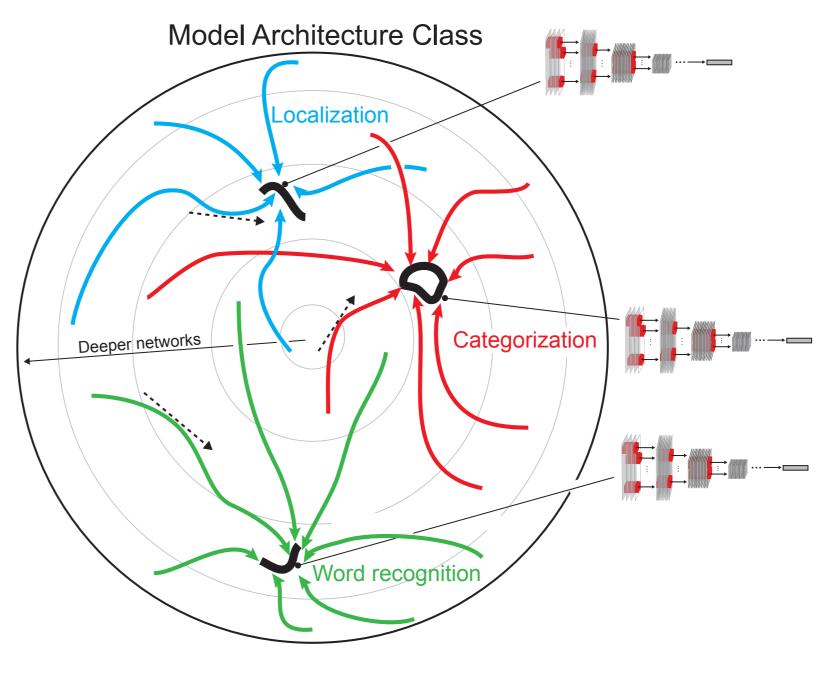
> Choose challenging, ethologically-valid tasks (categorization)



Yamins & DiCarlo. **Nat. Neuro.** (2016)

Choose challenging,
 ethologically-valid tasks
 (categorization)

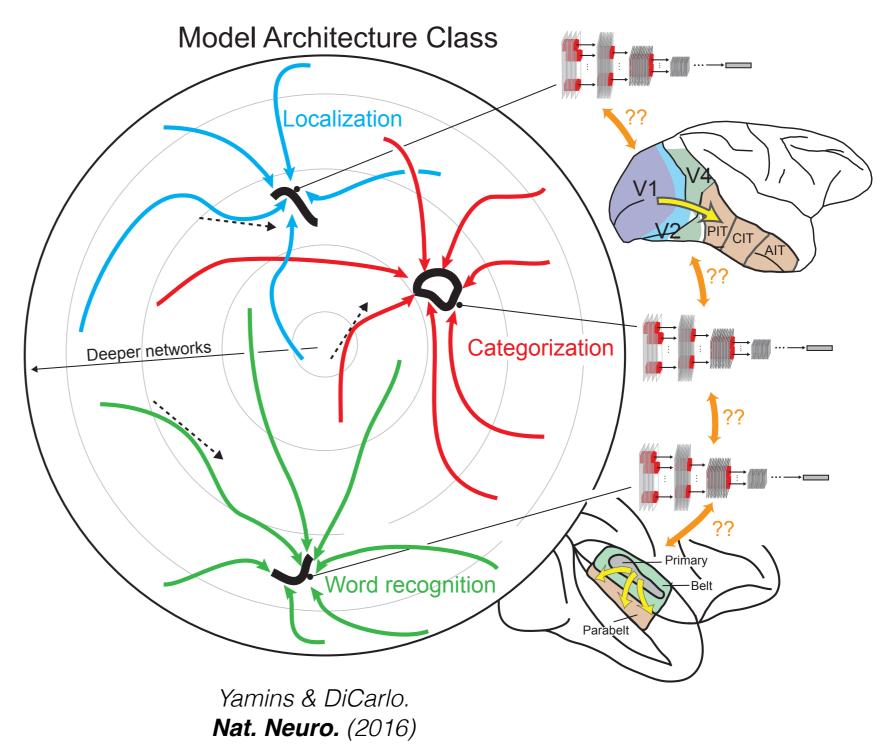
Implement generic
 learning rules (gradient
 descent)



Yamins & DiCarlo. **Nat. Neuro.** (2016)

Choose challenging,
 ethologically-valid tasks
 (categorization)

Implement generic
 learning rules (gradient
 descent)



> Map to brain data. (ventral stream)

Four Principles of Goal-Driven Modeling

1.

 $\mathbf{A} = architecture class$

2.

 $\mathbf{T} = task/objective$

3.

 $\mathbf{D} = dataset$

4.

L = learning rule

Four Principles of Goal-Driven Modeling

1

 $\mathbf{A} = architecture class$

2.

 $\mathbf{T} = task/objective$

3.

 $\mathbf{D} = dataset$

4.

L = learning rule

<u>Best proxies</u> thus far for ventral stream:

 $\mathbf{A} = ConvNets of reasonable depth$

 \mathbf{T} = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search + filter learning through gradient descent

Four Principles of Goal-Driven Modeling

A = architecture class = **circuit neuro**anatomy 2. **T** = task/objective = ecological niche 3. **D** = dataset = environment 4. **L** = learning rule = **natural selection** + synaptic plasticity

<u>Best proxies</u> thus far for ventral stream:

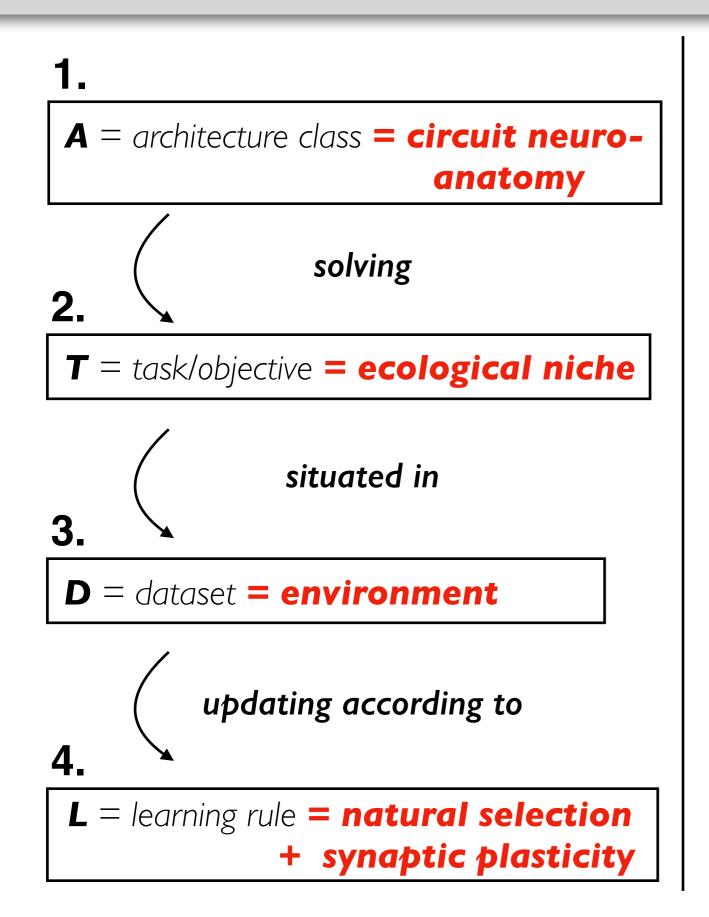
 $\mathbf{A} = ConvNets of reasonable depth$

 \mathbf{T} = multi-way object categorization

D = ImageNet images

L = evolutionary architecture search + filter learning through gradient descent

Four Principles of Goal-Driven Modeling



<u>Best proxies</u> thus far for ventral stream:

 $\mathbf{A} = ConvNets of reasonable depth$

 \mathbf{T} = multi-way object categorization

 $\mathbf{D} = ImageNet images$

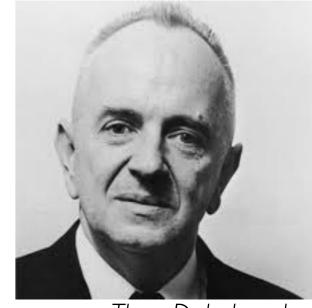
L = evolutionary architecture search + filter learning through gradient descent

Theo Dobzhansky

Theo Dobzhansky

"Nothing in neuroscience makes sense except in light of behavior"

Gordon Shepherd

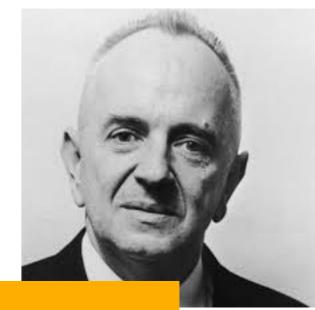


Theo Dobzhansky

"Nothing in neuroscience makes sense except in light of behavior"

Gordon Shepherd

Nothing in neuroscience makes sense except in light of **optimization**.



Dobzhansky

"Nothing

Behavior is highly constraining of the brain.

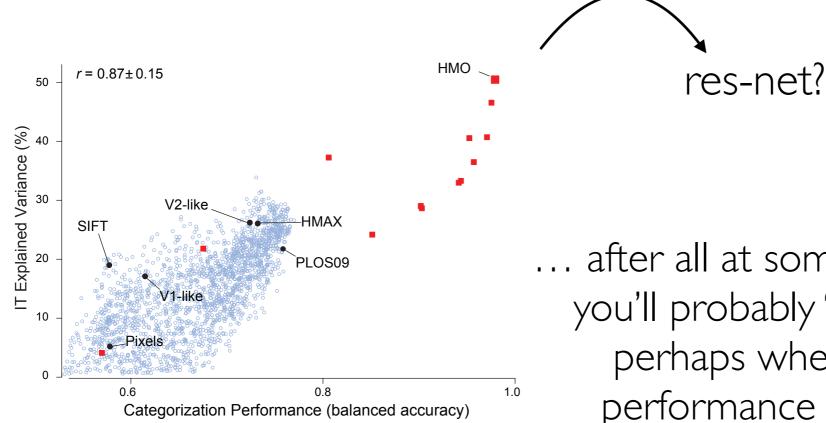
Restated:

Gordon Shepherd

Nothing in neuroscience makes sense except in light of **optimization**.

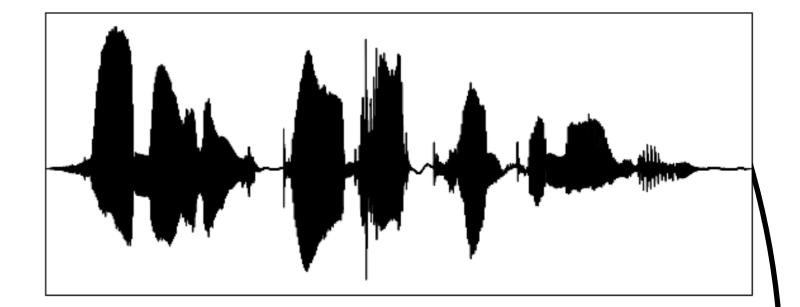
Principle of "Goal-Driven Modeling" Heuristic of "Goal-Driven Modeling"

Principle of "Goal-Driven Modeling" Heuristic of "Goal-Driven Modeling"



after all at some point, for any given task, you'll probably ''go over the hump'' ... perhaps when you exceed human performance or overfit on that task

Can we go beyond vision?

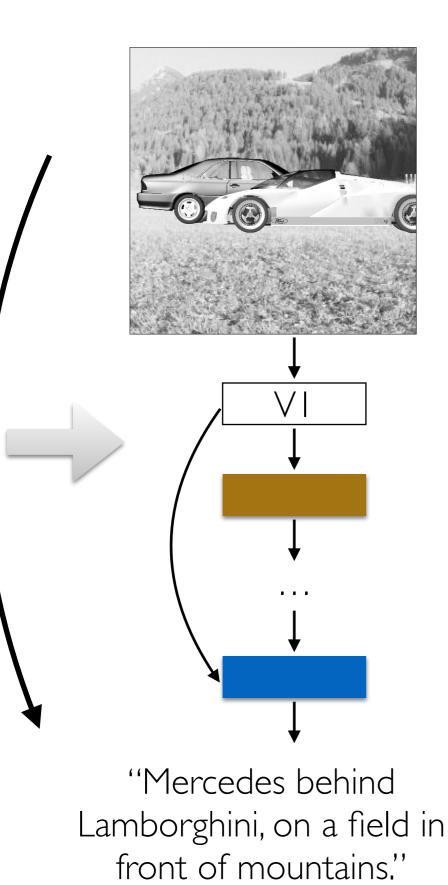


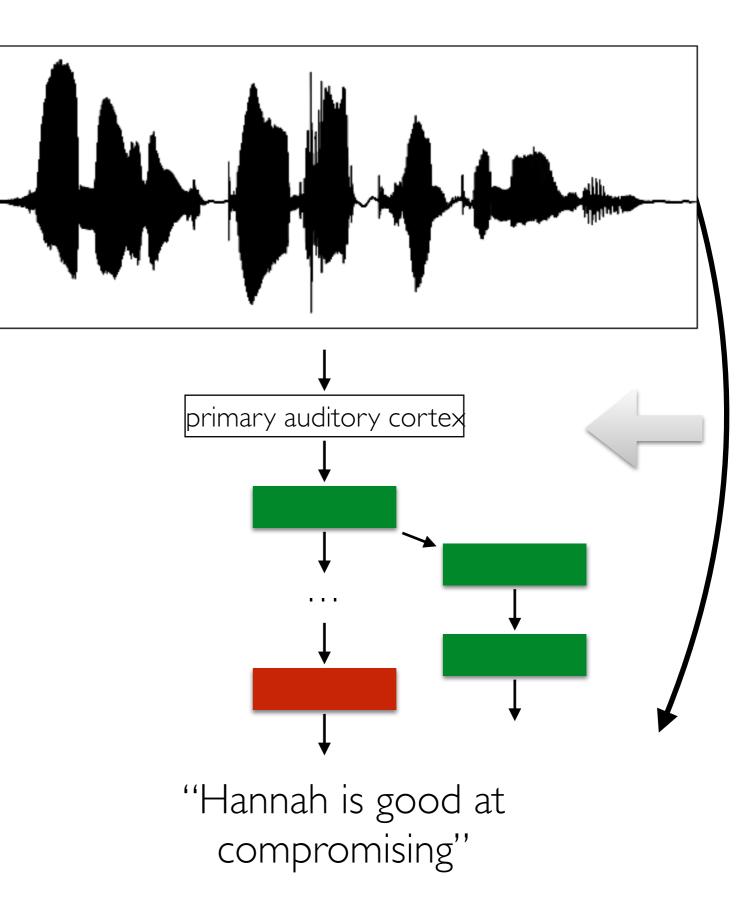
visual cortex auditory cortex

"Mercedes behind Lamborghini, on a field in front of mountains."

"Hannah is good at compromising"

Can we go beyond vision?

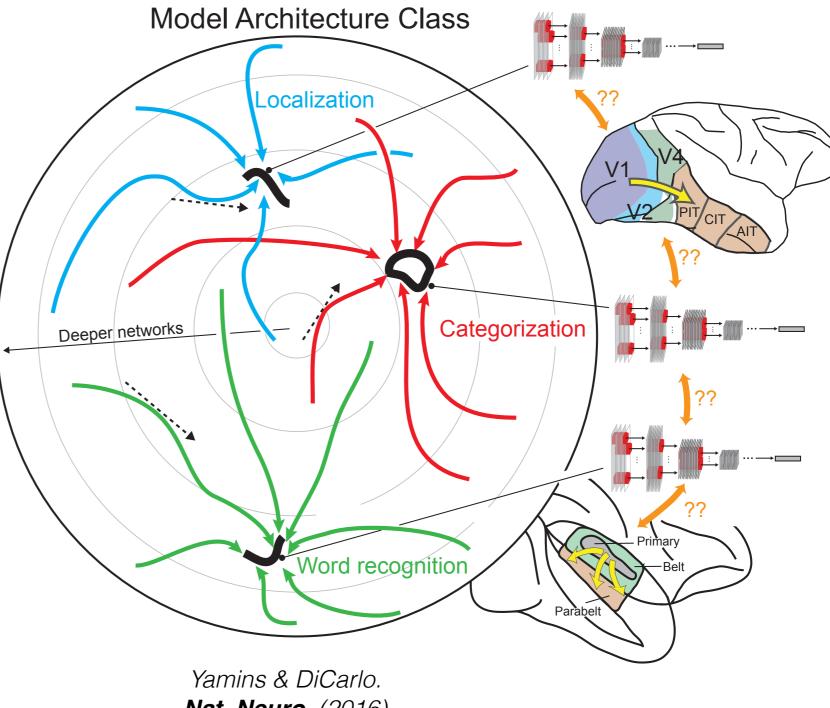




> Formulate comprehensive model class (**RNNs**)

> Choose challenging, ethologically-valid tasks (task switching/ **memory**)

> Implement generic learning rules (??)



Nat. Neuro. (2016)

> Map to brain data. (**Parietal cortex, PFC**)

***bad** = obviously deeply wrong as model of the brain or behavior

PROBLEM

 $\mathbf{A} = architecture class$

e.g. **CNNs**

2.

 $\mathbf{T} = task/objective$

e.g. Object Categorization

3.

 $\mathbf{D} = dataset$

e.g. ImageNet

4.

L = learning rule

***bad** = obviously deeply wrong as model of the brain or behavior

PROBLEM

RECURRENCE and FEEDBACK!!?

2.

 $\mathbf{T} = task/objective$

e.g. CNNs

1 Xbad

 \mathbf{A} = architecture class

e.g. Object Categorization

3.

 $\mathbf{D} = dataset$

e.g. ImageNet

4.

L = learning rule

PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

e.g. CNNs

 \mathbf{A} = architecture class

1. Xbad

 $\mathbf{T} = task/objective$

e.g. Object Categorization

3.

 $\mathbf{D} = dataset$

e.g. ImageNet

4.

L = learning rule

PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

REAL NOISY VIDEO DATASTREAMS vs STEREOTYPED CLEAN STILL IMAGES

e.g. Object Categorization

1 Xbad

e.g. CNNs

2. **Xbad**

T = task/objective

 \mathbf{A} = architecture class

3. Xbad $\mathbf{D} = dataset$

e.g. ImageNet

4.

L = learning rule

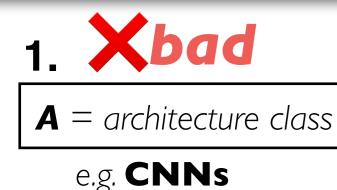
PROBLEM

RECURRENCE and FEEDBACK!!?

TOO MUCH LABELLED DATA REQUIRED!!?

REAL NOISY VIDEO DATASTREAMS vs STEREOTYPED CLEAN STILL IMAGES

BACKPROP AND ITS DISCONTENTS



 $\mathbf{T} = task/objective$

e.g. Object Categorization

 $\mathbf{D} = dataset$

L = learning rule

So far, we've done the basic idea

Date	Session	
01/06	Introduction to NeuroAI	
01/08	Visual Systems Neuroscience Background	
01/13	DNN Models of the Visual System I	Basic idea
01/15	DNN Models of the Visual System II	
01/20	[NO CLASS-MLK DAY]	
01/22	Recurrent Models in Vision and Beyond	
01/27	Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain	
01/28		
01/29	Unsupervised Learning and the Brain	
02/03	Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation	
02/05	Auditory and Somatosensory Models	
02/10	Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning	
02/11		
02/12	Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex	
02/17	[NO CLASS-PRESIDENT'S DAY]	
02/19	Learning Rules in the Brain	
02/24	Models of the Motor System	
02/25		
02/26	Guest Lecture — Scott Linderman (Stanford): Dynamical Systems Models in Neurosci	ence
03/03	Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs	
03/05	The Hippocampus: Memory and Spatial Navigation	
03/10	Topographic Models: A Unified Theory of the Brain	
03/12	Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling	

Next we'll fix some of the problems ...

Date	Session	
01/06	Introduction to NeuroAI	
01/08	Visual Systems Neuroscience Background	
01/13	DNN Models of the Visual System I	Basic idea
01/15	DNN Models of the Visual System II	
01/20	[NO CLASS-MLK DAY]	
01/22	Recurrent Models in Vision and Beyond	
01/27	Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain	Fixing
01/28		_
01/29	Unsupervised Learning and the Brain	problems
02/03	Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation	
02/05	Auditory and Somatosensory Models	
02/10	Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning	
02/11		
02/12	Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex	
02/17	[NO CLASS-PRESIDENT'S DAY]	
02/19	Learning Rules in the Brain	
02/24	Models of the Motor System	
02/25		
02/26	Guest Lecture – Scott Linderman (Stanford): Dynamical Systems Models in Neuroscie	ence
03/03	Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs	
03/05	The Hippocampus: Memory and Spatial Navigation	
03/10	Topographic Models: A Unified Theory of the Brain	
03/12	Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling	

... and then go beyond vision.

Date	Session	
01/06	Introduction to NeuroAI	
01/08	Visual Systems Neuroscience Background	
01/13	DNN Models of the Visual System I	Basic idea
01/15	DNN Models of the Visual System II	
01/20	[NO CLASS-MLK DAY]	
01/22	Recurrent Models in Vision and Beyond	
01/27	Guest Lecture — Meenakshi Khosla (USCD): Mapping Neural Networks to the Brain	Eiving
01/28		Fixing
01/29	Unsupervised Learning and the Brain	problems
02/03	Guest Lecture — Arash Afraz (NIH): Model-Driven Brain Perturbation	
02/05	Auditory and Somatosensory Models	
02/10	Guest Lecture — Rhodri Cusack (Trinity): Models of Development and Learning	
02/11		
02/12	Guest Lecture — Josh McDermott (MIT): Leveraging Models of Auditory Cortex	
02/17	[NO CLASS-PRESIDENT'S DAY]	
02/19	Learning Rules in the Brain	Descend
02/24	Models of the Motor System	Beyond
02/25		Vision
02/26	Guest Lecture — Scott Linderman (Stanford): Dynamical Systems Models in Neuroscie	nce
03/03	Guest Lecture — Greta Tuckute (MIT): The Human Language Network & LLMs	
03/05	The Hippocampus: Memory and Spatial Navigation	
03/10	Topographic Models: A Unified Theory of the Brain	
03/12	Guest Lecture — Robert Hawkins (Stanford): Cognitive Modeling	